瓜环与荧光染料的自组装及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓜环(cucurbit[n]uril,CB[n],n=5-10),又称葫芦脲,因其异于已有的超分子大环主体如冠醚、环糊精及杯芳烃等的结构特征受到超分子化学领域学者的广泛关注。瓜环参与的超分子化学体系广泛应用于环境化学、催化、材料化学、生命科学及纳米科学等领域。荧光染料与瓜环形成的络合物在检测、成像、激光及其他方面有着广泛的应用。
     苯乙烯类半菁染料DSMI被CB[6]内包后呈现出高达270倍的荧光增强。通过紫外、荧光、核磁及质谱等方法确定DSMI-CB[6]络合物的化学计量比为1:1。大幅荧光增强是由CB[6]变形的空腔阻止DSMI的扭转分子内电荷转移及CB[6]与DSMI之间的离子-偶极相互作用产生的。而其主要原因是CB[6]变形的空腔,这可以通过计算结果确认。然后利用染料和CB[6]在不同pH下的荧光组建了一个可逆的分子逻辑门,这为利用超分子作用模式设计荧光分子逻辑门打下了坚实的基础。
     DSMI与CB[7]及DNA都能络合,研究发现DSMI与CB[7]络合物的化学计量比为1:2,而且DSMI-CB[7]络合物比DSMI-DNA络合物拥有更强的络合亲和力,因此,CB[7]对染料与DNA之间的络合有一定的抑制作用。本论文在DSMI的基础上设计合成了D2并研究了其与CB[7]及DNA之间的超分子络合作用,D2分子的叉状结构使得D2、CB[7]与DNA之间可能形成三元络合物,可以在一定程度上消除CB[7]对染料与DNA络合作用的抑制效果。
     同时本论文设计合成了一例近红外荧光染料Hsd,该染料以半菁染料形式吸收而以Cy7的形式发射,因此产生了高达224nm的Stokes位移。量子化学计算结果显示染料大Stokes位移是由分子内电荷转移及内转换共同产生的结果。而且,该染料在溶液及固定细胞中都能对RNA选择性响应,是一例很好的近红外RNA探针。染料本身不能进入活细胞,但是在CB[7]的辅助下可以进入活细胞对细胞内RNA进行选择性染色。CB[7]的引入为扩大一些无细胞通透性荧光染料的应用范围提供了一种新的超分子化学方法。
     最后,本论文设计合成了一例可与CB[8]自组装的分子信标MB。该分子信标荧光基团及淬灭基团末端分别带有一个萘甲醚基团及甲基紫菁基团,可以与CB[8]形成三元络合物。三元络合物的形成会拉近荧光基团与淬灭基团之间的距离,增加其FRET效率,有望提高分子信标的信噪比。这种设计原理为改进分子信标性能提供了一个新的方法。
Cucurbit[n]urils, because of their different structures from the existed supramolecular microcyclar hosts such as crownether, cyclodextrin, and calixarene, were intensively studied by supramolecular chemists. The cucurbit[n]uril supramolecular systems were widely used in the fields of environmental chemistry, catalysis, material chemistry, life science and nanotechnology. Meanwhile, the complexes of fluorescent dyes and cucurbit[n]urils have been widely used in detection, imaging, laser and other aspects.
     About270-fold fluorescence enhancement was observed when the hemicyanine dye, trans-4-[4-(dimethylamino)styryl]-l-methylpyridinium iodide (DSMI), was included by cucurbit[6]uril (CB[6]). The1:1stoichiometry of DSMI-CB[6] complex was determined through optical spectra analysis and1H NMR measurement. The large fluorescence enhancement was achieved by prohibiting the twisted intramolecular charge transfer (TICT) process of DSMI inside the distorted cavity of CB[6], together with the ion-dipole interaction between DSMI and CB[6]. The distortion of the CB[6] cavity, being as the major reason for the huge fluorescence enhancement, was further confirmed by the calculation results. And then a resettable and reconfigurable logic gate was constructed with DSMI and CB[6] under different pH situations. This study lays a solid foundation for the design of molecular logic gates via supramolecular interaction mode.
     DSMI could bind with both CB[7] and DNA and DSMI could be included by CB[7] with1:2stoichiometry to form DSMI-CB[7] complex, which has a larger binding affinity than the DSMI-DNA complex. Therefore, CB[7] would inhibit the binding interaction between DSMI and DNA. Then we synthesised a novel hemicyanine derivation D2and investigated its supramolecular interaction between CB[7] and DNA. The branched structure of D2could induce the formation of DNA-D2-CB[7] ternary complex, which could decrease the inhibition of CB[7] to the binding affinity of dyes and DNA.
     A near-infrared fluorescent dye Hsd was designed and synthesized, which absorbed as hemicyane and emitted as Cy7and therefore produced a Stokes shift as large as224nm. Quantum chemistry calculations demonstrate that the large Stokes shift is produced by the combination of intramolecular charge transfer (ICT) and internal conversion. Significantly, Hsd showed selectively response to RNA in aqueous solution and fixed cells. Moreover, Hsd could be uptaken into the cells under the assistance of cucurbit[7]uril and selectively stain RNA in living cells. The introducing of CB[7] provides a novel platform to amplify the application of some cell-impermeant fluorescent stains through the supramolecular chemistry methods.
     Finally, a molecular beacon MB which could be assembled with CB[8] was designed and synthesized. The fluorescence and quencher groups on the molecular beacon possessed a naphthalene ether group and methylviologen group respectively, which could form a ternary complex with CB[8] and bring the fluorophore closer to the quencher. The formation of the ternary complex would increase the efficiency of FRET and is expected to improve the signal-to-noise ratio of molecular beacon. This idea provides a new method for improving the performance of molecular beacon.
引文
[1]Lehn J.-M.,Sanders J., Supramolecular chemistry:concepts and perspectives [M], New York, Vch Weinheim,1995.
    [2]BEHREND R M. E., RUSCHE F. Condensation products from glycoluril and formaldehyde [J]. Liebigs Annalen der Chemie,1905:1-37.
    [3]Freeman W. A., Mock W. L.,Shih N. Y. Cucurbituril [J]. Journal of the American Chemical Society,1981,103:7367-7368.
    [4]Kim J., Jung I. S., Kim S. Y., et al. New cucurbituril homologues:Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5,7, and 8) [J]. Journal of the American Chemical Society,2000,122:540-541.
    [5]Werner M. Nau O. A. S. The World of Cucurbiturils—From Peculiarity to Commodity [J]. Israel Journal of Chemistry,2011,51:492-494.
    [6]de Silva A. P., Gunaratne H. Q., Gunnlaugsson T., et al. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chemical Reviews,1997,97:1515-1566.
    [7]Newman R. H., Fosbrink M. D.,Zhang J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells [J]. Chemical Reviews,2011,111:3614-3666.
    [8]Kobayashi H., Ogawa M., Alford R., et al. New strategies for fluorescent probe design in medical diagnostic imaging [J]. Chemical Reviews,2010,110:2620.
    [9]Dsouza R. N., Pischel U.,Nau W. M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution [J]. Chemical Reviews,2011,111:7941-7980.
    [10]Lagona J., Mukhopadhyay P., Chakrabarti S., et al. The cucurbit[n]uril family [J]. Angewandte Chemie-lnternational Edition,2005,44:4844-4870.
    [11]张同艳,紫菁类染料与八元瓜环的自组装及应用研究[D],大连,大连理工大学,2011.
    [12]Lee J. W., Samal S., Selvapalam N., et al. Cucurbituril homologues and derivatives:New opportunities in supramolecular chemistry [J]. Accounts of Chemical Research,2003,36:621-630.
    [13]Day A. I., Blanch R. J., Arnold A. P., et al. A cucurbituril-based gyroscane:A new supramolecular form [J]. Angewandte Chemie-International Edition,2001,41:275-277.
    [14]Pisani M. J., Zhao Y. J., Wallace L., et al. Cucurbit 10 uril binding of dinuclear platinum(II) and ruthenium(II) complexes:association/dissociation rates from seconds to hours [J]. Dalton Transactions, 2010,39:2078-2086.
    [15]Liu S. M., Shukla A. D., Gadde S., et al. Ternary complexes comprising cucurbit[10]uril, porphyrins, and guests [J]. Angewandte Chemie-International Edition,2008,47:2657-2660.
    [16]Valeur B., Molecular fluorescence:principles and applications [M], Wiley-VCH,2001.
    [17]Wagner B. D., Fitzpatrick S. J., Gill M. A., et al. A fluorescent host-guest complex of cucurbituril in solution:a molecular Jack O'Lantern [J]. Canadian Journal of Chemistry,2001,79:1101-1104.
    [18]Wagner B. D., Stojanovic N., Day A. I., et al. Host properties of cucurbit [7] uril:fluorescence enhancement of anilinonaphthalene sulfonates [J]. The Journal of Physical Chemistry B,2003,107: 10741-10746.
    [19]Bhasikuttan A. C., Mohanty J., Nau W. M., et al. Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-biomolecular host-protein assembly [J]. Angewandte Chemie-International Edition,2007,46:4120-4122.
    [20]Mohanty J.,Nau W. M. Ultrastable rhodamine with cucurbituril [J]. Angewandte Chemie-International Edition,2005,44:3750-3754.
    [21]Gonzalez-Bejar M., Montes-Navajas P., Garcia H., et al. Methylene blue encapsulation in cucurbit [7] uril:laser flash photolysis and near-IR luminescence studies of the interaction with oxygen [J]. Langmuir,2009,25:10490-10494.
    [22]Gadde S., Batchelor E. K., Weiss J. P., et al. Control of H- and J-Aggregate Formation via Host-Guest Complexation using Cucurbituril Hosts [J].Journal of the American Chemical Society,2008, 130:17114-17119.
    [23]Mohanty J., Choudhury S. D., Upadhyaya H. P., et al. Control of the Supramolecular Excimer Formation of Thioflavin T within a Cucurbit[8]uril Host:A Fluorescence On/Off Mechanism [J]. Chemistry-A European Journal,2009,15:5215-5219.
    [24]Saleh N., Koner A. L.,Nau W. M. Activation and stabilization of drugs by supramolecular pK(a) shifts:Drug-delivery applications tailored for cucurbiturils [J]. Angewandte Chemie-International Edition, 2008,47:5398-5401.
    [25]Wang R. B., Yuan L.,Macartney D. H. A green to blue fluorescence switch of protonated 2-aminoanthracene upon inclusion in cucurbit[7]uril [J].Chemical Communications,2005:5867-5869.
    [26]Kononov A. I., Moroshkina E. B., Tkachenko N. V., et al. Photophysical processes in the complexes of DNA with ethidium bromide and acridine orange:a femtosecond study [J]. The Journal of Physical Chemistry B,2001,105:535-541.
    [27]Shaikh M., Mohanty J., Singh P. K., et al. Complexation of acridine orange by cucurbit[7]uril and beta-cyclodextrin:photophysical effects and pK(a) shifts [J]. Photochemical & Photobiological Sciences, 2008,7:408-414.
    [28]Kubota Y.,Steiner R. F. Fluorescence decay and quantum yield characteristics of acridine orange and proflavine bound to DNA [J]. Biophysical Chemistry,1977,6:279-289.
    [29]Melhuish W. Measurement of quantum efficiencies of fluorescence and phosphorescence and some suggested luminescence standards [J]. Journal of the Optical Society of America,1964,54.
    [30]Kemp S., Wheate N. J., Stootman F. H., et al. The host-guest chemistry of proflavine with cucurbit [6,7,8] urils [J]. Supramolecular Chemistry,2007,19:475-484.
    [31]Le Bahers T., Di Tommaso S., Peltier C., et al. Acridine orange in a pumpkin-shaped macrocycle: Beyond solvent effects in the UV-visible spectra simulation of dyes [J]. Journal of Molecular Structure: THEOCHEM,2010,954:45-51.
    [32]Liu J. S., Jiang N., Ma J., et al. Insight into Unusual Downfield NMR Shifts in the Inclusion Complex of Acridine Orange with Cucurbit 7 uril [J]. European Journal of Organic Chemistry,2009: 4931-4938.
    [33]Nau W. M.,Mohanty J. Taming fluorescent dyes with cucurbituril [J]. International Journal of Photoenergy,2005,7:133-141.
    [34]Montes-Navajas P., Corma A.,Garcia H. Complexation and fluorescence of tricyclic basic dyes encapsulated in cucurbiturils [J].ChemPhysChem,2008,9:713-720.
    [35]Mohanty J., Pal H., Ray A. K., et al. Supramolecular dye laser with cucurbit[7]uril in water [J]. ChemPhysChem,2007,8:54-56.
    [36]Martyn T. A., Moore J. L., Halterman R. L., et al. Cucurbit[7]uril induces superior probe performance for single-molecule detection [J]. Journal of the American Chemical Society,2007,129: 10338-10339.
    [37]Halterman R. L., Moore J. L.,Mannel L. M. Disrupting aggregation of tethered rhodamine B dyads through inclusion in cucurbit[7]uril [J]. Journal of Organic Chemistry,2008,73:3266-3269.
    [38]Nau W. M., Greiner G., Rau H., et al. Fluorescence of 2,3-diazabicyclo [2.2.2] oct-2-ene revisited:solvent-induced quenching of the n, n*-excited state by an aborted hydrogen atom transfer [J]. The Journal of Physical Chemistry A,1999,103:1579-1584.
    [39]Adam W., Arnold M. A., Grune M., et al. Spiroiminodihydantoin is a major product in the photooxidation of 2'-deoxyguanosine by the triplet states and oxyl radicals generated from hydroxyacetophenone photolysis and dioxetane thermolysis [J]. Organic Letters,2002,4:537-540.
    [40]Nau W. M. A fluorescent probe for antioxidants [J]. Journal of the American Chemical Society, 1998,120:12614-12618.
    [41]Sahoo H., Roccatano D., Hennig A., et al. A 10-A spectroscopic ruler applied to short polyprolines [J]. Journal of the American Chemical Society,2007,129:9762-9772.
    [42]Hudgins R. R., Huang F., Gramlich G., et al. A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers:an exploratory study with polypeptides [J]. Journal of the American Chemical Society,2002,124:556-564.
    [43]Sahoo H., Hennig A., Florea M., et al. Single-label kinase and phosphatase assays for tyrosine phosphorylation using nanosecond time-resolved fluorescence detection [J]. Journal of the American Chemical Society,2007,129:15927-15934.
    [44]Nau W. M.,Zhang X. An exceedingly long-lived fluorescent state as a distinct structural and dynamic probe for supramolecular association:an exploratory study of host-guest complexation by cyclodextrins [J]. Journal of the American Chemical Society,1999,121:8022-8032.
    [45]Marquez C.,Nau W. M. Polarizabilities inside molecular containers [J]. Angewandte Chemie-International Edition,2001,40:4387-4390.
    [46]Gramlich G., Zhang J.,Nau W. M. Increased antioxidant reactivity of vitamin C at low pH in model membranes [J]. Journal of the American Chemical Society,2002,124:11252-11253.
    [47]Mohanty J.,Nau W. M. Refractive index effects on the oscillator strength and radiative decay rate of 2,3-diazabicyclo[2.2.2]oct-2-ene [J]. Photochemical & Photobiological Sciences,2004,3:1026-1031.
    [48]Pemberton B. C., Singh R. K., Johnson A. C., et al. Supramolecular phot oca talysis:insights into cucurbit[8]uril catalyzed photodimerization of 6-methylcoumarin [J]. Chemical Communications,2011,47: 6323-6325.
    [49]Barooah N., Mohanty J., Pal H., et al. Non-covalent interactions of coumarin dyes with cucurbit[7]uril macrocycle:modulation of ICT to TICT state conversion [J]. Organic & Biomolecular Chemistry,2012,10:5055-5062.
    [50]Li C. J., Li J.Jia X. S. Selective binding and highly sensitive fluorescent sensor of palmatine and dehydrocorydaline alkaloids by cucurbit 7 uril [J]. Organic & Biomolecular Chemistry,2009,7: 2699-2703.
    [51]Yang J., Du L., Wu H., et al. Determination of L-Cystine by a New Sensitive Cucurbit [7] uril/palmatine Probe [J]. Chinese Journal of Chemistry,2011,29:1268-1272.
    [52]Zhang H. M., Yang J. Y., Du L. M., et al. Determination of sotalol by fluorescence quenching method [J]. Analytical Methods,2011,3:1156-1162.
    [53]Li C. F., Du L. M., Wu W. Y., et al. Supramolecular interaction of cucurbit n urils and coptisine by spectrofluorimetry and its analytical application [J]. Talanta,2010,80:1939-1944.
    [54]Li C. F., Du L. M.,Zhang H. M. Study on the inclusion interaction of cucurbit [n] urils with sanguinarine by spectrofluorimetry and its analytical application [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2010,75:912-917.
    [55]Miskolczy Z., Megyesi M., Tarkanyi G., et al. Inclusion complex formation of sanguinarine alkaloid with cucurbit[7]uril:inhibition of nucleophilic attack and photooxidation [J].Organic & Biomolecular Chemistry,2011,9:1061-1070.
    [56]Wagner B. D.,MacRae A.I. The lattice inclusion compound of 1,8-ANS and cucurbituril:A unique fluorescent solid [J]. Journal of Physical Chemistry B,1999,103:10114-10119.
    [57]Wagner B. D., Stojanovic N., Day A. I., et al. Host properties of cucurbit 7 uril:Fluorescence enhancement of anilinonaphthalene sulfonates [J]. Journal of Physical Chemistry B,2003,107: 10741-10746.
    [58]Occcllo V. N. S.,Veglia A. V. Cucurbit[6]uril nanocavity as an enhanced spectrofluorimetric method for the determination of pyrene [J]. Analytica Chimica Acta,2011,689:97-102.
    [59]Wang R., Yuan L., Ihmels H., et al. Cucurbit[8]uril/cucurbit[7]uril controlled off/on fluorescence of the acridizinium and 9-aminoacridizinium cations in aqueous solution [J]. Chemistry-A European Journal,2007,13:6468-6473.
    [60]Sindelar V., Cejas M. A., Raymo F. M.,et al. Supramolecular assemby of 2,7-dimethyldiazapyrenium and cucurbit[8]uril:A new fluorescent host for detection of catechol and dopamine [J]. Chemistry-A European Journal,2005,11:7054-7059.
    [61]Ling Y. H., Mague J. T.,Kaifer A. E. Inclusion complexation of diquat and paraquat by the hosts cucurbit[7]uril and cucurbit[8]uril [J]. Chemistry-A European Journal,2007,13:7908-7914.
    [62]Koner A. L.,Nau W. M. Cucurbituril encapsulation of fluorescent dyes [J]. Supramolecular Chemistry,2007,19:55-66.
    [63]Miskolczy Z., Biczok L., Megyesi M., et al. Inclusion complex formation of ionic liquids and other cationic organic compounds with cucurbit [7] uril studied by 4',6-diamidino-2-phenylindole fluorescent probe [J]. The Journal of Physical Chemistry B,2009,113:1645-1651.
    [64]Montes-Navajas P., Teruel L., Corma A., et al. Specific binding effects for cucurbit[8]uril in 2,4.6-triphenylpyrylium-cucurbit[8]uril host-guest complexes:Observation of room-temperature phosphorescence and their application in electroluminescence [J].Chemistry-A European Journal,2008,14: 1762-1768.
    [65]Choudhury S. D., Mohanty J., Upadhyaya H. P., et al. Photophysical Studies on the Noncovalent Interaction of Thioflavin T with Cucurbit[n]uril Macrocycles [J]. Journal of Physical Chemistry B,2009, 113:1891-1898.
    [66]Huang Y., Xue S. F., Zhu Q. J., et al. Inclusion interactions of cucurbit[7]uril with adenine and its derivatives [J]. Supramolecular Chemistry,2008,20:279-287.
    [67]Praetorius A., Bailey D. M., Schwarzlose T., et al. Design of a fluorescent dye for indicator displacement from cucurbiturils:A macrocycle-responsive fluorescent switch operating through a pK(a) shift [J]. Organic Letters,2008,10:4089-4092.
    [68]Florea M.,Nau W. M. Strong binding of hydrocarbons to cucurbituril probed by fluorescent dye displacement:a supramolecular gas-sensing ensemble [J]. Angewandte Chemie-International Edition,2011, 50:9338-9342.
    [69]Deligeorgiev T., Vasilev A., Kaloyanova S., et al. Styryl dyes-synthesis and applications during the last 15 years [J]. Coloration Technology,2010,126:55-80.
    [70]Fedorova O. A., Chernikova E. Y., Fedorov Y. V., et al. Cucurbit 7 uril Complexes of Crown-Ether Derived Styryl and (Bis)styryl Dyes [J]. Journal of Physical Chemistry B,2009,113: 10149-10158.
    [71]Zhang H. Y., Wang Q. C., Liu M. H., et al. Switchable Ⅴ-Type [2]Pseudorotaxanes [J].Organic Letters,2009,11:3234-3237.
    [72]Wu S., Ma X., Zhang H., et al. Competitive threading of Ru (bpy) 3 stopped "Ⅴ" type pseudo [2] rotaxane-like supramolecules [J]. Dalton Transactions,2011.
    [73]Gromov S. P. V., Artem I.; Kuz'mina, Lyudmila G.; Kondratuk, Dmitry V.; Sazonov, Sergey K.; Strelenko, Yuri A.; Alfimov, Michael V.; Howard, Judith A. K.. Photocontrolled Molecular Assembler Based on Cucurbit[8]uril:[2+2]-Autophotocycloaddition of Styryl Dyes in the Solid State and in Water. [J]. European Journal of Organic Chemistry,2010,2010:2587-2599.
    [74]Ling Y. H., Wang W.,Kaifer A. E. A new cucurbit[8]uril-based fluorescent receptor for indole derivatives [J].Chemical Communications,2007:610-612.
    [75]Xu Y. Q., Panzner M. J., Li X. P., et al. Host-guest assembly of squaraine dye in cucurbit 8 uril: its implication in fluorescent probe for mercury ions [J]. Chemical Communications,2010,46:4073-4075.
    [76]Chernikova E., Berdnikova D., Fedorov Y., et al. Self-assembly of a ternary architecture driven by cooperative Hg2+ ion binding between cucurbit[7]uril and crown ether macrocyclic hosts [J].Chemical Communications,2012,48:7256-7258.
    [77]Hennig A., Bakirci H.,Nau W. M. Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes [J]. Nature Methods,2007,4:629-632.
    [78]Bailey D. M., Hennig A., Uzunova V. D., et al. Supramolecular tandem enzyme assays for multiparameter sensor arrays and enantiomeric excess determination of amino acids [J]. Chemistry-A European Journal,2008,14:6069-6077.
    [79]Nau W. M., Ghale G., Hennig A., et al. Substrate-Selective Supramolecular Tandem Assays: Monitoring Enzyme Inhibition of Arginase and Diamine Oxidase by Fluorescent Dye Displacement from Calixarene and Cucurbituril Macrocycles [J]. Journal of the American Chemical Society,2009,131: 11558-11570.
    [80]Pischel U., Uzunova V. D., Remon P., et al. Supramolecular logic with macrocyclic input and competitive reset [J]. Chemical Communications,2010,46:2635-2637.
    [81]Isobe H., Tomita N., Lee J. W., et al. Ternary complexes between DNA, polyamine, and cucurbituril:A modular approach to DNA-binding molecules [J]. Angewandte Chemie-International Edition,2000,39:4257-4260.
    [82]Lim Y. B., Kim T., Lee J. W., et al. Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA:Noncovalent strategy in developing a gene delivery carrier [J]. Bioconjugate Chemistry,2002,13:1181-1185.
    [83]Shaikh M., Mohanty J., Bhasikuttan A. C, et al. Salt-induced guest relocation from a macrocyclic cavity into a biomolecular pocket:interplay between cucurbit [7] uril and albumin [J]. Chemical Communications,2008:3681-3683.
    [84]Lei W. H., Jiang G. Y., Zhou Q. X., et al. Greatly enhanced binding of a cationic porphyrin towards bovine serum albumin by cucurbit 8 uril [J]. Physical Chemistry Chemical Physics,2010,12: 13255-13260.
    [85]Lei W., Zhou Q., Jiang G., et al. Host-Guest Interaction of Hoechst 34580 and Cucurbit [7] uril [J]. ChemPhysChem,2011.
    [86]Nguyen H. D., Dang D. T., van Dongen J. L., et al. Protein dimerization induced by supramolecular interactions with cucurbit [8] uril [J]. Angewandte Chemie,2010,122:907-910.
    [87]Szacilowski K. Digital information processing in molecular systems [J]. Chemical Reviews,2008, 108:3481-3548.
    [88]Andreasson J.,Pischel U. Smart molecules at work-mimicking advanced logic operations [J]. Chemical Society Reviews,2010,39:174-188.
    [89]Pischel U. Chemical approaches to molecular logic elements for addition and subtraction [J]. Angewandte Chemie-International Edition,2007,46:4026-4040.
    [90]Kumar C. V., Turner R. S.,Asuncion E. H. Groove Binding of a Styrylcyanine Dye to the DNA Double Helix-the Salt Effect [J]. Journal of Photochemistry and Photobiology A-Chemistry,1993,74: 231-238.
    [91]Fedorova O. A., Chernikova E. Y., Fedorov Y. V., et al. Cucurbit[7]uril Complexes of Crown-Ether Derived Styryl and (Bis)sryryl Dyes [J]. Journal of Physical Chemistry B,2009,113: 10149-10158.
    [92]Velapoldi R. A.,T(?)nnesen H. H. Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region [J]. Journal of Fluorescence,2004,14:465-472.
    [93]Zhou Y. Y., Yu H. P., Zhang L., et al. Host properties of cucurbit [7] uril:fluorescence enhancement of acridinc orange [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2008,61: 259-264.
    [94]Dybtsev D. N., Gerasko O. A., Virovets A. V., et al. Unexpected guest-controlled formation of two-layered structure in supramolecular adduct of [W3S4(H2O)(9)](4+) and cucurbituril [J]. Inorganic Chemistry Communications,2000,3:345-349.
    [95]Megyesi M., Biczok L.Jablonkai 1. Highly sensitive fluorescence response to inclusion complex formation of berberine alkaloid with cucurbit[7]uril [J]. Journal of Physical Chemistry C,2008,112: 3410-3416.
    [96]Huang Y. Y., Cheng T. R., Li F. Y., et al. Photophysical studies on the mono- and dichromophoric hemicyanine dyes Ⅱ. Solvent effects and dynamic fluorescence spectra study in chloroform and in LB films [J]. Journal of Physical Chemistry B,2002,106:10031-10040.
    [97]McHale J. L. Subpicosecond solvent dynamics in charge-transfer transitions:Opportunities in Resonance Raman spectroscopy [J]. Accounts of Chemical Research,2001,34:265-272.
    [98]Cao X., Tolbert R. W., McHale J. L., et al. Theoretical study of solvent effects on the intramolecular charge transfer of a hemicyanine dye [J]. Journal of Physical Chemistry A,1998,102: 2739-2748.
    [99]Turkewitsch P., Darling G. D.,Powell W. S. Enhanced fluorescence of 4-(p-dimethylaminostyryl)pyridinium salts in the presence of biological macromolecules [J]. Journal of the Chemical Society, Faraday Transactions,1998,94:2083-2087.
    [100]Wang W. L., Helgeson R., Ma B., et al. Synthesis and optical properties of cross-conjugated bis(dimethylaminophenyl)pyridylvinylene derivatives [J]. Journal of Organic Chemistry,2000,65: 5862-5867.
    [101]Samsonenko D. G., Virovets A. V., Lipkowski J., et al. Distortion of the cucurbituril molecule by an included 4-methylpyridinum cation [J]. Journal of Structural Chemistry,2002,43:664-668.
    [102]Connors K. A., Binding Constants:The Measurement of Molecular Complex Stability; [M], New York, Wiley,1997.
    [103]Kim Y., Kim H., Ko Y. H., et al. Complexation of Aliphatic Ammonium Ions with a Water-Soluble Cucurbit[6]uril Derivative in Pure Water:Isothermal Calorimetric, NMR, and X-ray Crystallographic Study [J]. Chemistry-A European Journal,2009,15:6143-6151.
    [104]Mohanty J., Bhasikuttan A. C., Choudhury S. D., et al. Noncovalent interaction of 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin with cucurbit[7]uril:A supramolecular architecture [J]. Journal of Physical Chemistry B,2008,112:10782-10785.
    [105]Margulies D., Melman G.,Shanzer A. Fluorescein as a model molecular calculator with reset capability [J]. Nature Materials,2005,4:768-771.
    [106]Guo Z. Q., Zhu W. H., Shen L. J., et al. A fluorophore capable of crossword puzzles and logic memory [J]. Angewandte Chemie-International Edition,2007,46:5549-5553.
    [107]Liu S. M., Ruspic C., Mukhopadhyay P., et al. The cucurbit[n]uril family:Prime components for self-sorting systems [J]. Journal of the American Chemical Society,2005,127:15959-15967.
    [108]Grundmann C. D., Judith M.. Disubstitution during the Vilsmeyer-Haack aldehyde synthesis. [J]. Angewandte Chemie,1965,77:966-967.
    [109]Jiang X., Shang L., Wang Z., et al. Spectrometric and voltammetric investigation of interaction of neutral red with calf thymus DNA:pH effect [J]. Biophysical Chemistry,2005,118:42-50.
    [110]Tor Y. RNA and the small molecule world [J]. Angewandte Chemie-International Edition,1999, 38:1579-1582.
    [111]Bao G., Rhee W. J.,Tsourkas A. Fluorescent probes for live-cell RNA detection [J].Annual Review of Biomedical Engineering,2009,11:25.
    [112]Bratu D. P., Cha B. J., Mhlanga M. M., et al. Visualizing the distribution and transport of mRNAs in living cells [J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100:13308.
    [113]Perlette J.,Tan W. Real-time monitoring of intracellular mRNA hybridization inside single living cells [J]. Analytical Chemistry,2001,73:5544-5550.
    [114]O'Connor N. A., Stevens N., Samaroo D., et al. A covalently linked phenanthridine-ruthenium(ii) complex as a RNA probe [J]. Chemical Communications,2009:2640-2642.
    [115]Li Q., Kim Y., Namm J., et al. RNA-Selective, Live Cell Imaging Probes for Studying Nuclear Structure and Function [J]. Chemistry & Biology,2006.13:615-623.
    [116]Stevens N., O'Connor N., Vishwasrao H., et al. Two Color RNA Intercalating Probe for Cell Imaging Applications [J]. Journal of the American Chemical Society,2008,130:7182-7183.
    [117]Yu J., Parker D., Pal R., et al. A Europium Complex That Selectively Stains Nucleoli of Cells [J]. Journal of the American Chemical Society,2006,128:2294-2299.
    [118]Liu X., Sun Y., Zhang Y., et al. A 2,7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm [J]. Organic & Biomolecular Chemistry,2011,9:3615-3618.
    [119]Haugland R. P., Spence M. T. Z.,Johnson I. D., The handbook:a guide to fluorescent probes and labeling technologies [M], Molecular Probes,2005.
    [120]Chow C. S.,Bogdan F. M. A structural basis for RNA-ligand interactions [J]. Chemical Reviews, 1997,97:1489-1514.
    [121]Zhu C. Q., Zhuo S. J., Zheng H., et al. Fluorescence enhancement method for the determination of nucleic acids using cationic cyanine as a fluorescence probe [J]. Analyst,2004,129:254-258.
    [122]Kovalska V. B., Kocheshev 1. O., Kryvorotenko D. V., et al. Studies on the spectral-luminescent properties of the novel homodimer styryl dyes in complexes with DNA [J]. Journal of Fluorescence,2005, 15:215-219.
    [123]Frisch, MJ. et al. Gaussian 09, Revision A.02, Gaussian, Inc.,Wallingford CT,2009. [J].
    [124]Peng X. J., Yang Z. G., Wang J. Y., et al. Fluorescence Ratiometry and Fluorescence Lifetime Imaging:Using a Single Molecular Sensor for Dual Mode Imaging of Cellular Viscosity [J]. Journal of the American Chemical Society,2011,133:6626-6635.
    [125]杨志刚,共轭链上取代五甲川菁染料的合成、光谱性能及应用[D],大连,大连理工大学,2011.
    [126]Akbay N., Losytskyy M. Y., Kovalska V. B., et al. The mechanism of benzothiazole styrylcyanine dyes binding with dsDNA:Studies by spectral-luminescent methods [J]. Journal of Fluorescence,2008,18:139-147.
    [127]Guo Z., Zhu W.,Tian H. Hydrophilic Copolymer Bearing Dicyanomethylene-4H-pyran Moiety As Fluorescent Film Sensor for Cu2+ and Pyrophosphate Anion [J]. Macromolecules,2009,43:739-744.
    [128]Karton-Lifshin N., Segal E., Omer L., et al. A Unique Paradigm for a Turn-ON Near-Infrared Cyanine-Based Probe:Noninvasive Intravital Optical Imaging of Hydrogen Peroxide [J]. Journal of the American Chemical Society,2011,133:10960-10965.
    [129]Mishra A., Behera R. K., Behera P. K., et al. Cyanines during the 1990s:A review [J].Chemical Reviews,2000,100:1973-2011.
    [130]Grabowski Z. R., Rotkiewicz K.,Rettig W. Structural Changes Accompanying Intramolecular Electron Transfer:Focus on Twisted Intramolecular Charge-Transfer States and Structures [J]. Chemical Reviews,2003,103:3899-4032.
    [131]Peng X. J., Wu T., Fan J. L., et al. An Effective Minor Groove Binder as a Red Fluorescent Marker for Live-Cell DNA Imaging and Quantification [J]. Angewandte Chemie-International Edition, 2011,50:4180-4183.
    [132]Kovalska V. B., Kryvorotenko D. V., Balanda A. O., et al. Fluorescent homodimer styrylcyanines:synthesis and spectral-luminescent studies in nucleic acids and protein complexes [J]. Dyes and Pigments,2005,67:47-54.
    [133]Green and R.,Noller H. F. Ribosomes and translation [J]. Annual Review of Biochemistry,1997, 66:679-716.
    [134]Hettiarachchi G., Nguyen D., Wu J., et al. Toxicology and Drug Delivery by Cucurbit [n] uril Type Molecular Containers [J]. Plos One,2010,5:e10514.
    [135]Uzunova V. D., Cullinane C., Brix K., et al. Toxicity of cucurbit 7 uril and cucurbit 8 uril:an exploratory in vitro and in vivo study [J]. Organic & Biomolecular Chemistry,2010,8:2037-2042.
    [136]Lei W., Zhou Q., Jiang G., et al. Host-Guest Interaction of Hoechst 34580 and Cucurbit [7] uril [J]. ChemPhysChem,2011:2933-2940.
    [137]Kim C.,Agasti S. S., Zhu Z., et al. Recognition-mediated activation of therapeutic gold nanoparticles inside living cells [J]. Nature Chemistry,2010,2:962-966.
    [138]Petrov N. K., Ivanov D. A., Golubkov D. V., et al. The effect of cucurbit[7]uril on photophysical properties of aqueous solution of 3,3'-diethylthiacarbocyanine iodide dye [J].Chemical Physics Letters, 2009,480:96-99.
    [139]Choudhury S. D., Mohanty J., Pal H., et al. Cooperative Metal Ion Binding to a Cucurbit[7]uril-Thioflavin T Complex:Demonstration of a Stimulus-Responsive Fluorescent Supramolecular Capsule [J]. Journal of the American Chemical Society,2010,132:1395-1401.
    [140]McGhee J. D.,von Hippel P. H. Theoretical aspects of DNA-protein interactions:co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice [J]. Journal of Molecular Biology,1974,86:469-489.
    [141]Tyagi S.,Kramer F. R. Molecular beacons:probes that fluoresce upon hybridization [J]. Nature Biotechnology,1996,14:303-308.
    [142]Wang K., Tang Z., Yang C. J., et al. Molecular engineering of DNA:molecular beacons [J]. Angewandte Chemie-International Edition,2009,48:856-870.
    [143]Yang C. J., Pinto M., Schanze K., et al. Direct Synthesis of an Oligonucleotide-Poly(phenylene ethynylene) Conjugate with a Precise One-to-One Molecular Ratio [J]. Angewandte Chemie-International Edition,2005,44:2572-2576.
    [144]Huang H., Wang K., Tan W., et al. Design of a Modular-Based Fluorescent Conjugated Polymer for Selective Sensing [J]. Angewandte Chemie-International Edition,2004,43:5635-5638.
    [145]Kim J. H., Morikis D.,Ozkan M. Adaptation of inorganic quantum dots for stable molecular beacons [J]. Sensors and Actuators B:Chemical,2004,102:315-319.
    [146]Yang C. J., Lin H.,Tan W. Molecular assembly of superquenchers in signaling molecular interactions [J]. Journal of the American Chemical Society,2005,127:12772-12773.
    [147]Zhang P., Beck T.,Tan W. Design of a molecular beacon DNA probe with two fluorophores [J]. Angewandte Chemie,2001,113:416-419.
    [148]Jeon W. S., Kim E., Ko Y. H., et al. Molecular loop lock:A redox-driven molecular machine based on a host-stabilized charge-transfer complex [J]. Angewandte Chemie-International Edition,2005,44: 87-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700