煤焦沥青烟提取物致BEAS-2B细胞中心体异常与染色体不稳定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤焦沥青(Coal tar pitch, CTP)是以多环芳烃类物质为其主要成分,已经被确认为人类致癌物,其致癌机制还不清楚,需要进一步研究。
     染色不稳定性(Chromosomal Instability, CIN)学说越来越引起人们的密切关注。研究发现,染色体不稳定性是肿瘤细胞的一个普遍特征,与肿瘤的发生机制有关。除了染色体不稳定性外,绝大多数实体肿瘤还存在中心体异常的现象。中心体异常是染色体不稳定形成的主要原因,具体机制需要进一步的研究。许多抑癌基因及其产物和激酶,如P53、BRCA1/2、CDK2/CyclinE复合物等都参与了中心体复制的调控。P53失活或表达降低和CyclinE过度表达,可导致中心体扩增进而导致染色体不稳定,对肿瘤的发生产生深远的影响。
     目的
     该课题以人支气管上皮细胞BEAS-2B细胞系作为研究对象,用煤焦沥青烟提取物诱导其发生恶性转化,探讨BEAS-2B细胞恶性转化过程中染色体核型和中心体的改变情况,以及恶性转化过程中中心体异常的可能分子生物学机制,为探索煤焦沥青致肺癌的发病机制提供科学的理论依据。
     方法
     1.用气相色谱-质谱联用技术分析煤焦沥青烟提取物溶液的成分。实验分3组:即煤焦沥青组(煤焦沥青烟提取物溶液)、DMSO组、正常对照组(生理盐水)。
     2.以煤焦沥青烟提取物作为诱导剂,MTT法测定BEAS-2B细胞的LC50。以近20% LC50对细胞进行诱导,观察细胞增殖和细胞形态的变化。
     3.油镜下观察第10、20和30代细胞染色体,计数染色体数目。采用间接免疫荧光法检测中心体的变化。
     4.提取第10、20和30代细胞的总RNA,用实时定量PCR检测P53、P21和CyclinE mRNA表达水平。免疫组化方法检测P53、P21和CyclinE蛋白表达水平。
     5.采用统计软件SPSS12.0进行数据分析。测得的数据用均数±标准差(x±s)表示。检验水准a=0.05。
     结果
     1.煤焦沥青烟提取物溶液经气相色谱-质谱联用技术分析,鉴定出主要成分是多环芳烃类化合物(87.91%)。计算出半数致死浓度LC50为8.64 mg/L,确定最终的染毒剂量为2 mg/L。
     2.诱导后,细胞从第10代到第30代,二倍体核型比例呈下降趋势,出现了大量非整倍体,表明细胞在生长繁殖过程中存在染色体不稳定。
     3.诱导后,第10代细胞中心体总异常率在3组间比较差异无统计学意义(P>0.05);到第20代时,中心体总异常率升高,主要表现为数目异常(3.41%);到第30代时,中心体总异常率进一步升高,表现为中心体数目增多,体积增大和数目及体积同时异常。
     4.诱导后细胞中心体异常和染色体不稳定性呈正相关(r=0.75,P=0.02),表明中心体异常与染色体不稳定性间有密切关系。
     5.诱导后,第10代细胞P53、P21和CyclinE mRNA和蛋白质的表达3组间比较差异无统计学意义(P>0.05);诱导后第20代、30代细胞P53和P21 mRNA和蛋白质的表达量均降低,而CyclinE mRNA和蛋白质的表达量均升高,差异有统计学意义(P<0.05);蛋白P53和P21间存在正相关,而CyclinE与P53和P21分别呈负相关。从第10代到第30代,蛋白P53和P21表达逐步下降,而蛋白CyclinE表达升高。
     6.诱导后第20和30代细胞中心体异常率和蛋白质P53、P21和CyclinE相关性分析发现,中心体总异常率与P53和P21蛋白间均呈负相关性(r=-0.57,P=0.01;r=-0.65,P=0.00),而中心体总异常率与CyclinE呈正相关性(r=0.57,P=0.01)。
     结论
     在煤焦沥青烟提取物诱导BEAS-2B细胞恶性转化过程中,细胞可通过P53/P21通路调控中心体复制过程。中心体异常在细胞染色体不稳定性发生中可起重要作用。
Coal tar pitch is mainly composed of polycyclic aromatic hydrocarbons and has been recognized as a human carcinogen, however, its carcinogenic mechanism remains unclear, which is needed to study and research further.
     chromosomal instability theory has drawn increasing attention in the field of tumor mechanism research. Chromosomal instability is a common feature of tumor cells. It is considered that chromosomal instability is related to the mechanism of tumor development. In addition to chromosomal instability, there are centrosome abnormalities that show an increase in the number of centrosome and an abnormal shape in many solid tumors. Centrosome abnormalities may be the main reason for chromosomal instability. The specific mechanism is still unclear, pending to further study. It has been found that many tumor suppressor genes and their products and some kinases, such as P53, BRCA1/2 and CDK2/CyclinE complex, are all involved in the regulation of centrosome replication. Inactivation or decreased expression of P53 and overexpression of CyclinE may result in centrosome amplification. Centrosome abnormalities can lead to chromosomal instability, which has a profound impact on the occurrence of cancer. Objective
     The study, which makes BEAS-2B cells (human bronchial epithelial cells) as a object of study and use coal tar pitch fume extract as an inducer, is to probe the changes of chromosomal karyotype and centrosome during the process of malignant transformation of cells as well as the molecular mechanisms of abnormal centrosome for provide possible theoretical basis to explore the mechanism of the pathogenesis of lung cancer caused by coal tar pitch. Methods
     1. The components of Coal tar pitch fume extract solution were analysis by Gas chromatography-mass spectrometry. There are three groups in this study, including coal tar pitch group (coal tar pitch fume extract solution), DMSO group (dimethylsulfoxide) and control group (saline).
     2. With coal tar pitch fume extract as an inducer of cells, the median lethal concentration of BEAS-2B cells was assessded by MTT assay. Cells were induced at 20% LC50,and then cultured conventionally to observe the changes of proliferation rate and morphology.
     3. Chromosomes of the 10th,20th and 30th generation cells were observed by the oil-immersion lens. Indirect immunofluorescence staining was used to observe changes of centrosome in induced BEAS-2B cells.
     4. Total RNA of the 10th,20th and 30th generation cells were extracted respectively to detect the gene expression of P53, P21 and CyclinE by real-time quantitative PCR. Protein expression of P53, P21 and CyclinE of the 10th,20th and 30th generation cells were semi-quantitatively detected by immunohistochemical staining.
     5. The data was analyzed by the statistical software SPSS 12.0 and indicated by mean and standard deviation. Test levelα=0.05.
     Results
     1. After analyzing coal tar pitch fume extracts by Gas chromatography-mass spectrometry, Polycyclic aromatic hydrocarbon compounds were the main ingredient, accounted for 87.91%. The median lethal concentration was 8.64 mg/L, and then the final concentration which was determined to induce cells was 2 mg/L.
     2. After induction, From 10 passages to 30 passages, the proportion of diploid karyotype of cells in coal tar pitch group was lower than that in normal group and DMSO group respectively, with a large number of aneuploid, indicating there was chromosomal instability at this passage.
     3. After induction:total ratio of abnormal centrosome of the 10th generation cells was 2.79%, however, there were no significant differences among the three groups. At 20 passages, the total ratio of abnormal centrosome (6.56%) increased, which mainly showed that the number of centrosome was abnormal (3.41%). The ratio of abnormal centrosome of the 30th generation cells increased further, showing number increase, volume augmentation and the number and size abnormalities simultaneously.
     4. There was a positive correlation between centrosome abnormalities and chromosomal instability(r=0.75, P=0.02), indicating that centrosome abnormalities was closely related to chromosomal instability.
     5. After induction, the gene and protein expression of P53, P21 and CyclinE of the 10th generation cells showed no significant differences among three groups. At 20 and 30 passages, the gene and protein expression of P53 and P21 reduced, while those of CyclinE increased significantly (P<0.05). There was a positive correlation between the protein expression of P53 and P21 and so was a negative correlation between the protein expression of CyclinE and P53 and P21 respectively. From 10 to 30 generations, the protein expression of P53 and P21 gradually decreased, while the protein expression of CyclinE increased.
     6. After induced, the analysis of correlation between the rate of centrosome abnormality and the expression of proteins P53, P21 and CyclinE in the 20th and 30th cells showed that there was a negative correlation beween the total rate of abnormal centrosome and P53 and P21 respectively (r=-0.57, P=0.01; r=-0.65, P=0.00), while there was a positive correlation between the total rate of abnormal centrosome and the expression of CyclinE (r=0.57, P=0.01).
     Conclusion
     The induced cells regulate the replication of centrosome by P53/P21 pathway during malignant transformation of BEAS-2B cells induced by coal tar pitch extracts. Centrosome abnormal may play an important role in the formation of chromosome instability.
引文
[1]Y Jiang, J Chen, X Chen. Malignant transformation of human bronchial epithelial cells induced by benzo (a) pyrene metabolite dihydroxyepoxy benzo pyrene [J]. Wei Sheng Yan Jiu,2001,30 (3):129~131
    [2]顾其华,胡成平,陈琼,等.绿茶对苯并芘诱发大鼠肺癌的预防及其机制初探[J].中国肺癌杂志,2008,11(4):519~523
    [3]Alice Fabarius, Ruhong Li, George Yerganian, et al. Specific clones of spontaneously. evolving karyotypes generates individuality of cancers [J]. Cancer Genet Cytogenet,2008, 180 (2):89-99
    [4]Motohisa Tada, Fumihiko Kanai, Yasuo Tanaka, et al. Prognostic significance of genetic alterations detected by high~density single nucleotide polymorphism array in gastric cancer [J]. Cancer Sci,2010
    [5]Paul G. McKean, Sue Vaughan, Keith Gull. The extended tubulin superfamily [J]. J Cell Sci,2001,114 (15):2723-2733
    [6]K. Kawamura, M. Moriyama, N. Shiba, et al. Centrosome Hyperamplification and Chromosomal Instability in Bladder Cancer [J]. European Urology,2003,43 (5):505~ 515
    [7]E. Dementyeva, P. Nemec, F. Kryukov, et al. Centrosome amplification as a possible marker of mitotic disruptions and cellular carcinogenesis in multiple myeloma [J]. Leuk Res,2010
    [8]Kara B. Lukasiewicz, Wilma L. Lingle. Aurora A, centrosome structure, and the centrosome cycle [J]. Environ Mol Mutagen,2009,50 (8):602~619
    [9]Xiaoyan Wang, Ruihong Wang, et al. Genetic Interactions between Brcal and Gadd45a in Centrosome Duplication, Genetic Stability, and Neural Tube Closure [J]. J Biol Chem, 2004,279 (28):29606-29614
    [10]Anette Duensing, Stefan Duensing. Guilt by association? P53 and the development of aneuploidy in cancer [J]. Biochem Biophys Res Commun,2005,331 (3):694~700
    [11]Pheruza Tarapore, Kenji Fukasawa. Loss of p53 and centrosome hyperamplification [J]. Oncogene,2002,21 (40):6234~6240
    [12]尹灵富,朱崇法.临海市各企业有毒有害状况调查[J].中国工业医学杂志,2004,17(4):261-262
    [13]张天才.煤焦沥青烟对人体健康及血液系统的影响[J].职业危害与临床,2008,02(12):1156-1157
    [14]汪润华.某焦化厂职业危害调查报告[J].职业与健康,2004,20(2):3132
    [15]Emily Ho, Bruce N. Ames. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and API DNA binding, and affects DNA repair in a rat glioma cell line [J]. Proc Natl Acad Sci U S A,2002,99 (26):16770-16775
    [16]张桂芝,熊玮,刘长庭,等.甲醛对人支气管上皮细胞系转化和染色体不稳定性影响的研究[J].第三军医大学学报,2006,28(13):1388~1392
    [17]芮萌,刘长庭.染色体不稳定性与肺癌[J].军医进修学院学报,2006,27(2):150~152.
    [18]Kenji Fukasawa. p53, cyclin~dependent kinase and abnormal amplification of centrosomes [J]. Biochim Biophys Acta,2008,1786 (1):15-23
    [19]贾定武,吴逸明,陈琛,等.沥青工和焦炉工染色体畸变及血清P21蛋白水平的研究[J].癌变畸变突变,1996,8(2):74~77
    [20]Harith Rajagopalan, Christoph Lengauer. CIN-ful cancers [J]. Cancer Chemother Pharmacol,2004,54 (1):S65-S68
    [21]ChongFeng GAO, Kyle Furge, Julie Koeman, et al. Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations[J]. Proc Natl Acad Sci U S A, 2007,104 (21):8995~9000
    [22]Kenji Fukasawa. Centrosome amplification, chromosome instability and cancer development [J]. Cancer Letters,2005,203:6~19
    [23]Chan Kwon Junga, Ji Han Junga, Kyo Young Leea, et al. Centrosome abnormalities in non-small cell lung cancer:Correlations with DNA aneuploidy and expression of cell cycle regulatory proteins [J]. Pathology-Research and Practice,2007,203 (12):839~847
    [24]吕梅,杨占泉,董震.喉癌细胞系中心体扩增与细胞异常分裂的检测[J].中国耳鼻喉头颈外科,2006,13(10):689~692
    [25]Jeffrey D. Parvin, Satish Sankaran. The BRCA1 E3 ubiquitin ligase controls centrosome dynamics [J]. Cell Cycle,2006,5 (17):1946-1950
    [26]Anette Duensing, Ying Liu, Michelle Tseng, et al. Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication [J]. Oncogene,2006,25 (20):2943~2949
    [27]Angela Amato, Tiziana Schillaci, Laura Lentini, et al. CENPA overexpression promotes genome instability in pRb-depleted human cells [J]. Mol Cancer,2009,8:119.
    [28]Ulrike Kronenwett, Soren Huwendiek, Carin Ostring, et al. Improved grading of breast adenocarcinomas based on genomic instability [J]. Cancer Res,2004,64(3):904~909
    [29]牛昀,王颖,于泳,等.中心体α、γ-微管蛋白在乳腺癌前病变及乳腺癌中的表达及其意义初探[J].中华医学杂志,2006,86(1):56~60
    [30]U Kronenwett, S Huwendiek, J Castro, et al. Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability [J]. Br J Cancei,2005,92 (2): 389-395
    [31]Wee J Chng, Rafael Fonseca. Centrosomes and Myeloma; aneuploidy and proliferation [J]. Environ Mol Mutagen,2009,50 (8):697~707
    [32]Linda Moskovszky, Katalin Dezso. Centrosome abnormalities in giant cell tumour of bone: possible association with chromosomal instability [J]. Modern Pathology,2010,23 (3): 359-366
    [33]Ste'phane Burtey, Marta Rier, E'milie Ribe et al. Centrosome overduplication and mitotic instability in PKD2 transgenic lines [J]. Cell Biology International,2008,32 (10):1193~ 1198
    [34]高美霞,马金芳,郭素萍,等.非小细胞肺癌的中心体异常及其生物学和临床意义[S].第四届中国肿瘤学术大会论文集,2006,390
    [35]John H. Bannon, Margaret M. Mc Gee. Understanding the role of aneuploidy in tumorigenesis [J]. Biochemical Society Transactions,2009,37 (4):910~913
    [36]Anette Duensing, Nicole Spardy, Payel Chatterjee, et al. Centrosome overduplication, Chromosomal Instability, and Human Papillomavirus Oncoproteins [J]. Environmental and Molecular Mutagenesis,2009,50 (8):741~747
    [37]Heide Schatten. The mammalian centrosome and its functional signiWcance[J]. Histochem Cell Biol,2008,129 (6):667-686
    [38]Stefan Duensing, Anette Duensing, David C Lee, et al. Cyclin-dependent kinase inhibitor indirubin-3'-oxime selectively inhibits human papillomavirus type 16 E7-induced numerical centrosome anomalies [J]. Oncogene,2004,23 (50):8206~8215
    [39]Antonino B D'Assoro, Wilma L Lingle, Jeffrey L Salisbury. Centrosome amplification and the development of cancer [J]. Oncogene,2002.21 (40):6146~6153
    [40]Greenfield Sluder, Joshua J Nordberg. The good, the bad and the ugly:the practical consequences of centrosome amplification [J]. Curr Opin Cell Biol,2004,16(1):49~ 54
    [41]Edward H. Hinchcliffe, Greenfield Sluder. Centrosome duplication:three kinases come up a winner! [J]. Curr Biol,2001,11 (17):R698-701
    [42]Michael M Hubalek, Andreas Widschwendter, Martin Erdel, et al. Cyclin E dysregulation and chromosomal instability in endometrial cancer [J]. Oncogene,2004,23 (23):4187~ 4192
    [43]Xuesong Ouyang, Xianghong Wang, et al. Effect of p53 on centrosome amplication in prostate cancer cells [J]. Biochimica ET Biophysica Acta,2001,1541 (3):212~220
    [1]Kenji Fukasawa. Centrosome amplification, chromosome instability and cancer development [J]. Cancer Letters,2005,203:6~19
    [2]王慧,牛昀.中心体微管蛋白异常与肿瘤研究进展[J].诊断学理论与实践,2006,5(4):362~364
    [3]唐晓玲,缪时英.微管成核的研究进展[J].生命的化学,2004,24(2):123~125
    [4]Jens S. Andersen, Christopher J. Wilkinson, Thibault Mayor,et al. Proteomic characterization of the human centrosome by protein correlation profiling[J]. Nature,2003, 426 (6966):570-574
    [5]D Lothschutz, M Jennewein, S Pahl, et al. Polyploidization and centrosome hyperamplification in inflammatory bronchi [J].Inflamm Res,2002,51 (8):416~422
    [6]Erich A. Nigg. Centrosome aberrations:cause or consequence of cancer progression? [J]. Nat Rev Caner,2002,2 (11):815-825
    [7]K Hanashiro, M Kanai, Y Geng, et al. Roles of cyclins A and E in induction of centrosome amplification in p53-compromised cells [J]. Oncogene,2008,27 (40):5288~5302
    [8]Stephen Doxsey. Re-evaluating centrosome function [J]. Nat Rev Mol Cell Biol,2001, 2 (9):688~698
    [9]Erich A. Nigg. Centrosome duplication:of rules and licenses [J]. Trends in Cell Biology, 2007,17 (5):215~221
    [10]Meng-Fu Bryan Tsou, Tim Stearns. Mechanism limiting centrosome duplication to once per cell cycle [J]. Nature,2006,442 (7105):947~951
    [11]HF Horn, KH Vousden. Coping with stress:multiple ways to activate p53 [J]. Oncogene, 2007,26 (9):1306-1316
    [12]Kenji Fukasawa. p53, cyclin-dependent kinase and abnormal amplification of centrosomes [J]. Biochim Biophys Acta,2008,1786 (1):15~23
    [13]Sagrario Ortega, Ignacio Prieto, Junko Odajima, et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice [J]. Nat Genet,2003,35 (1):25~ 31
    [14]Cyril Berthet, Eiman Aleem, Vincenzo Coppola, et al. Cdk2 knockout mice are viable [J]. Curr Biol,2003,13 (20):1775~1785
    [15]Anette Duensing, Ying Liu, Michelle Tseng, et al. Cyclin dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication [J]. Oncogene,2006,25 (20):2943~2949
    [16]Christopher J. Nelsen, Ryoko Kuriyama, Betsy Hirsch, et al. Short term cyclin D1 overexpression induces centrosome amplification, mitotic spindle abnormalities, and aneuploidy [J]. J Biol Chem,2005,280 (1):768~776
    [17]Cyril Berthet, Kimberly D. Klarmann, Mary Beth Hilton, et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation [J]. Dev Cell,2006,10 (5):563-573
    [18]Kara B. Lukasiewicz, Wilma L. Lingle. Aurora A, centrosome structure, and the centrosome cycle [J]. Environ Mol Mutagen,2009,50 (8):602~619
    [19]Xiaoyan Wang, Ruihong Wang, et al. Genetic Interactions between Brcal and Gadd45a in Centrosome Duplication, Genetic Stability, and Neural Tube Closure [J]. J Biol Chem, 2004,279 (28):29606~29614
    [20]Onur Cizmecioglu, Silke Warnke, Marc Arnold, et al. Plk2 regulated centriole duplication is dependent on its localization to the centrioles and a functional polo-box domain [J]. Cell Cycle,2008,7 (22):3548~3555
    [21]Pheruza Tarapore, Kenji Fukasawa. Loss of p53 and centrosome hyperamplification [J]. Oncogene,2002,21 (40):6234~6240
    [22]Jeffrey G Mussman, Henning F Horn, Patrick E Carroll, et al. Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression [J]. Oncogene, 2000,19 (13):1635~1646
    [23]Antonino B D'Assoro, Wilma L Lingle, Jeffrey L Salisbury. Centrosome amplification and the development of cancer [J]. Oncogene,2002,21 (40):6146~6153
    [24]Ryan K. Louie, Shirin Bahmanyar, Kathleen A. Siemers, et al. Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes [J]. J Cell Sci,2004,117(7):1117~1128
    [25]Jerome Bonnet, Peter Coopman, May C. Morris. Characterization of centrosomal localization and dynamics of Cdc25C phosphatase in mitosis [J]. Cell Cycle,2008,7(13): 1991-1998
    [26]Marshonna Forgues, Michael J. Difilippantonio, Steven P. Linke, et al. Involvement of Crml in hepatitisB virus X protein-induced aberrant centriole replication andabnormalmitotic spindles [J]. Mol Cell Biol,2003,23 (15):5282~5292
    [27]Henderika M. J. Hut, Willy Lemstra, Engbert H. Blaauw, et al. Centrosomes split in the presence of impaired DNA integrity during mitosis [J]. Mol Biol Cell,2003,14(5):1993~ 2004
    [28]Alexey Khodjakov, Conly L. Rieder, Greenfield Sluder, et al. De novo formation of centrosomes in vertebratecells arrested during S phase [J]. J Cell Biol,2002,158 (7): 1171-1181
    [29]David L. Gard. Organization, nucleation, and acetylation of microtubules in Xenopus laevis oocytes:a study by confocal immunofluorescence microscopy [J]. Dev Biol,1991,143 (2):346~362
    [30]Wee J Chng, Rafael Fonseca. Centrosomes and Myeloma; aneuploidy and proliferation [J]. Environ Mol Mutagen,2009,50 (8):697~707
    [31]Neil J. Ganeml, Susana A., et al. A Mechanism Linking Extra Centrosomes to Chromosomal Instability [J]. Nature,2009,460 (7252):278-282
    [32]KH Walen. Origin of diplochromosomal polyploidy in near-senescent fibroblast cultures: heterochromatin, telomeres and chromosomal instability (CIN) [J]. Cell Biol Int,2007, 31 (12):1447~1455
    [33]Linda Moskovszky, Katalin Dezso, Nick Athanasou, et al. Centrosome abnormalities in giant cell tumour of bone:possible association with chromosomal instability [J]. Mod Pathol, 2010,285 (11):8316-8329
    [34]E. Dementyeva, P. Nemec, F. Kryukov, et al. Centrosome amplification as a possible marker of mitotic disruptions and cellular carcinogenesis in multiple myeloma [J]. Leuk Res,2010
    [35]Y Cai, YF Liu, H Yang, et al. The p53-p21 (wafl) pathway and centrosome amplification in oral squamous cell carcinomas [J]. Zhonghua Kou Qiang Yi Xue Za Zhi,2009,44 (6): 332-335
    [36]Dominik Duelli, Yuri Lazebnik. Cell-to-cell fusion as a link between viruses and cancer. Nature Reviews [J]. Cancer,2007,7 (12):968~976
    [37]Neil J Ganem, Zuzana Storchova, David Pellman. Tetraploidy, aneuploidy and cancer [J]. Curr Opin Gene Dev,2007,17 (2):157-162
    [38]Giulia Guarguaglini, Peter I. Duncan, York D. Stierhof, et al. The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 andserves as a marker for mature centrioles [J]. Molecular Biology ofthe Cell,2005,16 (3):1095~1107
    [39]Antonino B. D"Assoro, Susan L. Barrett, Christopher Folk, et al. Amplified centrosomes in breast cancer:a potential indicator of tumor aggressiveness [J]. Breast Cancer Res Treat, 2002,75 (1):25~34
    [40]Christine M. Caldwell, Rebecca A. Green, Kenneth B. Kaplan. APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice [J]. J Cell Biol,2007, 178 (7):1109~1120
    [41]Zuzana Storchova, David Pellman. From polyploidy to aneuploidy, genome instability and cancer [J]. Nat Rev Mol Cell Biol,2004,5(1):45-54
    [42]Matthew J. Daniels, Yunmei Wang, MiYoung Lee, et al. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2[J]. Science,2004,306(5697): 876-879
    [43]Tomotoshi Marumoto, Dongwei Zhang, Hideyuki Saya. Aurora-A-a guardian of poles [J]. Nat Rev Cancer,2005,5 (1):42~50
    [44]German A. Pihan, Jan Wallace, Yening Zhou, et al. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas [J]. Cancer Research, 2003,63 (6):1398-1404
    [45]Takeshi Fujiwara, Madhavi Bandi, Masayuki Nitta, et al. Cytokinesis failure generating tetraploidspromotes tumorigenesis in p53-null cells [J]. Nature,2005,437(7061):1043~ 1047
    [46]Meejeon Roh, Omar E. Franco, Simon W. Hayward, et al. A role for polyploidy in the tumorigenicity of Pim-1-expressing human prostate and mammaryepithelial cells [J]. PLoS ONE,2008,3 (7):e2572
    [47]Habedanck R, Stierhof YD, et al. The Polo kinase Plk4 functions in centriole duplication [J]. Nature Cell Biology,2005,7 (11):1140-1146
    [48]Renata Basto, Kathrin Brunk, Tatiana Vinadogrova, et al. Centrosome amplification can initiate tumorigenesis in flies [J]. Cell,2008,133 (6):1032-1042
    [49]Julia Kleylein-Sohn, Jens Westendorf, Mikael Le Clech, et al. Plk4-induced centriole biogenesis in human cells [J]. Developmental Cell,2007,13 (2):190~202
    [50]Elisabeth Castellanos, Paloma Dominguez, Cayetano Gonzalez, et al. Centrosome dysfunction in drosophila neural stem cells causes tumors that are not due to genome instability [J]. Current Biology,2008,18 (16):1209~1214
    [51]Antonino B D'Assoro, Wilma L Lingle, Jeffrey L Salisbury. Centrosome amplification and the development of cancer [J]. Oncogene,2002,21 (40):6146~6153
    [52]Anette Duensing, Anna Chin, Linan Wang, et al. Analysis of centrosome overduplication in correlation to cell division errors in high-risk human papillomavirus (HPV)-associated anal neoplasms [J]. Virology,2008,372 (1):157-164
    [53]Erin L. Milliken, Kristen L. Lozada, Emhonta Johnson, et al. Ovarian hyperstimulation induces centrosome amplification and aneuploid mammary tumors independently of alterations in p53 in a transgenic mouse model of breast cancer [J]. Oncogene,2008,27 (12):1759-1766
    [54]Ashok R. Venkitaraman. Cancer susceptibility and the functions of BRCA1 and BRCA2 [J]. Cell,2002,108 (2):171-182
    [55]Renglin Lindh A, Schultz N, Saleh-Gohari N, et al. RAD51C (RAD51L2) is involved in maintaining centrosome number in mitosis [J]. Cytogenet Genome Res,2007,116 (1~ 2):38~45
    [56]Andrew Tutt, Anastasia Gabriel, David Bertwistle, et al. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification [J]. Curr Biol,1999,9 (19):1107-1110
    [57]Helen Dodson, Emer Bourke, Liam J Jeffers, et al. Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM [J]. EMBO J,2004, 23 (19):3864~3873
    [58]Andrea Musacchio, Kevin G. Hardwick. The spindle checkpoint:structural insights into dynamic signaling [J]. Nat Rev Mol Cell Biol,2002,3 (10):731~741
    [59]Aziz Sancar, Laura A. Lindsey-Boltz, Keziban Unsal-Kacmaz, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints [J]. Annu Rev Biochem, 2004,73:39-85
    [60]Paul Nurse. Universal control mechanism regulating onset of M-phase [J]. Nature,1990, 344 (6266):503-508
    [61]Fabienne Baus Charrier-Savournin, Marie-Therese Chateau. Veronique Gire, et al. p21-Mediated nuclear retention of cyclin B1-Cdkl in response to genotoxic stress [J]. Mol Biol Cell,2004,15 (9):3965~3976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700