氮—铈共掺杂纳米氧化锌的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将晶体缺陷理论与纳米材料的制备相结合,设计一种制备新型双空位触媒氧化锌的方法制备金属-非金属共掺杂纳米ZnO,并来探究氧化锌中缺陷在催化中的作用。研究了制备过程中影响共掺杂纳米ZnO性能的各种因素,通过X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、红外光谱(IR)对粉体进行了表征。研究了该类材料的热催化性能和光催化降解性能,并分别对其热催化性能和该催化剂降解亚甲基蓝溶液的催化性能进行了评价,从而确定了制备N-Ce共掺杂ZnO光催化剂的最佳条件。
     主要研究工作和成果如下:
     (1)通过实验得出爆燃法制备出高性能氮铈共掺杂纳米ZnO双空位触媒。
     (2)当硝酸铈的掺杂量为1%、环境温度为750℃、燃烧时间为15s时所得到的粉体综合性能最好,平均粒度为30nm,晶相与标准立方相ZnO衍射峰完全一致,没有其他杂相出现,铈掺入量为0.91%,颜色为均匀的粉色。
     (3)通过对不同添加方式、混合不同量的氮-铈共掺杂物、不同升温速度等因素的研究发现:当先溶解高氯酸铵,再混合3%氮-铈共掺杂氧化锌催化高氯酸铵(AP)时其热催化性能最好,同时探讨了热催化分解的机理。
     (4)通过对煅烧温度、硝酸铈的掺杂比例、共掺杂物的浓度、溶液初始pH值、亚甲基蓝的初始浓度、光源、是否通氧等影响因素的研究,发现煅烧温度在700℃,硝酸铈的掺杂比例在1%,共掺杂物的浓度为1.5g/L,溶液pH=9,亚甲基蓝初始浓度为10mg/L,光源为300W通氧的条件下催化降解率最好,在30min内降解率可达到100%。
     (5)通过对热催化性能和光催化性能的研究发现,空位和电子在催化的过程起了相当重要的作用。
     通过本文介绍的制备方法可以得到一种高效、低成本的氮铈共掺杂纳米Zn0催化剂该催化剂具有特殊的结构。在催化高氯酸铵和亚甲基蓝水溶液过程中使用该催化剂,可以大大提高催化效率。
Physical and chemical properties of crystal materials have sensitive structure.different from the ideal crystal, any real crystals have a certain degree of structural defects which is crystal defects, and crystal defect type, quantity and its law of motion will have tremendous impact on many properties.
     This article will combine crystal defect theory and preparation of nano-materials to design a new dual-space preparation of zinc oxide catalyst for metal - nonmetal doped nano-ZnO, meanwhile to explore the defects in zinc oxide's role in catalysis. XRD, FTIR, SEM, TEM and XPS were used to characterize the properties of the as-synthesized amples. its catalytic and Photocatalystic were studied and evaluated,so confirm the optimum technology.
     The experimental results show that perfect pink powders with standard cubic ZnO crystal phase are obtained under 750℃when the Ce(NO3)3 doping ratio is 1% and the calcining time is 15s.The average primary granularity of the as-synthsized sample is about 30 nm estimated according to Scherrer Equation. The analysises of XPS indicates that the concentrantion of Ce-doped in the sample is 0.91%.
     Adding different ways, mixing different amounts of N-Ce codoped materials, heating rate were studied, the results show that dissolved ammonium perchlorate at first, then mixed with 3% ammonium perchlorate can get the best performance of its thermal catalytic.Meanwhile explore the mechanism of the thermal catalytic decomposition of ammonium perchlorate.
     Through the calcination temperature and doping ratio of cerium nitrate, a total dopant concentration, initial solution pH, initial concentration of methylene blue, light source, whether pass oxygen et al influencing factors researching ,the result show the optimum technology is: calcination temperature : 700℃, the doping ratio of cerium nitrate :1%, codoped concentration : 1.5g/L, solution pH = 9, the initial concentration of methylene blue :10mg/L, light source :300W, pass oxygen, and in th 30min the catalytic degradation rate can reach 100%
     Through the study of the thermal catalytic properties and photocatalytic properties found that: vacancies and electrons in the process of catalytic played an important role.Through the preparation methods described in this article can be an efficient, low-cost N-Ce codoped nano-ZnO. In catalytic ammonium perchlorate and methylene blue solution used in the course of the catalyst, can greatly improve the catalytic efficiency.
引文
[1]杨栋梁,纺织品的紫外线屏蔽整理[J],印染,1995,21(5)36-46
    [2]郑今欢,钟幼芝,邵建中,纳米抗紫外防水涂层织物的研究[J],印染,2005,(17):7-10
    [3]李群,陈水林,纳米氧化锌整理剂的研制[J],印染,2003,29(8):1-4
    [4]李群,李艳春,陈水林,纳米氧化锌织物整理剂的制备与整理效应的研究[J],印染助剂,2004,21(1):23-25
    [5]李红燕,张渭源,纤维及织物阻燃技术综论材料[J],科学与工程学报,2007,25(5):798-801
    [6]李群,刘岩,朱平,毛涤织物的阻燃抗静电多功能整理的效应[J],纺织学报,18(3):39-41
    [7]邹哲,王敏,纳米材料在废水处理中的应用进展[J],江西化工,2003,3:33-35
    [8]海景,程江,纳米材料在水污染治理方面的应用[J],广东化工,2004,9:51-52
    [9]张鹏,李吉广,佟健,房大维,纳米ZnO的研究现状[J],辽宁大学学报自然科学版2006,33(4):341
    [10]方佑龄,赵文宽,肤色超微粉末氧化锌的制备[J],涂料工业,1991,(4):4-7.
    [11]顾达,顾燕芳,超细肤色ZnO制备的新工艺研究[J],粉体技术,1996,2(3):27-30.
    [12]李晓娥,屈宪军,韩胜等,纳米肤色氧化锌的制备新工艺研究[J],化学工程,2002,30(2):41-45.
    [13]曹俊,周继承,吴建懿,氨溶法制备肤色氧化锌的研究[J],精细化工中间体,2004,34(4):60-62.
    [14]蔡意文,毋伟,陈建峰,超重力法纳米肤色氧化锌的制备与表征[J],北京化工大学学报,2004,31(4):28-31.
    [15]何琴玉等.中国专利公开,CN1587059A,2005.
    [16]Sato Y,Sato S. Preparation and some properties of nitrogen-mixed ZnO thin films [J],Thin Solid Films,1996,281-282: 445-448.
    [17]徐松梅,高朋召,石宗利,双元素掺杂改性二氧化钛的研究进展[J],硅酸盐通报2008,27(4):777-781 6.
    [18]郑敏,吴佳卿,一种纳米氧化锌的制备方法,专利号:200710133731
    [19]刘桂香,徐光亮,罗庆平.自蔓延燃烧法合成ZnO粉体及其压敏电阻的制备[J],硅酸盐学报,2006,3 4(9): 1055-1059.
    [20] Kezban Ada,Murat Gokgoz,Muserref Onal,Yuksel Sarikaya. Preparation and characterization of a ZnO powder with the hexagonal plate particles[J],. Powder Technol., 2007,179: 79-85.
    [21]马振叶,李凤生,崔平,白华萍,纳米Fe2O3的制备及其对高氯酸铵热分解的催化性能[J],催化学报,2 0 0 3,2 4( 1 0 ) :795
    [22]陈爱四,李风生,马振叶,刘宏英,纳米CuO/AP复合粒子的制备及催化性能研究[J],固体火箭技术, 2 0 0 4,2 7( 2) :123
    [23]Liu L L,Li F S,Tan L H,Li M,Yang Y, Propell Explos Pyrot,2004,29(1):34
    [24]朱俊武,张维光,王恒志,杨绪杰,陆路德,汪信,纳米CuO的形貌控制合成及其性能研究[J],无机材料学报,2004,20(7):863
    [25]朱俊武,陈海群,谢波,杨绪杰,陆路德,汪信.纳米Cu2O的制备及其对高氯酸铵热分解的催化性能[J],催化学报,2004,25( 8):637
    [26]Jacobs pWM,et al.Thethermal decomposition of ammonium perchlorate at low temperature.Proe[J],Roy.Soe,1960,254:455
    [27]刘磊力,纳米金属及复合金属粉的制备及其催化性能的研究[J],南京:南京理工大学,2004
    [28]杨毅,刘宏英,李凤生.过渡金属/稀土金属氧化物纳米粒子催化AP热分解研究[J],推进技术,2006,27(1):93-96
    [29]侯文俊,余发健.印染废水处理工艺进展[J],工业用水与废水,2004 35 (2):57-60
    [30]陈银生,张新胜,袁渭康.印染废水处理技术[J],化工进展,2001(5)29-32
    [31]阮新潮,曾庆福,黎谦等.纺织印染废水处理技术进展[J],武汉科技学院学报,2001,14(2):66-71.
    [32]刘毅.遏制印染废水“染”江河,人民日报,2004-07-14
    [33]韩月,卢徐节,陈方雨,李群娇.印染废水处理技术现状研究[J],工业安全与环保,2008,34(7):12-14
    [34]李胜利,李劲.用高压脉冲放电离子体处理印染废水的研究[J],中国环境科学,1996,16(1):73-76.
    [35]彭会清,许开.印染废水处理方法进展与评述[J],南方冶金学院学报2003,24(4):57-61
    [36]苏玉萍,奚旦立.活性染料印染废水混凝脱色研究[J],上海环境科学,1999,18(2):90.
    [37]许佩瑶,王淑娜,王德洪.高浓度印染废水的电解-内电解复合处理[J],印染2004(8)
    [38]王星敏,陈胜福.印染废水的光催化氧化处理新进展[J],重庆工商大学学报(自然科学版) 2004,21(3):229-232
    [39]Pampach R, Haberkc K. Ceramic powders [M]. Amsterda: Elserier Scientific Pub. Company,1983,623-627
    [40]Zarzycki J, Prassas M, Phalippou J. Synthesis of glasses from gels: the problem of monolithic gels[J],. J. Mater. Sci.,1982,17: 33-71
    [41]李群.纳米材料的制备与应用技术[M],北京化学工业出版社20087:179-188
    [42]廖绍华,呼世斌.改性高岭土复合光催化剂降解亚甲基蓝的研究[J],环境污染与防治2008,(11):2-3
    [43]MattewsRW,Photo-oxidation of Organic Material in Aqueous Suspensions of Titanium Dioxide[J],WaterResearch,1986,20(5):311.
    [44]张海禄,童仕唐,胡新亮.稀土掺杂改性TiO2微晶结构及光催化性能[J],环境科学与技术,2005,28(1):14-15.
    [45]钟璟.陶瓷微滤膜过滤微米、亚微米级颗粒体系的基础研究和应用开发[M],南京:南京化工大学,1998.
    [46]赵梦月,罗菊芬.有机磷农药光催化分解的可行性研究[J],化工环保,1993,13(2):74~79
    [47]陈梅兰,陈金媛,蒋传庆等.TiO2光催化降解低浓度溴氰菊酯[J],环境污染与防治,2000,22(1):13-14
    [48]刘子如,阴翠梅,孔扬辉,赵凤起,罗阳,向海.高氯酸铵的热分解[J],含能材料2000,8(2):75-78
    [49].刘子如,阴翠梅,孔扬辉等.高氯酸按的热分解[J],含量材料,2000,8(2):75-79
    [50].BrillTB,BrushPJ,PatilDG,Thermal decomposition of energetic materials.60 Major reaction stages of asimulated burning surface of ammonium perchlorate[J],Combustion and Flame,1993,94:70-76
    [51].T.GangaDevi , M.P.Kannan , B.Hema.Thermal decomposition of cubic ammonium perchlorate-the effect of barium doping[J],ThermochimicaActa,285,1996.
    [52].WinfriedK.Rudloff,EliS.Freeman.The catalyc effect of metal oxide on thermal decomposition reaction[J],J.Phys.Chem.,1970,74(18).
    [53]JacobsPWM , AchesonRJ.The Thermal Decomposition of Ammonium Perchlorate[J],J.Chem.Soc.,1959,3:837?846.
    [54]张仁.固体推进剂的燃烧与催化[M],长沙:国防科技大学出版社,1987,278
    [55]李群.纳米材料的制备与应用技术[M],北京化学工业出版社2008.7:2.
    [56]李新勇,李树本.纳米半导体研究进展[J],化学进展,1996,8(3):231~239
    [57]尚静,杜尧国,徐自力.TiO2纳米粒子气-固复相光催化氧化VOCS作用的研究进展[J],环境污染治理技术与设计,2000,6,1(3):57-73
    [58]王芳,王增长,侯安清.高浓度有机废水处理技术的应用研究[J],科技情报开发与经济,2005,15(23):139-140
    [59]I.Poulios.M.Kositzi,A.Koursa.Photocatalytic decomposition of triclopyr over aqueous semiconductor rsuspensions[J].Journal of Photochemistry and PhotobiologyA:Chemistry,1998,115:175-183
    [60]刘海涛,杨郦,张树军,林蔚.无机材料合成[M],北京:化学工业出版社,2003:143-145
    [61]YuC,FanJ,TianB,etal.High-yield synthesis of periodic mesoporous silicarods and their replication to mesoporous carbonrods[J].AdvMater,2002,14(23):1742
    [62]LiD,HanedaH.Photocatalysis of sprayed nitrogen-containg Fe2O3-ZnO composite powder singas-phase acetaldehyde decomposition[J].JPhotochem PhotobioA:Chem,2003,160(3):203
    [63]张海禄,童仕唐,胡新亮.稀土掺杂改性TiO2微晶结构及光催化性能[J],环境科学与技术,2005,28(1):14-15.
    [64]姚秉华,王理明,杨国农等.RuO2/La2O3/TiO2悬浮体系中直接耐晒黑G的光催化降解[J],环境污染治理技术与设备,2005,6(4):18-21.
    [65]HPKlug,LEAlexander.X-ray diffraction procedures for polycrystalline and amorphous materials[J].John Wiley&Sons,Inc,NewYork,1954,17(84):274.
    [66]方世杰,徐明霞,黄卫友.纳米TiO2光催化降解甲基橙[J],硅酸盐学报,2001,29,(5):439-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700