日光、超声波、微波促进Fenton体系氧化降解直接桃红12B的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在染料工业的发展中,直接染料已经有一百多年的商业生产历史,是一类很重要的染料类别。而其生产废水也是当前的水体重要的污染源之一。由于这类废水成分复杂,往往含有多种有机染料及其中间体,其特点为色度深、毒性强、难降解、pH波动大、组分变化大,且浓度高,水量大,一直是工业废水处理的难点。染料废水的处理因而成为当今环境领域的一大研究热点。
     Fenton氧化法是一种典型的高级氧化技术。它能产生氧化能力极强的羟基自由基?OH,羟基自由基能够有效的降解有机物,甚至彻底地将有机物转化为无害的无机物。论文将可见光、超声波、微波引入Fenton反应体系促进氧化降解偶氮类染料——直接桃红12B,研究内容包括:通过单因素试验,研究Photo/Fenton、US/Fenton、微波辐射Fenton法氧化降解偶氮类染料直接桃红12B反应中重要影响因素(pH值,Fe~(2+)用量,H_2O_2用量、超声功率或微波功率)对色度去除率的影响;在单因素试验的基础上利用正交实验设计得到最优化实验条件;Photo/Fenton、US/Fenton、微波辐射Fenton协同效应研究;通过控制性试验得到Photo/Fenton、US/Fenton、微波辐射Fenton氧化反应降解目标有机物的动力学方程。
     实验结果表明:
     Photo/Fenton处理直接桃红12B溶液具有协同效应,能有效地提高直接桃红12B的色度去除率和COD去除率,对于处理100mL,500mg/L直接桃红12B溶液的优化试验条件是:pH值为3.5,Fe~(2+)投加量为220uL,H_2O_2投加量为50uL。在优化条件下,光照30min,直接桃红12B溶液的色度去除率达到100%,COD去除率达到77.8%。在初始pH=3.5条件下,Photo/Fenton反应氧化处理直接桃红12B的动力学方程为: V=-((dP)/(dt))=1.4×10~(-2)×P~(0.39)×F~(1.7)×E~(0.33)
     US/Fenton处理直接桃红12B溶液具有协同效应,能有效地提高直接桃红12B的色度去除率和COD去除率,对于处理100mL,500mg/L直接桃红12B溶液的优化试验条件是:pH值为3.0,Fe~(2+)投加量为160uL,H_2O_2投加量为40uL,超声功率为100W。在优化条件下,超声处理30min,直接桃红12B溶液的色度去除率达到100%,COD去除率达到79.5%。在初始pH=3.0条件下,US/Fenton反应氧化处理直接桃红12B的动力学方程为: V=-((dP)/(dt))=7.5×10~(-7)×P~(0.78)×F~(2.05)×E~(0.91)×H~(0.93)
     微波辐射Fenton处理直接桃红12B溶液具有很好的协同效应,能有效地提高直接桃红12B的色度去除率和COD去除率,同时还能降低芬顿试剂的用量。对于处理100mL,500mg/L直接桃红12B溶液的优化试验条件是:pH值为3.5,Fe~(2+)投加量为15uL,H_2O_2投加量为15uL,微波功率为320W。在优化条件下,微波处理10min,直接桃红12B溶液的色度去除率达到100%,COD去除率达到85.8%。在初始pH=3.0条件下,US/Fenton反应氧化处理直接桃红12B的动力学方程为: V=-((dP)/(dt))=5.4×10~(-11)×P~(3.26)×F~(1.66)×E~(1.28)×H~(1.71)
Direct dyes have been produced commercially for over 100 years.As an important and widely used type of dyes,its wastewater are also complicated, which involves various organic dyes and their intermediates. What’s more, the wastewater usually has those characters: deep color, high concentrations, long resistance to biodegradation, strong toxicity, wide fluctuation of pH, great variation of ingredients, large waste streams and so on. Therefore, dye wastewater treatment has increasingly become one of the heated topics in the field of environmental engineering.
     Fenton hydrocarbonylation, being a senior oxidation technique, brings about hydroxyl free radical(?OH) which is efficacious to degrade organic compounds, even to completely transforming organic compounds into harmless inorganic substances. In this paper, sunlight,ultrosonic and microwave are introduced into Fenton reaction system, aiming to improving degradation of polycyclic aromatic hydrocarbon dyes—Dirct pink 12B. The following contents are included: deriving the optimum experimental condition from orthogonal experimental design based on single-factor experiment; investigations on photo-Fenton,ultrosonic-Fenton,microwave-Fenton synergistic effects; via controlling experiment, kinetic equation for photo-Fenton, ultrosonic-Fenton, microwave-Fenton oxidizing reaction to degrade target organics is obtained.
     By experiments, it is suggested that the couple of sunlight-Fenton prossess of synergistic effects which enable enhance color and COD removal rate of Direct pink 12B.For the direct pink 12B solution with the volume of 100mL and the concentration of 500mg/L, the optimum experimental condition is resulted: pH=3.5, 50uL 30%H_2O_2, 220uL 18mmol L-1Fe~(2+)and 30min sunlight interactions. Then, 100% of Direct pink is removed and 77.8% for COD. On original condition that pH=3.5, kinetic equation for Fenton reaction in case of sunlight radiation to degrade Direct pink 12B is as: V=-((dP)/(dt))=1.4×10~(-2)×P~(0.39)×F~(1.7)×E~(0.33)
     Combination of ultrosonic and Fenton agents prossess of synergistic effects which enable enhance color and COD removal rate of Direct pink 12B.For the direct pink 12B solution with the volume of 100mL and the concentration of 500mg/L, the optimum experimental condition is resulted: pH=3.0, 40uL 30%H_2O_2, 160uL 18mmol L-1Fe~(2+), ultrosonic power 100W and 30min ultrosonic interactions. Then, 100% of Direct pink is removed and 79.5% for COD. On original condition that pH=3.0, kinetic equation for Fenton reaction in case of ultrosonic radiation to degrade Direct pink 12B is as: V=-((dP)/(dt))=7.5×10~(-7)×P~(0.78)×F~(2.05)×E~(0.91)×H~(0.93)
     Couple of microwave-Fenton prossess of synergistic effects which enable enhance color and COD removal rate of Direct pink 12B.For the direct pink 12B solution with the volume of 100mL and the concentration of 500mg/L, the optimum experimental condition is resulted: pH=3.5, 15uL 30%H_2O_2, 15uL 18mmol L-1 Fe~(2+), Microwave power 320W and 10min Microwave irradiation interactions. Then, 100% of Direct pink is removed and 79.5% for COD. On original condition that pH=3.0, kinetic equation for Fenton reaction in case of ultrosonic radiation to degrade Direct pink 12B is as: V=-((dP)/(dt))=5.4×10~(-11)×P~(3.26)×F~(1.66)×E~(1.28)×H~(1.71)
引文
[1]谢锐.我国染料行业几种主要废水的治理技术概况[M].化工环保,1994, 14(3):139-143.
    [2] Rozzi A. Ficara E. Cellamare C. M. and Bortone G., Characterization of Textile Wastewater and Other Industrial Wastewaters by Respirometric and Titration Biosensors[J], Wat. Sci.Tech.,1999, 40(1):161-168.
    [3] Venceslau M. C., Tom S. and Simon J. J., Characterisation of Textile Wastewater- A Revies[J], Environ. Tech., 1994,15(9), 917-929.
    [4] Gulays H., Process for the Removal of Recalcitrant Organics from Industrial Wastewater [J], Wat. Sci. Tech., 1997,36(2-3): 9-16.
    [5]程云,周启星,马奇英,等.染料废水处理技术的研究与进展[J].环境污染治理技术与设备, 2003, 4(6): 56-60.
    [6]洪颖,陈国松,张红漫,等.蒽醌类染料废水处理的研究进展[J].工业水处理,2004,24(10):5-8.
    [7]张继彤,杨新玮.近年我国酸性染料的进展.染料工业, [J]1999,36(3):10-14.
    [8]杨薇,杨新玮.直接染料的进展概况[J].染料工业,1999,36(1):6-17.
    [9]郑光洪,冯西宁,染料化学,中国纺织出版社,北京,2001.
    [10]魏国.光助非均相Fenton体系用于活性艳红X-3B脱色的研究[D]..北京:北京林业大学,2004, 6(1) :17-19.
    [11] Neamtu M.,Yediler A.,Siminiceanu I.,Macoveanu M.,Kettrup A.,Decolorization of disperse red 354 azo dye in water by several oxidation processes-a comparative study[J],Dyes and pigments 2004,60(1):61-68.
    [12] Surpateanu Mioara, Zaharia Carmen. Advanced oxidation processes for decolorization of aqueous solution containing Acid Red G azo dye[J]. CEJC, 2004,2(4): 573-588.
    [13] Slokar Y.M., Le Marechal A.M.Methods of decoloration of textile wastewaters[J]. Dyes and Pigments, 1998,37(5):335–356.
    [14]李庄.高浓度染料废水(含偶氮染料废水)处理技术的研究[D]..长沙:湖南大学,2001,4.
    [15]陈颖,唐受印,戴友芝.载Ni-Cu-K活性炭催化氧化法处理染料废水活性红X-3B[J].环境污染治理技术与设备, 2004,5(2):68-71.
    [16]董丽丽,董五欣.有机染料废水处理技术的新探究[J].邢台学院学报,2003,18(2):78-80.
    [17]陈银生,张新胜,袁渭康.印染废水处理技术[J].化工进展,2001,5:39-42.
    [18]孙晓君,冯玉杰,蔡伟民,等.废水中难降解有机物的高级氧化技术[J].化工环保,2001,21(5): 264-268.
    [19]周建,章亭曦,洪利光.染料废水的催化氧化处理[J].环境污染与防治,2000 ,22 (4) :25-26.
    [20]朱虹,孙杰,李剑超.印染废水处理技术.北京[M]:中国纺织工业出版社,2000
    [21]白春学,钟俊波,徐锁洪.难降解有机物去除技术的研究与应用进展[J].辽宁化工,2004,33 (1):4-49.
    [22]刘颖.染料废水的可生化性及其处理工艺研究[D].山东:中国海洋大学,2005,6.
    [23]林少芳.高效菌对染料脱色降解的研究[D].福建:福州师范大学,2005,5.
    [24] Yu, T. et al. Stratification of microbial metabolic processes and redox potentialchange in an aerobic biofilm studied using microelectrodes.Water Science andTechnology. 1998, 37(4-5):195-198.
    [25]冯愚斌.印染废水处理设计实例[J],环境保护,1997, 9(1): 11-12.
    [26]李慧蓉.白腐真菌对染料的脱色降解及应用前景[J],染料与染色,2002,6(1): 6-9.
    [27] Knapp J.S, Newby PS. The Microbiological Decolorization of an Industrial Effluent Containing Diazo-linkedchro-mophore[J], Water Reasearch, 1995, 29(7):1807-1809.
    [28]肖锦.我国絮凝剂发展现状与对策[J].现代化工,1997, 12(1): 6-9.
    [29]杨巍.美国水处理化学品市场现状与展望[J].工业水处理,1998, 18 (2): 7-10.
    [30]卢秋晓,黎莉.锌系复合絮凝剂处理印染废水的研究[J].江西化工.2005,12(2):89-93.
    [31]霍宇凝,薛莉,袁虹.高分子复合絮凝剂对活性印染废水的脱色性能研究[J].工业水处理.2006,21(1):34-37.
    [32]陈润铭,招琳樱,朱锡海.水溶性磺化聚苯乙烯在阳离子染料废水处理中的应用[J].环境化学.1999,22(5):40-44.
    [33]北京市环境技术与设备研究中心等单位.三废处理工程技术手册(废水卷).北京:化学工业出版社,2002.
    [34]沈光范.纺织工业废水处理.北京[M]:中国环境科学出版社,1991.
    [35]詹旭,罗泽娇,马腾.高岭土吸附剂去除含锰废水中锰离子的实验研究[J].地质科技情报.,2005,24(1):95-98.
    [36]张一先,朱洪根.处理有机物废水时的高岭土吸附性能研究[J],非金属矿,1991,13(3):27-29.
    [37]倪晓斌,赵陈,童建颖.炉渣的吸附性能及在废水处理中的应用试验[J].化工生产与技术,2005,21(6):42-43.
    [38]刘精今,李小明,杨麒.炉渣的吸附性能及在废水处理中的应用[J].工业用水与废水,2003,22(1):12-15. [J]
    [39] S. A. Wasay, S. Barrington, S. Tokunaga. Efficiency of GAC for treatment of leachate from soil washing process [J]. Wat.Air Soil Pollut., 1999,116(8):449-460.
    [40]阎存仙.粉煤灰吸附去除活性蓝X-3B[J].上海交通大学学报,1998,9(9):56-59.
    [41] Mckay G,Porter J,PrasadG R.,Air and Soil Pollution[J].1999,114(3-4):423-438.
    [42] Khattri S D,Singh,M K.Adsorption Science and Technology[J].1999,17(4):269-282.
    [43] Graham N,Chen X G,Jayaseelan S.water Science and Technology[J].2001,43(2):245-252.
    [44]史建福,陈荣修.活性染料染色模拟液的电化学混凝研究[J].四川环境.1991,10(2):19-28.
    [45]杨岳平,宋爽.电絮凝法处理毛纺染色废水[J].环境保护.2000,12(8):19-20.
    [46] L.Daniliuc. Performance and Economic Aspects of the Treatment of Effluents by Electro-Flocculation Using the Dequaflox Process[J]. Tribunedel'Ean(inFrench), 1995, 576 (48):37-39.
    [47] Model M. Processing Methods foe the Oxidation of Organics in Supercritical Water[P].US Patent:4543190, 1985-09-24.
    [48]丁巍.高级氧化技术在处理染料废水中的研究[D].辽宁:大连轻工业学院,2006,6.
    [49]李胜利,李劲.脉冲放电对印染废水脱色效果的实验研究[J].环境科学,1996 ,17(1):13-16.
    [50] Abdemaleka F,Gharbia S, BenstaaliB,et.al.Plasmachemical degradation of azo dyes by humid air plasma: Yellow Supranol 4GL,Scarlet Red Nylosan F3GL and industrial waste[J].Wster Research,2004,38(9):2339-2347.
    [51] AlexD eV isschere ta l.,K ineticm odelfo rth es onochemicalde gradationof monocyclic compounds in aqueous solution[J]. Phys.Chem,1996,100(9):11636-11642.
    [52] Naomi L.Stock,Julie Peller,K Vinodgopal.,et.al..Environmental Science and Technology[J]. 2000,34(9):1747-1750.
    [53]祁梦兰.声化学氧化-SBR法处理染料废水[J].河北科技大学学报(自然科学版),1997,18(1): 76-80.
    [54]罗学辉,秦炜.络合萃取法处理磺酸类染料中间体工业废水的研究[J].化学工程, 2003, 31(2) : 51-54.
    [55] ZanoniM V B,Sene J J,Andreeva D,et.al.Chatacterization and photocatalytic activity of Au/TiO2thin films for azo-dye degradation.Joumal of Catalysis[J].2003,220(1):127-135.
    [56]王怡中,李薇.用于染料废水处理的光催化氧化方法[J].科技开发动态,2005,32(4):45-47.
    [57] Rao K. Venkata Subba, Subrahmanyam Machiraju, Boule Pierre.Immobilized TiO2 photocatalyst during long-term use: decrease of its activity[J]. Applied Catalysis B: Environmental, 2004,49(4):239–249.
    [58] Bhattacharyya A., Kawi S., Ray M.B. Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents[J]. Catalysis Today, 2004,98:431-439.
    [59]张音波.TiO2光催化降解甲基橙的试验及机理研究[D].广东:广东工业大学, 2002,4.
    [60]李绍锋,张秀忠,张德明,等.Fenton试剂氧化降解活性染料的试验研究[J].给水排水,2002,28 (3): 46 - 49.
    [61]徐向荣,王文华,李华斌. Fenton试剂与染料溶液的反应[J].环境科学,1999 ,20 (5) :72-74.
    [62]徐向荣,王文华,李华斌. Fenton试剂处理酸性染料废水的研究[J].环境导报,1997,9(6) :23-24
    [63]徐新华,陈调庆,杨雪涛.活性染料染色废水的光助Fenton处理试验研究[J].污染防治技术, 1999, 12 (4) :228-230.
    [64]胥维昌.染料行业废水处理现和展望[J].染料工业,2002,39(6):35-39.
    [65]刘立华,张边瑞.处理染料废水的研究进展[J].化工科技市场,2005,11(1):20-23.
    [66]李茵.染料废水处理技术的研究进展[J].化工时刊.2005,19(10):60-63.
    [67]刘冬莲.染料废水处理方法的研究进展[J].河南化工.2004,12(1):5-8
    [68]梁宏,曾抗美.染料废水处理方法的研究进展[J].四川轻化工学院学报.2003,16(2)20-24.
    [69]凌芳,李光明.染料废水的治理现状及展望[J].江苏环境科技.2006,19(12):98-101.
    [70]孙颖,雷彩虹.染料废水脱色的物理化学处理技术[J].中国环境管理干部学院学报.2006,16(4):87-88.
    [71]刘琰,孙德智.高级氧化技术处理染料废水的研究进展[J].工业水处理.2006,26(6):1-5.
    [72]暴雅娴,华兆哲,陈坚,等.Fenton氧化法处理含甲基橙染料模拟废水的条件研究[J].中国环境保护优秀论文集,北京:中国环境科学出版社,2005:1141-1144.
    [73]王鹏,方汉平.垃圾渗沥液中难降解有机污染物的Fenton混凝处理[J].应用化学, 2001, 18(5):408-411.
    [74]徐新华,陈调庆,杨雪涛.活性染料染色废水的光助Fenton处理试验研究[J].污染防治技术, 1999, 12 (4) :228 -230.
    [75] Kang S. F.,Liao C. H.,Hung H. P.,Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions.Journal of hazardous materials[J].1999, B65:317-333.
    [76] Irfan I. Sonophotochemical destruction of aqueous solution of 2,4,6 trichlorophenol Ultrason [J]. onochem., 1998,32(5):53-61.
    [77]张光明,周吉全,张锡辉,等.超声波处理难降解有机物影响参数研究[J].环境污染治理技术与设备, 2005,6(5):42-45.
    [78] Yoshifumi K. Ultrasonic effects on electroorganic processes Part 20.Photocatalytic oxidation of aliphatic alcoholsin aqueous suspension of TiO2 power[J]. Ultrason. Sonochem., 2001, 12(8):69-74.
    [79] Chen Y C. Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound [J]. Indu.& Eng. Chem. Research, 2002,41(24):5958-5965.
    [80] Theron P. Degradetion of phenyltrifluoromethylketone in water by separate or simultaneous use of TiO2 photocatalysis and 30 or 515 kHz ultrasound[J]. Phys. Chem. Chem. Phys., 1999, 19(1): 4663-4668.
    [81]李春喜,李玉同,王子镐.超声波-光催化联合降解苯酚废水研究[J].环境污染治理技术与设备, 2002,3(8):48-51.
    [82]陈伟,范瑾初.超声波-过氧化氢法技术降解水中4-氯酚[J].中国给水排水,2000,16(2):1-4.
    [83]华彬,陆永生,等.超声技术降解酸性红B废水[J].环境科学,2000,21(2):88-90.
    [84] SulickK S,HammertonD A,ClineR E.The sonochemicalhot spot[ J]. J Am Chem Soc, 1986, 108 (17): 5641-5642.
    [85] Richard Gedye, Frank Smith, Kennech Westaway, et al. The use of microwave ovens for rapid organic synthesis[ J]. Tetrahedron Letters , 1986 , 27(3) :279-282.
    [86] Raymond J Giguere, Terry L Bray, Scott M Duncan, et al. Application of commercial microwave ovens to organic synthesis Tetrahedron Letters , 1986 , 27 (41) :4945-4948.
    [87]王静,姜凤超.微波有机合成反应的新进展[J].有机化学,2002,23(3):211-219.
    [88]王剑虹,严莲荷,周申凡,等.微波技术在环境保护领域中的应用[J].工业水处理,2003,23(4):18-24.
    [89]肖新荣.微波辐射Fenton试剂-活性炭催化氧化体系降解水中苯酚[ J].南华大学学报(自然科学版),2004,18(4):22-25.
    [90]严莲荷,王剑虹,潘爱芹,等.微波催化氧化法处理甲基橙废水[J].化工环保, 2004,24(1):38-40.
    [91]赵景联,任国勇.微波辐射Fenton试剂氧化催化降解水中三氯乙烯[J].微波学报.2003,16(1):55-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700