蒽醌染料中间体强化偶氮染料生物脱色
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮染料被广泛应用于纺织品、皮革、纸张、塑料、化妆品和食品染色。在染料的生产和使用中,约有10%~15%的染料随废水排入环境水体,加之偶氮染料的前体及其降解产物的致癌、致畸、致突变的“三致”作用,对全球的生态环境造成了影响,严重威胁生物多样性。在众多处理方法中,生物处理技术中的厌氧-好氧法应用最广,效果最好,但其中厌氧阶段的反应速度缓慢,是偶氮染料完全生物降解的瓶颈,而氧化还原介体强化是提高厌氧脱色效率的有效途径。常用的介体是苯醌、蒽醌、萘醌等醌类化合物,但这些化合物更难降解,通常会随出水流出而造成二次污染。
     本论文的研究目的是寻找新型氧化还原介体或技术以减少介体使用所引起的二次污染。研究内容包括醌还原菌群以可好氧降解的蒽醌染料中间体溴氨酸(1-氨基-4-溴蒽醌-2-磺酸,BAA)为氧化还原介体强化染料脱色;将菌群以海藻酸钙法包埋,在不补加BAA的条件下考察循环利用的情况;并将菌群与非水溶性蒽醌共固定化,考察其强化染料脱色及循环利用的情况。
     游离态菌群以BAA作为氧化还原介体可强化多种偶氮染料的生物脱色,其中对酸性大红3R脱色的适宜条件为pH6~9之间;温度30℃;外加葡萄糖浓度400~600mg/L;BAA浓度19~34.2mg/L,染料起始浓度≤900mg/L。在此条件下,最大脱色率约为95%、达到最大脱色率的时间<7h。同时发现,投加氧化还原介体BAA浓度为38~57mg/L,最佳菌球投加量为120g/L时,固定化菌群降解酸性大红3R(180mg/L)的最大脱色率在14 h内达到93%;在不补加BAA的情况下,固定化菌球经7次循环使用后,脱色率仍保持在85%以上。
     同时考察了非水溶性的蒽醌与醌还原菌群共固定化后对偶氮染料生物脱色的强化作用。结果表明,共固定化后,菌球与氧化还原介体结合更紧密,可强化多种偶氮染料的生物脱色,其中对酸性大红3R脱色的适宜pH仍为6~9,温度30℃,葡萄糖浓度500mg/L,最佳菌球投加量为120g/L;达到最大脱色率的时间<12h。经循环使用10次,酸性大红3R的脱色率仍然保持88%以上。
Azo dyes are widespread environmental pollutants associated with the textile, cosmetic, food colorants, printing, and various other purposes. 10%-15% of these dyes are released into the environment during the process of producing or using. The release of these compounds into the environment is undesirable, not only because of their color but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. Among kinds of methods, anaerobic-aerobic biotreatment may present a relatively efficient way and be the most frequently applied methods to remove dyes from wastewater. Anaerobic process is a time-consuming process, reflected by the requirement of long reaction times. Enhancement by redox mediator is an effective method to increase the performance of anaerobic decolorization. Some quinones such as anthraquinone, naphthoquinone are powerful redox mediators, while they are also pollutant and more difficult to break down as the secondary pollutions.
     The purpose of this dissertation is to find new redox mediator or technology to reduce the secondary pollutions caused by redox mediators. Three aspects are included in this paper. Enhanced biodecolourization of azo dyes by the anthraquinone dyes intermedaitors bromoamine acid (BAA) were studied, and BAA can be easily degraded under aerobic condition. The bacterial cells were immobilized by entrapment in calcium alginate (CA), and the reusing without adding BAA was studied. The bacterial cells and anthnaquinone were co-immobilized, and then the decolourization and reusing were also investigated.
     The suspended bacterium community could enhance the biodecolourization of many kinds of azo dyes using bromoamine acid (BAA) as redox mediator, the optimum conditions for Acid Red 3R were as follows: pH 6-9, temperature 30℃, glucose, BAA and initial dye concentrations 400-600 mg/L, 19-34.2mg/L and≤900mg/L, respectively. Under these conditions, the maximal decolourzation rate was about 95%, which was reached within 7 h for suspended cells and 14 h for immobilized bacteria. However, the latter needed 38-57mg/L BAA as redox mediator and inoculation amount 120g/L. In addition, after 7 cycles without BAA addition, the decolourzation rate of Acid Red 3R by immobilized bacteria retained over 85%.
     Enhanced biodecolourization of azo dyes by co-immobilized quinone-reducing community and anthraquinone were also investigated. After the co-immobilization, the bacterium and the redox mediator get closer, which can enhance biodecolourization of different kinds of azo dyes. The optimum conditions for Acid Red 3R were: pH6~9, temperature 30℃, inoculation amount 120g/L, the maximal decolourization rate was reached within 12 h. After 10 cycles, the decolourization rate of Acid Red 3R by co-immobilized beads retained over 88%.
引文
[1]冯宇,廖银章,李旭东.印染废水生物处理技术的进展.印染,2006,15:48-50.
    [2]Bahorshy S M.Textiles.Water Environment Research,1997,69(4):658-662.
    [3]彭跃莲.生物技术在印染和染料废水处理中的应用.环境科学进展,1997,5(3):56-64.
    [4]洪义国,许玫英,郭俊,等.细菌偶氮还原研究进展.应用与环境生物学报,2005,11(5):642-647.
    [5]Van der Zee F P.Combined anaerobic-aerobic treatment of azo dyes-A short review of bioreactor studies.Water Research,2005,(39):1425-1440.
    [6]Wang J,Yan B,Zhou J T.Biodegradation of azo dyes by genetically engineered azoreductase.Journal of Environmental Science,2005,17(4):545-550.
    [7]Irina V P,Anton N K.Design of quinonoid-enriched humic materials with enhanced redox properties.Environmental Science & Technology,2005,39(21):8518-8524.
    [8]Van der Zee F P,Bisschops I A E,Lettinga G et al.Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes.Environmental Science & Technology,2003,37(2):402-408.
    [9]Guo J B,Zhou J T,Wang D et al.Biocalalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria.Water Research,2007,41(2):426-432.
    [10]李家珍.染料、染色工业废水处理.北京:化学工业出版社,1999:74-75.
    [11]侯毓汾,朱振华,王任之.染料化学.北京:化学工业出版社,1994:95-99.
    [12]程铸生,朱承炎,王雪梅.精细化学品化学(第二版).上海:华东理工大学出版社,1996:65-70.
    [13]李茵.染料废水处理技术的研究进展.化工时刊,2005,19(10):60-63.
    [14]程云,周启星,马奇英等.染料废水处理技术的研究与进展.环境污染治理技术与设备,2003,4(6):56-60.
    [15](O|¨)zacar M,Scedilengil I A.Adsotption of acid dyes from aqueous solute Ions by alcined alunitean granular activated carbon.Adsorption,2002,8(4):301-307.
    [16]宋光蒲,蒋志贤,施清.阳离子交换纤维对阳离子染料的脱色.水处理技术,1989,15(4):243-246.
    [17]张婷婷,张爱丽,周集体.活性炭吸附分离-生物再生法处理高盐苯胺废水.化工环保,2006,26(2):107-110.
    [18]Solpan D,Guven O.Decolratio and degradation of some textile dyes by gammairradiation.Radiation Physics and Chemistry,2002,65(4):549-558.
    [19]Al-Momani F,Touraud E.Degotce-Dumas J R et al.Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis.Journal of Photochemistry and Photobiology,2002,153(1):191-197.
    [20]蔡惠如.纳滤技术治理染料废水的尝试.环境工程,2002,20(1):24-25.
    [21]甘光奉,甘利.无机高分子絮凝剂研究的进展.工业水处理,1999,19(2):6-7.
    [22]秦蓁,乌锡康.镁盐对水溶性阴离子染料废水的脱色研究.中国环境科学,1994,14(5):359-360.
    [23]嵇鸣,赵宜江,张艳等.氢氧化镁对印染废水脱色处理.水处理技术,2000,26(4):245-248.
    [24]余颖,庄源益,邹其猛等.有机絮凝剂对水中染料的絮凝作用探讨.环境化学,2000,19(2):142-147.
    [25]Rccd B E,Matsumoto M R,JensenJ N.Physicochemical processes.Water Environmental Research,1998,70(4):449-473.
    [26]Houas A,Lachheb H,Ksibi M et al.Photocatalytic degradation pathway of methylene blue in water.Applied Catalysis B:Environmental,2001,31(2):145-157.
    [27]Hoffmann M R.Environmental applications of semiconductor photocatalysis.Chemical Reviews,1995,95(1):69-76.
    [28]胡春,王怡中,汤鸿霄.多相光催化氧化的理论与实践进展.环境科学进展,1995,3(1):55-64.
    [29]岳林海,樊邦棠.半导体复合体系光催化降解水溶性染料的研究.环境污染与防治,1994,16(4):2-5.
    [30]张桂兰,全燮,杨凤林等.染料废水在旋转式光催化反应器中的降解研究.环境科学,1999,20(3):79-81.
    [31]杨志军,梁鑫淼,吴文忠等.含酚废水的超临界水氧化研究进展.环境污染治理技术与设备.2002,11(3):50-54.
    [32]Naumczyk J,Szpyrkowicz L,Grandi F Z.Electrochemical treatment of texitile wastewater.Water Science Technology,1996.33(7):17-24.
    [33]贾金平,杨骥,廖军.活性炭纤维电极法处理染料废水的探讨.上海环境科学,1997,16(4):19-22.
    [34]杨卫身,周集体,杨凤林.微电解法处理印染废水的研究.环境保护科学,1996,22(3):30-34.
    [35]Kapdan I K,Alparslan S.Application of anaerobic-aerobic sequential treatment system to real textile wastewater for color and COD removal.Enzyme and Microbial Technology,2005,36(3):273-279.
    [36]杨惠芳.水污染防治及城市污水资源化技术.北京:科学出版社,1993.
    [37]张笑一,兰薇,潘渝生等.偶氮染料分子的电子结构与生物降解活性(Ⅱ)-取代基非定域活性对偶氮染料还原裂解的影响.高等学校化学学报,1999,2(20):268-271.
    [38]Michaels G B,Lewis D L.Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations.Environmental Toxicology Chemistry,1985,25(6):45-50.
    [39]杜晓明,刘厚田.偶氮染料分子结构特征与其生物降解性的关系.环境化学,1991,10(6):12-17.
    [40]戴树桂,宋文华,李彤等.偶氮染料结构与其生物降解性关系研究进展.环境科学进展,1996,6(4):1-9.
    [41]徐文东,文湘华.微生物在含染料废水处理中的应用.环境污染治理技术与设备,2000,1(2):9-16.
    [42]陈勇,沈日华.染料废水的微生物处理法.应用基础与工程科学学报.1998,6(4):353-359.
    [43]刘厚田,杜晓明,刘金齐等.藻菌系统降解偶氮染料的机理研究.环境科学学报,1993,13(3):332-338.
    [44]Horitsu H,Tateda M.,Idaka E et al.Degradation of p-aminoazobenzene by Bacillus subrilis.European Journal of Applied Microbial,1977,14:217-224.
    [45]Wang P K,Yuen P Y.Decolorization and biodegradation of methyl red by klebsiella Pneumonia RS-13.Water Researh.1996,30(7):1736-1744.
    [46]Hu T L.Decolorization of reactive azo dyes by transformation with pseudomonas luteola.Biosource Technology,1994,49:47-51.
    [47]Hu T L.Degradation of azo dye RP2B by pseudomonas luteola.Water Science and Technology,1998,38(4):299-306.
    [48]Bl(u|¨)mel S,Contzen M,Lutz M et al.Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4' -sulfoazobenzene as the sole source of carbon and energy.Applied and Environmental Microbiology,1998,64(6):2315-2317.
    [49]曾丽璇,罗国维.优势菌处理印染废水中水解池的脱色机理.中国环境科学,1998,18(5):423-426.
    [50]李慧蓉,谭晓莲,凌瑞锋.黄孢原毛平革菌细胞固定化技术的比较研究.环境科学研究,2001,14(1):41-44.
    [51]Jeremy S.Knapp,Zhang F,Tapley K N.Decolorurisation of orange Ⅱ by a Wood Rotting Funfus.Journal of Chemical Technology and Biotechnology,1997,45(69):289-296.
    [52]Barr P D,Aust D S.Mechanisms white rot fungi use to degrade pollutants.Environmental Science & Technology,1994,28(2):78-87.
    [53]Lan R H,Cao H.Decolorization of textile wastewater by selective fungi.Textile Chemist and Colorist & American Dyestuff Reporter,2000,32(11):38-42.
    [54]Thurston C F.The structure and function of fungal laccase.Microbiology,1994,140(1):19-26.
    [55]Liu J,Liu H.Degradation of azo dyes by algae,Environmental Pollution,1992,75(2):273-278.
    [56]孙红文,黄国兰,丛丽莉等.藻类对偶氮染料的降解及定量结构生物降解性研究.中国环境科学,1999,19(4):289-291.
    [57]Dos Santos A B.Reductive decolourisation of dyes by thermophilic anaerobic granular sludge:[Ph.D.Thesis].Wageningen:Wageningen University,2005.
    [58]Russ R,Rau J,Stolz A.The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria.Applied and Environmental Microbiology,2000,66(4):1429-1434.
    [59] Nam S, Renganathan V. Non-enzymatic reduction of azo dyes by NADH. Chemosphere, 2000,40(4): 351-357.
    [60] Hernandez P H, Gilette R, Mazel P. Studies on the mechanism of action of mammalian hepatic azoreductase. I. Azoreductase activity of reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase. Biochemical Pharmacology, 1967, 16(10):1859-1875.
    [61] Semde R, Pierre D, Geuskens G et al. Study of some important factors involved in azo derivative reduction by Clostridium perfringens. International Journal of Pharmaceutics, 1998,161(1):45-54.
    [62] Cervantes F J. Quinones as electron acceptors and redox mediators for the anaerobic biotransformation of priority pollutants:[Ph. D. Thesis]. Wageningen: Wageningen University, 2002.
    [63] Keck A, Klein J, Kudlich M et al. Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6.Applied and Environmental Microbiology, 1997, 63(9):3684-3690.
    
    [64] Dunnivant F M, Schwarzenbach R P, Macalady D L. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environmental Science & Technology, 1992, 26(11):2133-2141.
    [65] O'Loughlin E J, Burris D R, Delcomyn C A. Reductive dechlorination of trichloroethene mediated by humic-metal complexes. Environmental Science & technology 1999, 33(7):1145-1147.
    [66] Walker R, Ryan A J. Some molecular parameters influencing rate of reductions of azo compounds by intestinal microflora. Xenobiotica, 1971, 1(3):483-486.
    [67] Bragger J L, Lloyd A W, Soozandehfar S H et al. Investigations into the azo reducing activity of a common colonic microorganism. International Journal of Pharmaceutics,1997,157(1):61-71.
    [68] Moir D, Masson S, Chu I. Structure-activity relationship study on the bioreduction of azo dyes by Clostridium paraputrificum. Environmental Toxicology and Chemistry,2001, 20(3):479-484.
    [69] Tatsumi H, Kano K, Ikeda T. Kinetic aspects of fast hydrogenase reaction of Desulfovibrio vulgaris cells in the presence of exogenous electron acceptors. Journal of Physical Chemistry, 2000, 104(50):12079-12083.
    [70] Kudlich M, Keck A, Klein J et al. Localization of the enzyme system involves in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Applied and Environmental Microbiology,1997, 63(9): 3691-3694.
    [71]Cervantes F J,Lettinga G,et al.Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia.FEMS Microbiology Ecology,2000,34(2):161-171.
    [72]Van der Zee F P,Lettinga G,Field J A.The role of(auto)catalysis in the mechanism of anaerobic azo reduction.Water Science and Technology,2000,42(5-6):301-308.
    [73]许桂等.应用固定化Baker's酵母还原醌类化合物的研究.有机化学,1998,18(5):442-446.
    [74]俞辉群.水环境及废水处理微生物学.北京:中国建筑工业出版社,1988.
    [75]王建龙.生物固定化技术与水污染控制.北京:科学出版社,2002.
    [76]秦麟源.废水生物处理.上海:同济大学出版社,1989.
    [77]蒋宇红,黄霞,俞毓馨.几种固定化细胞载体的比较.环境科学,1993,14(2):11-15.
    [78]黄霞,刘建广.固定化细胞处理难降解有机废水.城市环境与城市生态,1993,6:1-4.
    [79]全向春,施汉昌,王建龙等.固定化氯酚降解菌强化SBR系统治理氯酚废水.中国环境科学,2002,22:132-136.
    [80]王兰,廖丽华.光合细菌固定化及对养殖水净化的研究.卫生学杂志,2005,25(3):350-53.
    [81]曲媛媛,周集体,王竞.溴氨酸降解菌株的分离鉴定及特性研究[J].环境科学学报,2005,25(6):785-790.
    [82]邢林林,王竞,曲媛媛等.生物强化对MBR系统生物特性及群落结构的影响.环境工程学报,2007,1(4):70-73.
    [83]Qu Y Y,Wang J,Zhou J T.Decolorization of bromoamine acid by a newly isolated strain of Sphingomonas xenophaga QYY and its resting cells.Biochemical Engineering Journal,2005,27(2):104-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700