铁炭微电解-Fenton氧化联合处理染料废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料废水一般具有高浓度、高色度、成分复杂、难降解的特点,是一种典型的难降解有机废水,如果未经处理,直接排放,将对周围水体造成严重污染,影响人们的正常工作生活。采用常规的生物方法或物理化学方法又难以使其达标,是工业废水处理中亟待解决的一大难题。
     铁炭微电解-Fenton试剂氧化工艺具有投资少、运行成本低、设备占地面积小、工艺操作简单的特点,能显著提高废水的可生化性,有利于后续生物处理的进行。工艺中的铁粉取自工厂的废铁屑或者铁刨花,活性炭可以用粉煤灰或焦碳代替,具有“以废治废”的意义。
     本文以河南某染化厂的实际排放废水为研究对象,研究铁炭微电解法和Fenton试剂氧化法的原理、特点、影响因素以及在染料废水中的应用,在一系列静态试验的基础上,运用正交试验确定各影响因素的重要程度,进一步通过单因素影响试验,确定最佳的运行参数;从理论上论证铁炭微电解法和Fenton试剂氧化法联合的可能性,确定各影响因素的最佳值,最后通过染料废水处理典型实例和比较各生物处理工艺的优缺点,确定水解-好氧组合的处理工艺,并对运行成本进行初步分析。
     染料废水微电解试验表明:反应时间1h,进水pH 1-2,铁炭体积比1:1,COD的去除率达到22%;Fenton试剂氧化试验表明:在pH=3,温度40℃,反应时间30min,H_2O_2和FeSO_4用量分别为40ml/L时,去除效果最好,COD去除率达到50%;微电解-Fenton氧化联合试验表明:H_2O_2的投加量10ml/L,反应时间60min,反应后pH调至8.5-9.0,PAM的投加量2ml/L,COD的去除率可以达到50%以上。
Dyestuff wastewater is a typical kind of biorefractory wastewater with high concentration, high chroma, complicated component and low degradability. Because of this, it would hardly pollute the accepted water and have a bad influence on people’s normal life without being treated well. The traditional biological or physical chemistry treatment process can not make the effluent to meet the discharge standard. Thus, it is a difficult for us to solve the problem in industrial wastewater treatment.
     The process of Micro-electrolysis and Fenton reagent oxidation is characteristic of low investment, low running cost, small occupation of land, simple operating process. It is convenient for biological treatment with having improved the biodegradability of wastewater. In this process the iron is scrap iron or sheet iron from machine factory and activated carbon can be replace by coke and flue powder, so the significance of this process is making use of waste circularly.
     In this thesis, the object is practical wastewater from a dyestuff chemical plant in Henan. The principle, characteristic, effect factor and application in dye wastewater of Micro-electrolysis and Fenton reagent oxidation is studied. Based on a series of static experiments, the degree of importance of influence factors is determined by orthogonal experiment and the optimal operating parameters are determined by single factor experiment. And then the possibility of connecting micro-electrolysis with Fenton reagent oxidation is demonstrated in theory. At last biological treatment process is determined by comparing the disadvantage with the advantage of biological process and examples of dyestuff wastewater treatment and running cost is simply analyzed.
     The experiment result of dyestuff wastewater indicates that the optimal operating parameters are as follows:
     1. Micro-electrolysis: reaction time is 1 hour, pH value is 1-2, volume ratio of iron versus carbon is 1, and the COD removal efficiency is 22%.
     2. Fenton reagent oxidation: pH value is 3, temperature is 40 Celsius degree, reaction time is 30 minutes, the dosage of hydrogen peroxide and ferrous
引文
1 关亮炯. 科技情报开发与经济. 2004, 14(6):80~81
    2 段永红, 李曦, 杨名远. 我国城市污水处理市场化问题探讨. 中国农村水利水电. 2003, (4):11~12
    3 国家环保局. 淡水环境. 中国 2004 年环境状况公报. 2005,5
    4 周才扬, 穆宏强. 我国的水污染现状及防治对策.长江职工大学学报. 2002, 19(4):8~10
    5 胥维昌. 染料行业废水处理现状和展望. 染料工业. 2002, 39(6):35~39
    6 丁忠浩. 有机废水处理技术及应用. 化学工业出版社, 2002:317~319
    7 Panswad, Thongchai, Luangdilok, Worrawit. Decolorization of Reactive Dyes with Different Molecular Structures under Different Environmental Conditions. Water Res. 2000, 34(17):4177~4184
    8 樊毓新, 周增炎. 染料废水的处理方法现状与发展前景. 工程与技术. 2002, 9:22~24
    9 S. H. Lin, C. M. Lin. Treatment of Textile Wastewater by Ozonation and Chemical Coagulation. Water Res. 1993, 27:1743~1748
    10 彭书传, 魏风玉. H2O2-Fe2+法处理β-萘磺酸钠生产废水的研究. 工业水处理. 1998, 18(1):23~25
    11 汪学军, 徐莉. 染料工业废水处理研究进展. 化学工业与工程技术. 2003, 24(4):39~41
    12 中国化工防治污染技术协会. 化工废水处理技术. 化学工业出版社, 2000: 79~87
    13 李家珍. 染料和染色工业废水处理. 化学工业出版社, 1997:149~152
    14 S. H. Lin. Adsorption of Disperse Dye by Powdered Activated Carbon. Chem Technol Biotechnol. 1993, 57(4):387~391
    15 阎存仙. 粉煤灰吸附去除活性艳蓝 X-BR.上海交通大学学报. 1998, 32(9):126~129
    16 蔡惠如. 纳滤技术治理染料废水的尝试. 环境工程. 2002,20(1): 24~25
    17 冯冰凌, 叶菊招. 聚氨基葡萄糖超滤膜的研制及其在印染废水中的应用. 工业水处理. 1998, 18(4):16~18
    18 王振余, 郭树才. 碳膜处理染料水溶液的研究. 膜科学与技术. 1997,17(5):7~10
    19 冯愚斌. 印染废水处理设施设计实例. 环境保护. 1997, (9):11~12
    20 肖羽堂, 许建华, 陈静. 铁屑强化传统工艺处理难降解印染废水实践. 给水排水. 1998, 24(4):37~39
    21 李亚新, 李莉. 塑料孔板波纹填料厌氧生物滤池法处理印染废水试验的研究. 中国给水排水. 1995, 11(5):16~19
    22 Sopa, Tuntoolvest. Anaerobic Decolorization of Reactive Dyebath Effluents by a Two-stage UASB System with Tapioca as a Co-substrate. Water Res. 2000, 34(8):2223~2232
    23 付莉燕, 文湘华. 改良型 SBR 系统处理染料废水的研究. 中国环境科学. 2001, 21(2):128~132
    24 Panswad, Thongchai, Iamsamer, Komol. Decolorization of Azo-reactive Dye by Polyphosphate and Glycogen-accumulating Organisms in an Anaerobic–aerobic Sequencing Batch Reactor. Bio. Technology. 2001, 71(2):151~159
    25 周培国, 付大放. 微电解工艺研究进展. 环境污染治理技术与设备. 2001, 2(4):18~24
    26 詹艳, 熊忠. 铁炭内电解法对苎麻废水的预处理研究. 工业水处理. 2003, 23(1):28~31
    27 孟刚, 郑培根. 铁炭微电解-亚铁还原氧化法处理花箐废水的研究. 感光科学与化学. 2002, 20(4):303~312
    28 张波, 何以亮. 铁炭微电解-混凝沉淀预处理化工有机废水. 兰州铁道学院学报. 2001, 10(3):95~98
    29 张焕贞, 李淑芳. 铁屑还原-混凝法处理石油精制碱液酸化废水试验研究. 中国第四届水处理大会论文集. 南京, 2002:100~105
    30 王永广, 杨剑峰. 微电解技术在工业废水中的研究与应用. 环境污染治理技术与设备. 2001, 2(4):18~24
    31 马丽霞, 赵仁兴. 铁炭内电解法在废水中的运用研究进展. 河北工业科技. 2002, 3(4):50~53
    32 高华. 铁屑法处理染料废水的电化学脱色机理. 青岛大学学报. 2001, 16(4):29~33
    33 张宗恩. 废铁屑净化偶氮染料废水及其机理的研究. 上海环境科学. 1995, 14(10):25~27
    34 徐根良. 分散染料生产废水治理工艺的研究. 环境污染与防治. 1998,20(5):22~26
    35 杨良玉, 曾庆福. 微波强化内电解处理活性艳红染料废水. 环境污染治理技术与设备. 2005, 6(8):57~60
    36 张显球. 絮凝-氧化-微电解-吸附处理活性染料废水. 环境工程. 2003, 21(1):29~31
    37 李铁 . 含硫染料中间体废水中硫的脱除与回收 . 化工环保 . 2000, 20(3):34~36
    38 杨凤林 . 利用铁炭粒料脱除染料废水中的色度 . 环境工程 . 1992, 10(6) :1~5
    39 赵永才. 微电解法脱除水溶性染料废水色度的研究. 污染防治技术. 1994, 7(4):20~22
    40 李海英. 染料废水内电解脱色效率与染料结构的关系. 青岛大学学报. 1999, 14(1):21~25
    41 T. H. Kim, C. H. Park. Comparison of Disperse and Reactive Dye Removals by Chemical Cogulation and Fenton Oxidation. Hazardous Materials. 2004, 112:95~103
    42 M. L. Kremer. Complex Visas Free Radical Mechanism for the Catalytic Decomposition of H2O2 by Fe2+. Int. J. Chem Kinet. 1985, 17: 1299~1314
    43 D. A. Wink, R. W. Nimbus, M. F. Deserters, et al. A Kinetic of Investigation of Intermediates Formed during the Fenton Reagent Mediated Degradation of N-nitrosodimethyl Amine: Evidence for an Oxidative Pathway not Involving Hydroxyl Radical. Chem. Rev Toxicol. 1991, (4):510~512
    44 M. L. Kremer, G. Stein. The Catalytic Decomposition of Hydrogen Peroxide by Ferric Percholorate. Trans Faraday Soc, 1959, 55:959~973
    45 W. G. Barb, J. H. Baxendale. Reaction of Ferrous and Ferric Ions with Hydrogen Peroxide.Faraday Soc. 1951, 47:462~500
    46 陈传好, 谢波. Fenton 试剂处理废水中各影响因子的作用机制. 环境科学. 2000, 21(3):93~96
    47 D. H. Ahn, W. S. Chang, T. L. Yoon. Dyestuff Wastewater Treatment Using Chemical Oxidation, Physical Adsorption and Fixed Bed Biofilm Process. 1999, 34:429~439
    48 C. Walling, S. I. Kato. The Oxidation of Alcohols by Fenton’s Reagent: the Effect of Copper ion. J. Chem. Soc. 1971, 93:4275~4281
    49 S. H. Bossmann, E. Olivero. New Evidence against Hydroxyl Radicals as Reactive Intermediates in the Thermal and Enhanced Fenton Reaction. J. Phys. Chem. 1998, 102(28):5542~5550
    50 I. Arslan, I. A. Balciglu, D. W. Bahnemann. Advanced Chemical Oxidation of Reactive Dyes in Simulated Dyehouse Effluents by Ferrioxalate-Fenton/UV-A and TiO2/UV Process. Dyes and pigments. 2000, 47:207~218
    51 张乃东, 郑威, 黄君礼. Fenton 法在水处理中的发展趋势. 化工进展. 2001, 12:1~3
    52 朱琳娜, 吴超, 何争光. Fenton 试剂法处理难生物降解有机废水最新进展. 能源技术与管理. 2006, 2:59~61
    53 P. C. Vendevivere, R. Bianchi, W. Verstraete. Treatment and Reuse of Wastewater from the Textile Wet-processing Industry: Review of Emerging Technologies. J. Chem. Technol. Biotechnol. 1998, 72:289~302
    54 S. F. Kang, C. H. Liao. Pre-oxidation and Coagulation of Textile Wastewater by the Fenton Process. Chemosphere. 2002, 26:923~928
    55 刘士鑫, 郭平. 内电解法与 Fenton 试剂法在压裂返排水处理中的联合应用. 化工环保. 2004, 24:199~201
    56 N. San, S. Martinez, J. F. Fernandez, etal. Pre-oxidation of an Extremely Polluted Industrial Wastewater by the Fenton’s Reagent. Hazardous Material. 2003:315~322
    57 S. F. Kang, H. M. Chang. Coagulation of Textile secondary Effluents with Fenton’s Reagent. Wat.Sci.Tech. 1997, 36(12):215~222
    58 J. Delaat, H. Gallard, S. Ancelin, etal. Comparative Study of Oxidation of Atrazine and Acetone by H2O2/UV, Fe3+/UV, Fe3+/H2O2/UV and Fe2+or Fe3+/H2O2. Chemopere. 1999, 39(15):2693~2706
    59 S. Lidia, J. Claudia, N. Santosh. A comparative Study on Oxidation of Sisperse Dyes by Electrochemical Process, Ozone, Hypochlorite and Fenton Reagent. Wat.Res. 2001, 35(9):2129~2136
    60 J. Paprowicz, S. Slodczyk. Application of Biologically Activated Sorptive Columns for Textile Wastewater Treatment. Environ. Technol. Lett. 1988, 9:271~280
    61 J. E. Kassner. Taking the Initiative in ‘Responsible Care’ for Textile Manufacturer. Am Dyestuff Rep. 1993, 82:17~18
    62 J. P. Straley. Selected Bacterial Cultures for Textile Wastewaters. Am. Dyestuff. Rep. 1984, 3:46~49
    63 王凯军. 厌氧(水解)—好氧处理工艺的理论与实践. 环境科学. 1999, 18(4):337~340
    64 牛樱, 陈季华. 厌氧—好氧工艺处理高浓度化工废水. 工业水处理. 2000, 20(8): 8~10
    65 陈汉辉, 孙国胜. 生物接触氧化法处理微污染源水的研究进展与应用. 环境污染治理技术与设备. 2000, 4(3):17~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700