氧化锌微/纳米结构的控制合成及其生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料因为具有奇特的光学、电学、磁学、力学以及催化等物理化学性质,引起了科研人员的广泛关注。纳米材料的性能显著地依赖于其形状与尺寸,因此获得尺寸与形貌可控的纳米材料是当前广大科学工作者们努力的方向。与一般材料相比,氧化锌是一种具有优异压电和光电特性的直接带隙宽禁带半导体材料,它的多变的形态结构直接决定其物理性质及应用潜力。对于氧化锌,虽然许多种类的纳米结构已经被合成出来,但空心球结构的制备依然是对材料学家的一大挑战。我们知道,空心纳米结构具有更高的比表面积,更大的长径比,因而在催化、传感器、生物科学、药物输送、储存、释放系统和纳米反应器等领域有极大的应用潜力。因此,发展工艺简单、普适的可控合成空心氧化锌纳米结构的技术仍是十分必要的,对进一步拓展氧化锌材料的应用领域有重要意义。
     本论文采用模板法,利用模板的空间限域作用和模板的调控作用,有目的地对氧化锌的结构、尺寸、形貌等进行控制。利用锌粉作为先驱模板,结合热蒸发法来制备氧化锌,获得空心微球结构,研究了实验条件对它们纳米结构的影响。并利用热蒸发法制备三维氧化锌枝状纳米结构,深入研究纳米结构的发光性质和生长机制。主要工作和结果如下:
     本文的主要工作和取得的主要结果如下:
     本论文主要采用热蒸发法,利用锌粉作为先驱模板,成功制备Zn0空心微球结构,并且微球的表面生长了呈放射状的均一纳米杆。氧化锌空心微球的生长过程应分为两个阶段:一、氧化锌空心壳的形成过程;二、壳上纳米杆的生长过程。通过对试验参数的调整,对这些纳米材料的生长行为以及微结构进行剖析后,了解到空心微球结构对锌粉先驱模板的选取及模板与源材料的共同作用有着非常大的依赖性,而且锌粉的尺寸形状直接决定了空心球的形状和大小。同时还研究了它的光学性能,并结合其生长环境的变化,对其生长机制进行了初步探讨。采用先驱模板的机制,提供了一个简单易行的制备空心微球结构的方法。该工艺技术简单、制备成本较低。锌粉模板在反应后直接转化成Zn0空心微球,并没有任何污染,无需高温或化学去除模板,保持了样品的形状及纯度。
     由于生长过程中实验参数的影响,总会导致所得材料的晶体结构或形态结构的不同,并最终影响微/纳米材料的性质。因此,研究微/纳米材料的生长机制,是实现其控制合成的关键影响因素。如合成温度、压力、气流速度、气体分压及衬底,这些影响因素将引起氧化锌晶体生长的千变万化,同时这也为氧化锌的控制生长提供了机会。我们着重研究了合成温度对其纳米结构的影响,也研究了气体流量、气压及附加蒸发源种类的影响。研究发现,微球表面上纳米结构对生长温度最为敏感;其它因素也会影响ZnO空心微球表面纳米结构。此外,还比较了有代表性的几种不同表面形态的ZnO空心微球的光致发光谱特性。经过试验工艺的探究,为实现其它类似氧化物空心结构的可控生长提供了一个简单易行的途径。
     在478℃温度下采用热蒸发纯Zn粉的方法合成了形貌诱人的ZnO三维枝状纳米结构。该结构由氧化锌主干和垂直于主干、指向各方向的纳米线所组成。其中,ZnO三维枝状纳米结构为具有六方纤锌矿的结构,枝状纳米线沿[0001]方向生长。不同温度的合成实验揭示,枝状纳米结构对合成温度比较敏感。它的光致发光谱表明它有较强的紫外发光,可能在光催化、气敏传感器及染料敏化太阳能电池领域及纳米光电器件方面有潜在的应用。
Oxide nanomaterials have attracted worldwide attention and laid some foundation for the nanodevices due to their unusual optical, electronic, magantic, mechanical and catalytic properties. It is well known that the properties of nanomaterials are sensitively dependent on both the shape and size. Therefore, the most important problem faced by the scientists is how to fabricate nanostructures with the controllable shape and size. In comparison with other nanostructures, ZnO hollow nanostructures exhibit stronger or novel functionalities due to their higher surface area and their capability of forming composite structures by embedding specific particles in their interiors, and they thus may find potential applications in a wide range of areas, including catalysis, drug delivery, storage and release systems, bioencapsulation, nanoreactors, and templates for functional architectural composite materials. Although, many hollow Oxide nanomaterials have been fabricated, the synthesis of ZnO hollow structures still remain a big challenging subject to chemists and material scientists. Therefore, it is highly necessary to explore simple and general accesses to preparing oxide nanomaterials with desired dimensions and sizes.
     In this dissertation, valuable explorations have been carried out to prepare hollow ZnO microspheres using thermal evaporation by Zn powder precursor-template, and the effect of the experimental conditions including growth temperature, air pressure, flow rate of Ar and air on surface morphology of ZnO hollow spheres have been scrutinized in detail. ZnO dendritic nanostructure has been synthesized on silicon (100) substrates by thermal evaporation of metal Zn powder at relative low temperature, as well as their formation mechanism and the novel properties of the as-obtained nanostructures. The main points can be summarized as follows:
     We have realized the synthesis of uniform zinc oxide (ZnO) hollow spherical structure consisting of highly radial and oriented ZnO nanorods, which results from a facile precursor-templated through thermal evaporation at a relative low temperature without any catalyst. Two main growth steps may occur in the process:the first step is formation of hollow ZnO shell when air was introduced into the tube at 400℃, Zn atoms on the surface of Zn microsphere reacted with O atoms to form thin ZnO shell layer on the surface of Zn microsphere. The second step is the growth of the ZnO nanorods on the surface of the microsphere. The nanocrystalline protrusions on the surface of ZnO sphere shell are very beneficial to the preferred aligned growth of ZnO nanorods. In this approach, pre-deposited Zn powder particles on Si substrates act as temporary templates to form hollow ZnO sphere shells, while additional Zn powder acts as a Zn source to grow single crystal nanorods/nanowires on the surfaces of spherical shells. Lacking the need for the additional template removal is an important advantage of this approach over others and it therefore can be used to prepare hollow ZnO nano/microsphere shells and hollow ZnO microspheres with nanorods/nanowires at low cost and at large scale. These kinds of special high surface area hollow spherical structures may find potential applications in photocatalysis, light-weight composite fillers, acoustic insulation, UV nano/micro-optoemission devices and photoanodes of dye-sensitized solar cells.
     By optimizing the experimental parameters, the obtained results demonstrate that the morphology of ZnO is very sensitive to growth temperature, air pressure, flow rate of Ar and air and Zn powder precursor. Detailed structural analyses confirm that this microstructure exhibits a wurtzite hexagonal phase, and there arenanorods, nanowires, tower-like nanorode, particle et.al growing on the shells of ZnO hollow spheres. The formation mechanism of the microstructure is proposed to be a vapor-solid process. This method may provide a simple and versatile approach to large-scale production of hollow spherical ZnO structure and other hollow nanomaterials.
     Intriguing ZnO three-dimensional (3D) dendritic nanorods on silicon substrates have been successfully synthesised by thermal evaporation of pure zinc powder at a relative low temperature of 478℃without any metal catalyst. ZnO dendritic nanostructure exhibits unique shape and it is composed of stems and nanorod branches. It is found that the nanorods are single crystalline wurtzite structures, and each nanorod grows along the [0001] direction. At different growth temperatures, the shapes of ZnO nanostructures can be altered. System analysis reveals that the formation and morphology of ZnO dendritic nanostructures are sensitive to the growthtemperature. Finally, room temperature photoluminescence spectrum is also investigated,revealing that the ZnO dendritic nanostructure could find application in UV optoelectronic devices; the nanostructure implies some potential applications for nanoscale functional devices.
引文
[1]S. Lijima Helical microtubules of graphiteic carbon. Nature.1991;345:56.
    [2]张立德,牟季美.纳米材料与纳米结构.科学出版社.2001.
    [3]Z.L. Wang, Nanostructures of zinc oxide, Materials Today 2004,7(1):26-33.
    [4]X.Y. Kong, Y. Ding, R.S. Yang, Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts, Science 2004,303(5662):1348-1351.
    [5]M.H. Zhao ,Z.L. Wang, S.X. Mao, Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoelectric force microscope, Nano Lett.2004, 4(4):587-590.
    [6]P.X. Gao, Y. Ding, W.J. Mai, W.L. Hughes, C.S. Lao, Z.L. Wang. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science.2005, 309(5741):1700-4.
    [7]I. Shalish, H. Temkin, V.Narayanamurti, Size-dependent surface luminescence in ZnO nanowires, Phys. Rev. B 2004,69:245401.
    [8]M. Usuda, N. Hamada, T. Kotani, M.V. Schilfgaarde, All-electron GW calculation based on the LAPW method:Application to wurtzite ZnO, Phys. Rev. B 2002, 66:125101.
    [9]B. Meyer, D. Marx, Density-functional study of the structure and stability of ZnO surfaces, Phys. Rev. B 2003,67:035403.
    [10]L.G. Wang, A. Zunger, Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO, Phys. Rev. Lett.2003,90:256401-4.
    [11]P.X. Gao, Z.L. Wang, Nanopropeller arrays of zinc oxide, Appl. Phys. Lett.2004, 84(15):2883-2885.
    [12]Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays,Science 2006,312(5771):242-246.
    [13]X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science 2007,316(5821):102-105.
    [14]严东生,纳米材料的合成与制备,无机材料学报,1995,10(1):1-6.
    [15]W.A. de Heer,The physics of simple metal clusters:experimental aspects and simple models, Rev. Mod. Phys.1993,65:611-676.
    [16]R.C. Ashoori, Electrons in artificial atoms, Nature.1996,379:413-419.
    [17]P.L.McEuen, Artificial Atoms:New Boxes for ElectronsScience, Science,1997, 278:1729-1730.
    [18]汪国忠,半导体和金属纳米材料的制备及自组织生长和物性研究,中国科学院固体物理研究所博士学位论文,2002,2.
    [19]F.Fievet, F.F.Vincent, J.P.Lagier, B.Dumont, M.Figlarz, Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process, J. Mater. Chem.1993,3:627-633.
    [20](a)陶向明,劳燕锋,叶全林等,楔形A1薄膜的物理特性,物理学报,2001,50(10):1991-1995; (b) F. Fievet, J.P. Lagier, M. Figlarz, Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process, Mater. Res. Bull.1989,24:29-34.
    [21](a) C.N.R. Rao, M. Nath, Inorganic nanotubes, Dalton Trans.2003,1:1-24; (b) L. Dloczik, R. Engelhardt, K. Ernst, et al Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns, Appl. Phys. Lett.2001, 78:3687-3689.
    [22]J.Q. Hu, Q.Y. Lu, K.B. Tang, S. Yu, Y. Qian, G Zhou, X. Liu, Low Temperature Synthesis of Nanocrystalline Titanium Nitride via a Benzene Thermal Route, J. Am. Ceram. Soc.2000,83:430-432.
    [23]B.H. Hong, S.C. Bae, C.W. Lee, C.-W., Jeong, S.; K.S. Kim, Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase, Science,2001,294:348-351.
    [24]C.Mirkin, T.Taton, Semiconductors meet biology, Nature,2000; 405(6787):626-627.
    [25]T.S. Ahmadi, Z.L. Wang, T.C. Green, A.Henglein, M.A.E1-Sayed, Shape Controlled Synthesis of Colloidal Platinum, Nanoparticles Science,1996; 272(5270): 1924-1926.
    [26]X. Qian, J. Yin, S. Feng, S. Liu, Z. Zhu, Preparation And Characterization of Polyvinylpyrrolidone Films Containing Solver Sulfide Nanoparticles, J. Mater. Chem., 2001,11(10):2504-2506.
    [27]V. Vollath,K.E. Sickafus, Synthesis of Ceramics Oxides Powders Bv Microwave Plasma Pyrolysis, J. Mater. Sci.,1993,28:5943-5948.
    [28]N. Klinger,E.L. Strauss, K.L. Komarek, Reactions between Silica and Graphite, J. Am. Cerum. Soc.,1966,49(7):369-375.
    [29]R.A. Caruso, M. Antonietti, M. Giersig, H.P. Hentze, J. Jia, Structural Control of TiO2 Networks Using Polymer Gel Templates, Chem. Mater.2001,13(3):1114-1123.
    [30]D.K. Yi, D.Y. Kim, Novel Approach to the Fabrication of Macroporous Polymers and Their Use as a Template for Crystalline Titania Nanorings, Nano Lett. 2003,3:207-211.
    [31]Y.D. Li, H. Liao, Y. Ding, Y. Fan, Y. Zhang, Y. Qian, Novel Solvothermal Synthesis of CdE (E=S, Se, Te) Semiconductor Nanorod, Inorg. Chem,1999, 38(7):1382-1387.
    [32]A.A. Bol, A. Meijerink, Doped semiconductor nanoparticles-a new class of luminescent materials, J. Lumin.,2000,315:87-89.
    [33]E.R. Leite, I.T. Weber, E, Longo, J,A. Varela, A new Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Application, Adv. Mater.,2000,12(13):965-968.
    [34]余保龙,顾玉宗,毛艳丽等,具有表面修饰的Sn02纳米微晶的光学性质研究,光学学报,2000,20:1575-1579.
    [35]李景国,高濂,张青红,纳米氮化钛粉体的制各及其影响因素,无机材料学报,2003,18:765-771.
    [36]N. Kikuchi, H. Hosono, H. Kawazoe, K.Oyoshi, S. Hishita, Transparent, Conducting, Amorphous Oxides:Effect of Chemical Composition on Electrical and Optical Properties of Cadmium Germanates, J. Am. Ceram. Soc.,1997,80(l):22-26.
    [37]张克从,近代晶体学基础,科学出版社,1998.
    [38]H.L. Ma, D.H. Zhang, S.Z. Win, et al, Electrical and optical properties of F-doped textured SnO2 films deposited by APCVD, Solar Energy and Solar Cells, 1996,40(4):371-380.
    [39]N.Tanjew, H. Markus, Wet-Chemical Synthesis of Doped Nanoparticles:Optical Properties of Oxygen-Deficient and Antimony-Doped Colloidal SnO2 [J], J. Phys. Chem. B,2000,104:8430-8437.
    [40]A. ttenglein, Catalysis of photochemical reactions by colloidal semiconductors, Pure. Appl. Chem.,1984,56(9):1215-1224.
    [41]A. Masakazu, T. Shima, S. Kodama, et al, Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates, J. Phys. Chem.,1987,91(16):4305-4310.
    [42]刘远芳,硫属化合物纳米材料的软模板制备及溶剂热合成,中国科学技术大学博士学位论文,2002,6-7.
    [43]P.V. Kamat, N.M. Dimitfijevic, Colloidal semiconductors as photocatalysts for solar energy conversion, Solar Energy,1990,44:83-98.
    [44]M.I.B. Bemardi, C. M. Barrado, et al, Influence of heat treatmen of the optical properties of SnO2:Sb thin films deposited by dip coating using aqueous solution, J. Mater. Sci.:Mater.in electronics,2002,13(7):403-408.
    [45]杨烨,宋利珠,裘晓辉,王子忱,赵慕愚,ZnFe204纳米晶的性能,材料研究学报,1994,8(3):242-244.
    [46]成昭华,沈保根,铁基纳米复合永磁材料的相成分与磁性,物理,1997,26(5):272-279.
    [47]S.C. Tsang, Y.K. Chcn, P.J.F. Harris, Simple Chemical Method of Opening and Filling Carbon Nanotubes, Nature,1994,372:159-160.
    [48]吴凤清,徐宝琨,李熙,等。纳米晶Lal-XSrxFe03的合成及气敏特性的研究,高等学校化学学报,1994,15(6):803-806.
    [49]F. Li, L.Y. Chen, Z.Q. Chen, et al, Two-step solid-state synthesis of tin oxide and its gas-sensing property, Mater.Chem.Phys.,2002,73:335-338.
    [50]Y.D. Wang, C.L. Ma, X.H. Wu, et al, Mesostructured tin oxide as sensitive material for C2H5OH Sensor, Talanta,2002,57(5):875-882.
    [51]朱静, 纳米材料和器件, 清华大学出版社,2003.
    [52]L. Yiping, G.C. Hdjipanayis, C.M. Sorensenk, K.J. Klabunde, Magnetic properties of fine cobalt particles prepared by metal atom reduction, J. Appl. Phys., 1990,67(9):4502-4504.
    [53]杨晴,低维Ⅱ.Ⅳ、Ⅲ-Ⅴ族纳米材料的液相合成、微结构表征与机理研究,中国科学技术大学博士学位论文,2002,3-4.
    [54]蒋绪川,软模板法硫化物纳米材料的合成研究,中国科学技术大学博士学位论文,2001,3.
    [55]S. Linderoth, S. Morup, Chemically prepared amorphous Fe-B particles: Influence ofpH on the composition, J. Appl. Phys.,1990,67:4472-4474.
    [56]R. Leon, P.M. Petroff, D. Leonard, S. Fafard, Spatially resolved visible luminescence of self-assembled semiconductor quantum dots, Science,1995, 267:1966-1968.
    [57]V.L. Colvin, A.P. Alivisatos, Light Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer, Nature,1994,370:354-357.
    [58]陈建军,纳米TiO2光催化剂的制备、改性及其应用研究,中南大学博士学位论文,2001,1-2.
    [59]W.J. Li, E.W. Shi, M.Y. Tian, W.Z. Zhong, Z.W. Yin, The synthesis of ZnO acicular particles by the hydrothermal discharging-gas method, J Mater Res.1999, 14(4):1532-7.
    [60]仲维卓.在热液条件下晶体的生长基元与晶体形成机理.中国科学(B)1994;24:394-8.
    [61]J.W. Chiou, K.P. Krishna Kumar, J.C. Jan, H.M. Tsai, C.W. Bao, W.F. Pong, F.Z. Chien, M.H. Tsai, I.H. Hong, R.K lauser, J.F. Lee, J.J. Wu, S.C. Liu, Diameter dependence of the electronic structure of ZnO nanorods determined by X-ray absorption spectrosopy and scanning photoelectron microscopy, Appl. Phys. Lett., 2004,85:3220-3222.
    [62]X. Wang, Y. Ding, C.J. Sumwers, Z.L. Wang, Large-Scale Synthesis of Six-Nanometer-wide ZnO Nanobelts, J. Phys. Chem. B,2004,108:8773-8777.
    [63]X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang, Dual-mode mechanical resonance of individual ZnO Nanobelts, Appl. Phys. Lett.,2003,82:4806-4808.
    [64]W.L. Hughes, Z.L. Wang, Nanobelts as nanocantilevers, Appl. Phys. Lett., 2003,82:2886-2888.
    [65]M. H. Zhao, Z.L. Wang, S.X. Mao, Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope, Nano. Lett.,2004,4: 587-590.
    [66]N. Sakagami, M. Yamashita, T. Sekiguchi, S. Miyashita, K.Obara, T.Shishido, Variation of electrical properties on growth sectors of ZnO single crystals J.Cryst. Growth,2001,229(1-4):98-103.
    [67]A.Urbieta, P. Fern'andez, J. Piqueras, T. Sekiguchi, Semicond. Sci. Technol., 2001,16:589.
    [68]W.I. Park, G.C. Yi, J.W. Kim, S.M. Park, Schottky nanocontacts on ZnO nanorod arrays, Appl. Phys. Lett.,2003,82(24):4358-4360.
    [69]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A.Voigt, B.E.Gnade, J. Appl. Phys.1996,79:7983.
    [70]B.X. Lin, Z.X. Fu, Y.B.Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett.79 (2001) 943.
    [71]V.A.Fonoberov, A. A. Balandin, Origin of ultraviolet photoluminescence in ZnO quantum dots:Confined excitons versus surface-bound impurity exciton complexes, Appl. Phys. Lett.,2004,85(24):5971-5973.
    [72]A.B. Djurisic, Y.H. Leung, Optical properties of ZnO nanostructures, small, 2006,2(8-9):944-961.
    [73]S. Takata, T. Minami, H. Nanto, Jpn.J.Appl.Phys.1981,20:1759.
    [74]C.X. Guo, Z.X. Fu, C.S.Shi, Ultraviolet super-radiation luminescence of sputtering ZnO film under cathode-ray excitation at room temperature, Chin. Phys. Lett.1999,16:146.
    [75]B.J. Jin, S. Im, S.Y. Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Films,2000,36:107.
    [76]K.Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallan, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett.,1996,68:403.
    [77]T. Minami, H. Nanto, S. Takata, UV emission from sputtered zinc oxide thin films, Thin solid Films 1983,109:379.
    [78]S.H. Bae, S.Y. Lee, H.Y. Kim, S.Im, Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition, Appl.Surf. Sci. 2000,168:332.
    [79]A. Miyake, H. Kominami, H. Tatsuoka, H. Kuwabar, Y. Nakanishi, Y. Hatanaka, J. Cryst. Growth,2000,214/215:294.
    [80]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 2000,287:1019.
    [81]T. Dietl, Ferromagnetic semiconductors, Semicond. Sci.Technol.,2002, 17:377-392.
    [82]J.H. Song, J. Zhou, Z.L. Wang. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett.2006,6(8):1656-62.
    [83]X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science.2004,303(5662):1348-51.
    [84]X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science,2007,316(5821):102-5.
    [85]Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science,2006,312(5771):242-6.
    [86]Z.W. Pan, Z.R. Dai, Z.L. Wang. Nanobelts of semiconducting oxides. Science, 2001,291(5510):1947-9.
    [87]Z.L. Wang. Oxide nanobelts and nanowires-Growth, properties and applications. J Nanosci Nanotechno.2008,8(1):27-55.
    [88]Z.L. Wang, Towards Self-Powered Nanosystems:From Nanogenerators to Nanopiezotronics, Adv Funct Mater,2008,18(22):3553-67.
    [89]P. Jiang, J.J. Zhou, H.F. Fang, C.Y. Wang, Z.L. Wang, S.S. Xie. Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv Funct Mater,2007, 17(8):1303-10.
    [90]L. Liao, J.C. Li, D.H. Liu, C. Liu, D.F. Wang, W.Z. Song, et al. Self-assembly of aligned ZnO nanoscrews:Growth, configuration, and field emission. Appl Phys Lett, 2005,86(8):21.
    [91]H.B. Lu, L. Liao, J.C. Li, D.F. Wang, H. He, et al. High surface-to-volume ratio ZnO microberets:Low temperature synthesis, characterization, and photoluminescence, J Phys Chem B,2006,110(46):23211-4.
    [92]H.B. Lu, L. Liao, H. Li, D.F. Wang, J.C.Li, et al. Well-aligned ZnO microprism arrays with umbrella-like tips:Low-temperature preparation, structure and UV photoluminescence improvement, Physica E,2008,40(9):2931-6.
    [93]H.B. Lu, H. Li, L. Liao, Y. Tian, M. Shuai, J.C. Li, et al. Low-temperature synthesis and photocatalytic properties of ZnO nanotubes by thermal oxidation of Zn nanowires, Nanotechnology,2008,19(4):30.
    [94]Y. Tian, H.B. Lu, D.F. Wang, J.C. Li, M. Shuai, Q. Fu, Synthesis of Zinc oxide hollow spherical structure via precursor-template and formation mechanism, J. Phys Soc. Jpn.,2008,77(7) 074603.
    [95]Y. Tian, H. B. Lu, Y. Wu, J.C. Li, Synthesis and characterization of three-dimensional dendritic ZnO nanorods, Materials Science and Technology, in press.
    [96]Y. Sun, D.J. Riley, M.N.R. Ashfold. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates, J Phys Chem B,2006, 110(31):15186-92.
    [97]X.F. Zhou, Z.L. Hu, Y. Chen, H.Y. Shang. Microscale sphere assembly of ZnO nanotubes, Mater Res Bull,2008,43(10):2790-8.
    [98]H.Q. Wang, G.H. Li, L.C. Jia, G.Z. Wang, C.J. Tang, Controllable preferential-etching synthesis and photocatalytic activity of porous ZnO nanotubes, J Phys Chem C,2008,112(31):11738-43.
    [99]C.L. Wang, B.D. Mao, E.B. Wang, Z.H. Kang, C.G.Tian, Solution synthesis of ZnO nanotubes via a template-free hydrothermal route, Solid State Commun,2007, 141(11):620-3.
    [100]B.I. Seo, U.A. Shaislamov, M.H. Ha, S.W. Kim, H.K. Kim, B.Yang, ZnO nanotubes by template wetting process, Physica E,2007,37(1-2):241-4.
    [101]X. Ren, C.H. Jiang, D.D. Li, L.He, Fabrication of ZnO nanotubes with ultrathin wall by electro deposition method, Mater Lett,2008,62(17-18):3114-6.
    [102]J. Elias, R.Tena-Zaera, G.Y. Wang, C. Levy-Clement, Conversion of ZnO Nanowires into Nanotubes with Tailored Dimensions, Chem Mater,2008, 20(21):6633-7.
    [103]Y.Zhang, Y.Zhao, N. Cai, S.Z.Xiong, Preparation of anatase TiO2 nanotubes and their dye-sensitized solar cells, Acta Phys Sin-Ch Ed,2008,57(9):5806-9.
    [104]P.P. Das, S.K. Mohapatra, M. Misra, Photoelectrolysis of water using heterostructural composite of TiO2 nanotubes and nanoparticles, J Phys D Appl Phys, 2008,41(24):245103.
    [105]S.P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D.LeClere, Thompson GE, et al. Formation of Double-Walled TiO2 Nanotubes and Robust Anatase Membranes, Adv Mater,2008,20(21):4135.
    [106]V. Petkov, P.Y. Zavalij, S. Lutta, M.S. Whittingham, V. Parvanov, S. Shastri, Structure beyond Bragg:Study of V2O5 nanotubes. Phys Rev B.2004,69(8):085410.
    [107]V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov, Y.N. Makurin, N.I. Medvedeva, A.L.Ivanovskii, Electronic properties of single-walled V2O5 nanotubes, Solid State Commun,2003,126(9):489-93.
    [108]Q. Yang, J. Sha, L. Wang, Y. Wang, X. Ma, et al. Synthesis of MgO nanotube bundles, Nanotechnology,2004,15(8):1004-8.
    [109]H.B. Lu, L. Liao, H. Li, D.F. Wang, Y. Tian, J.C. Li, et al. Hollow MgO nanotube arrays by using ZnO nanorods as templates, Eur J Inorg Chem,2008, 17:2727-32.
    [110]H.B. Lu, L. Liao, H. Li, Y. Tian, J.C. Li, et al. Zn-assisted synthesis and photoluminescence properties of MgO nanotubes, J Phys Chem C,2007, 111(28):10273-7.
    [111]Y.B. Li, Y. Bando, D. Golberg, Z.W. Liu, Ga-filled single-crystalline MgO nanotube:Wide-temperature range nanothermometer, Appl Phys Lett,2003, 83(5):999-1001.
    [112]X.L. Yu, C.B. Cao, X.Q. An, Facile conversion of Fe nanotube Arrays to novel alpha-Fe2O3 nanoparticle nanotube arrays and their magnetic properties, Chem Mater, 2008,20(5):1936-40.
    [113]Z.Y. Sun, H.Q. Yuan, Z.M. Liu, B.X. Han, X.R. Zhang, A highly efficient chemical sensor material for H2S:alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates, Adv Mater,2005 17(24):2993.
    [114]B.J. Yang, M.S. Mo, H.M.Hu, C.Li, X.G.Yang, Q.W.Li, et al. A rational self-sacrificing template route to beta-Bi2O3 nanotube arrays, Eur J Inorg Chem, 2004, (9):1785-7.
    [115]H. Patrick, Formation of a titanium dioxide nano-tube array, Langmuir,1996; 12(6):1411.
    [116]X.Y. Shi, S.B. Han, R.J. Sanedrin, F.M. Zhou, M. Selke, Synthesis of cobalt oxide nanotubes from colloidal particles modified with a Co(Ⅲ)-cysteinato precursor, Chem Mater,2002,14(4):1897-1902.
    [117]李晓红,张校刚,力虎林.TiO2纳米管的模板法制备及表征.高等学校化学学报.2001;22(1):130.
    [118]A. Michailowski, D. AlMawlawi, G.S. Cheng, M. Moskovits, Highly regular anatase nanotubule arrays fabricated in porous anodic templates, Chem Phys Lett, 2001,349(1-2):1-5.
    [119]L.M. Shen, N.Z. Bao, K. Yanagisawa, K. Domen, C.A. Grimes, A. Gupta, Organic molecule-assisted hydrothermal self-assembly of size-controlled tubular ZnO nanostructures. J Phys Chem C.2007,111(20):7280-7.
    [120]X.F.Zhou, D.Y.Zhang, Y.Zhu, Y.Q Shen., X.F.Guo, W.P.Ding,Y.Chen,. Mechanistic investigations of PEG-directed assembly of one-dimensional ZnO nanostructures. J Phys Chem B.2006;110(51):25734-9.
    [121]李大枝,孙思修,张卫民.一种制备大量氧化锌纳米管的简单方法.无机化学学报.2005;21(11):1772.
    [122]J.M.Macak, M.Zlamal, J.Krysa, P.Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small.2007;3(2):300-4.
    [123]A.L.Linsebigler, G.Q.Lu, J.T.Yates, Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results. Chemical Reviews.1995;95(3):735-58.
    [124]Y.B.Li, Z.W.Huang, S.Q.Rong, A vanadium oxide nanotube-based nitric oxide gas sensor. Sensor Mater.2006; 18(5):241-9.
    [125]Q.R.Zhao, Y.Gao, X.Bai, C.Z.Wu, Y.Xie, Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts. Eur J Inorg Chem. 2006; 13(8):1643-8.
    [126]X.L.Li, T.J.Lou, X.M.Sun, Y.D.Li. Highly sensitive WO3 hollow-sphere gas sensors. Inorg Chem.2004,43(17):5442-9.
    [127]L.Liao, H.B.Lu, J.C.Li, H.He, D.F.Wang, D.J.Fu, C.Liu, W.F.Zhang, Size dependence of gas sensitivity of ZnO nanorods. J Phys Chem C.2007; 111(5):1900-3.
    [128]Y.F. Zhu, J.L. Shi, W.H. Shen, X.P. Dong, J.W. Feng, M.L. Ruan, Y. Li, Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem Int Edit. 2005;44(32):5083-7.
    [129]P. Zu, Z.K. Tang, G. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet sPontaneous and stimulated emissions from ZnO mieroerystallite thin films at room temperature, Solid State Commun.,1997;103(8):459-463.
    [130 D.M. Bagall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T.Goto, Optically pumped lasing of ZnO at room temperature, Appl.Phys.Lett.,1997, 70(17):2230-2232.
    [131]H. Zhou, T.X. Fan, D. Zhang, Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates, Microporous Mesoporous Mater.2007, 100(1-3):322-327.
    [132]P. Lipowsky, M. Hirscher, R.C. Hoffmann, J. Bill, F. Aldinger, Zinc oxide microcapsules obtained via a bio-inspired approach, Nanotechnology 2007, 18:165603
    [133]A. Umar, S.H. Kim, Y.H. Im, Y.B. Hahn, Superlattices Microstruct.2006, 39(1-4):238.
    [134]P.X. Gao, Z.L. Wang, Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals, J. Am. Chem. Soc.,2003,125 (37):11299-11305.
    [135]G.Z. Shen, Y.S. Bando, C.J. Lee, Synthesis and Evolution of Novel Hollow ZnO Urchins by a Simple Thermal Evaporation Process, J. Phys. Chem. B 2005,109(21):10578-10583.
    [136]A. Khan, W.M. Jadwisienczak, M.E. Kordesch, From Zn microspheres to hollow ZnO microspheres:A simple route to the growth of large scale metallic Zn microspheres and hollow ZnO microspheres, Physica E,2006,33:331-335.
    [137]J.M. Wang, L. Gao, Hydrothermal synthesis and photoluminescence properties of ZnO nanowires, Solid State Communications,2004,132:269-271.
    [138]J. Joo, S. G. Kwon, J. H. Yu, T. Hyeon Synthesis of ZnO Nanocrystals with Cone, Hexagonal Cone, and Rod Shapes via Non-Hydrolytic Ester Elimination Sol-Gel Reactions, Adv. Mater,2005,17:1873-1877.
    [139]M. Yang, G.S. Pang, L.F. Jiang, S.H. Feng, Hydrothermal synthesis of one-dimensional zinc oxides with different precursors, Nanotechnology 2006,17: 206-212.
    [140]L. Guo, Y.L. Ji, H.B. Xu, P.S. Zi, Y. Wu, Regularly Shaped, Single-Crystalline ZnO Nanorods with Wurtzite Structure, J. Am. Chem. Soc.,2002,124:14864-14865.
    [141]J.H. Song, X.D. Wang, E. Riedo, Z.L. Wang, Systematic Study on Experimental Conditions for Large-Scale Growth of Aligned ZnO Nanwires on Nitrides,2005,109:9869-9872.
    [142]S.L. Ding, J. Guo, X.H. Yan, T.J. Lin, K. Xuan, Radial spherical ZnO structures with nanorods grown on both sides of a hollow sphere-like core, J. Cryst. Growth 2005,284:142.
    [143]Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q.Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett.2001, 78(4):407-9.
    [144]D. Banerjee, J.Y. Lao, D.Z. Wang, J.Y. Huang, Z.F. Ren, D. Steeves, B. Kimball, M. Sennett, Large-quantity free-standing ZnO nanowires, Appl. Phys. Lett. 2003,83:2061.
    [145]B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett.2001,79 (7):943.
    [146]K. Vanhensden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys.Lett.1996,68:403.
    [147]Y.J. Zhang, N.L. Wang, S. P. Gao, R.R. He, S. Miao, J. Liu, J. Zhu and X. Zhang, Epitaxial Growth of ZnO Nanowires on ZnS Nanobelts by Metal Organic Chemical Vapor Deposition, Chem. Mater.,2002,14:3564-3568.
    [148]M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Webber and P.D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater.,2001,13:113-116.
    [149]P.X. Gao, Y. Ding and Z.L. Wang, Crystallographic orientation-aligned ZnO nanorods grown by a Tin catalyst, Nano Lett.,2003,3:1315-1320.
    [150]J.J. Wu, S.C. Liu, C.T. Wu, K.H. Chen and L.C. Chen, Heterostructures of ZnO-Zn Coaxial Nanocables and ZnO Nanotubes, Appl. Phys. Lett.,2002,81: 1312-1314.
    [151]S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh and H.J. Lee, Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method, Chem. Mater.2003,15:3294-3299.
    [152]H.Q. Yan, R.R. He, J. Pham and P.D. Yang, Morphogenesis of. One-Dimensional ZnO Nano-and Microcrystals, Adv. Mater.,2003,15:402-405.
    [153]Z.W. Pan, Z.R. Dai and Z.L. Wang, Nanobelts of semiconducting oxides, Science,2001,291:1947-1949.
    [154]J.Q. Hu, Y. Bando, J.H. Zhan, Y.B. Li and T. Sekiguchi, Two-dimensional micrometer-sized single crystalline ZnO thin nanosheets, Appl. Phys. Lett.,2003, 83:4414-4416.
    [155]S. Ashtaputre, S. Marathe and S. Kulkarni, Doughnut-shaped zinc oxide particles, J. Mater. Sci.,2007,42:9990-9994.
    [156]X. B. Song, Y. H. Zhang, J. Zheng and X. G. Li, Low-temperature synthesis of ZnO nanonails, J. Phys. Chem. Solids,2007,68:1681-1684.
    [157]. R. F. Zhuo, H. T. Feng, J. T. Chen, D. Yan, J. J. Feng, H. J. Li, B. S. Geng, S. Cheng, X. Y. Xu and P. X. Yan, Multistep Synthesis, Growth Mechanism, Optical, and Microwave Absorption Properties of ZnO Dendritic Nanostructures, J. Phys. Chem. C,2008,112C:11767-11775.
    [158]N. Zhang, K. Yu, Q. Li, Z. Q. Zhu and Q. Wan, Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance, J. Appl. Phys.,2008,103:104305.
    [159]G.R. Li, X.H. Lu, D.L. Qu, C.Z. Yao, F.L. Zheng, Q. Bu, C.R. Dawa, Y.X. Tong, Electrochemical growth and control of ZnO dendritic structures, J. Phys. Chem. C,2007, 111C:6678-6683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700