煤焦沥青烟提取物诱导BEAS-2B细胞恶性转化及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤焦沥青(coal tar pitch, CTP)是煤炭在炼焦过程中的副产物,成分极其复杂,流行病学调查显示,煤焦沥青接触者肺癌的发病率明显高于非接触者,现已将煤焦沥青引发的肿瘤划定为职业肿瘤。在以往的研究中,多是以煤焦沥青的某单一成分为研究对象来探讨煤焦沥青对接触人群的危害和致癌机制的,而煤焦沥青这一混合物的致癌机制如何,鲜见报道,需要进一步研究。
     该研究利用中温煤焦沥青烟提取物(coal tar pitch smoke extract)作为诱导剂,建立永生化人支气管上皮细胞BEAS-2B的恶性转化模型,在确定细胞发生恶性转化的前提下,对细胞整个转化过程进行分期,观察不同时期细胞的染色体不稳性,通过研究染毒细胞染色体损伤及恶性转化早期纺锤体检测点相关基因及蛋白的改变,探讨煤焦沥青烟提取物致细胞染色体不稳定性及其可能的致肺癌机制,为进一步研究煤焦沥青接触者罹患职业性肺癌发病机制提供一定的理论基础。
     方法
     1细胞恶性转化模型的建立
     制备煤焦沥青烟提取物,通过细胞活力技术的方法测定合适的染毒剂量诱导细胞恶性转化,并观察BEAS-2B细胞转化过程中细胞表型的改变情况。
     2染色体不稳定性观察
     观察细胞受煤焦沥青烟提取物作用后传代过程中染色体的动态变化,观察染色体不稳定性
     3煤焦沥青烟提取物遗传毒性及纺锤体检测点功能检测
     用彗星实验分析观察煤焦沥青烟提取物染毒对BEAS-2B细胞造成的遗传毒性进行观察RealTime PCR、免疫细胞化学技术检测纺锤体检测点相关基因Mad2、Bub1及其蛋白的表达情况。
     4统计学分析
     采用SPSS12.0对数据进行统计学分析,对符合正态分布的数据,以x±s表示。两组数据比较采用t检验,构成比比较采用χ2检验,多组数据比较采用单因素方差分析,两两比较采用LSD法,以α=0.05为检验水准。
     结果
     1细胞恶性转化试验
     染毒组20代细胞形态发生改变,细胞体积增大,圆形类圆形细胞比例增加,部分细胞呈现成纤维细胞样改变,胞浆丰富,锚定独立生长实验结果显示细胞恶性程度不高,仅有极少数细胞3周时可以长成大的集落;30代,细胞大小差异显著,形态大部分变为圆形类圆形,面积增大,细胞内颗粒物增加,部分边缘呈膜状向外扩展,软琼脂克隆形成细胞经体外扩增培养后生长紊乱,无接触抑制,细胞已经发生恶性转化。流式细胞仪测定30代细胞的细胞周期显示G1期细胞比例明显减少,G2/M期细胞比例明显增加。
     2染色体不稳定性的观察
     恶性转化早期染毒组细胞已表现出明显的染色体不稳定性,差异较对照组有统计学意义(P<0.05),主要表现为细胞染色体数目和结构异常,且异常细胞数目随着细胞代数的增加有逐渐增多的趋势。
     3煤焦沥青烟提取物遗传毒性及纺锤体检测点功能检测
     煤焦油烟提取物可对受试细胞的DNA造成损伤,染毒组细胞拖尾长度较对照组均明显增高(P<0.05)。染毒组30代细胞Mad2、Bubl基因的表达均较对照组基因表达减低(P<0.05),Mad2、Bub1蛋白的平均光密度值较对照组都有所降低(P<0.05)。对照组之间各个基因与蛋白的表达差异无统计学意义(P>0.05)。结论
     染色体不稳定性是煤焦沥青烟提取物染毒BEAS-2B细胞发生恶性转化的一种重要机制。在细胞染色体不稳定性及恶性转化过程中,DNA损伤可能是其始动因素,纺锤体检测点功能异常可能是其一个重要原因。
Coal tar pitch (CTP) is by-product made from coal duing the process of coking is mainly used in paint, rubber production. Epidemiological studies showed that there was a high incidence rate of lung cancer among the workors exposed to CTP defined as occupational tumor. In previous studies, single component of CTP was used to study the hazards and carcinogenic mechanisms of people exposed to coal tar pitch h, but as mixture there is rare reports about the carcinogenic mechanism of coal tar pitch.
     To study the malignant transformation effects of coal tar pitch smoke extract on BEAS-2B in vitro and establish malignant transformation of BEAS-2B model induced by coal tar pitch extract, then further investigate the genotoxicity of coal tar pitch smoke extract by single cell gel electrophoresis (SCGE). Using RealTime PCR and cellular immune staining method to analyze the differences in the gene and proteins expression profiles between the early transformation cells and normal BEAS-2B cells for revealing the carcinogenesis and mechanism of lung cancer in coal tar pitch smoke extracts.
     Methods
     1 Malignant transformation model of BEAS-2B induced by coal tar pitch smoke extract.
     BEAS-2B cells were reacted with coal tar pitch smoke, including a DMSO control group and a blank control grounp then with conventional culture. The characteristics of the cellular biology were observed and the malignant transformation of cells were identified through observing, anchorage independent growth and soon. Then the malignant transformation model of cells at different phases were established.
     2 The CIN of BEAS-2B induced by coal tar pitch smoke extracts.
     The chromosome aberration analyses showed that the CIN of BEAS-2B cells reacted by coal tar pitch smoke and the chromosome changes of BEAS-2B with cell transformation experiment.
     3 The genotoxicity of coal tar pitch smoke extract and the function test of spindle checkpoint.
     Investigating the genotoxicity of coal tar pitch smoke extract by SCGE. Using RealTime PCR and cellular immune staining method to analyze the differences of the spindle checkpoint-related genes and proteins expression profiles between the different groups of 30th generation cells.
     4 Statistical analysis
     Statistical software SPSS 12.0 was used for data analysis.χ2 test; one-way ANOVA, LSD were used to analyze (α=0.05)
     Results
     1 Malignant transformation experiment
     The 30th generation cell of experiment group showed malignant transformation phenotype:different sizes; loss of the original spindle appearance, most of the changes for the class circle shape; cytoplasm increased; nuclear atypia; compound layer growth.Flow cytometry showed that the proportion of G1 phase cells was more decreased and G2/M phase cells was more increased of the 30th generations cell in experiment group than those of the 30th generations cell in control group, and there were significantly statistical difference between these two groups (P<0.05) indicating that cells altered growth kineties. The experimental group cells were formed small cell colonies in soft agar in 20th colonies The anchorage independent growth was appeared in 30th generation, after three weeks, there was few number of cells can grow into large experimental group cells.
     2 Chromosome instability
     In earlier period of malignant transformation, the cell included by coal tar pitch smoke extract had shown chromosome instability and had statistical difference with control group cells significantly (P<0.05), which mainly showed that the abnormal number and structure of chromosome.
     3 Test of the genetoxic of coal tar pitch smoke extract and the function of spindle checkpoint
     In the comet assay analyses in the BEAS-2B cells was included by coal tar pitch smoke extract, the results are positive. It means that coal tar pitch smoke extract may cause DNA damage. The cells of experiment group have longer tail length and had statistical difference with control group cells significantly (P<0.05). Coal tar pitch smoke extract has genetoxic for cell. The mRNA expression of spindle checkpoint-related genes were detected by RealTime PCR in the control group (P<0.05). Gene expression of Mad2, Bub1 in exposure group was lower than that of control group significantly. The protein expression of Mad2,Bub1 mainly located in the cytoplasm in coal tar pitch smoke extract cells, and the expression of Mad2, Bub1 were lower in the group of cells included by coal tar pitch smoke extract and had statistical difference with control group cells significantly (P<0.05)
     Conclusion
     Coal tar pitch smoke extract can induce malignant transformation of BEAS-2B cells in vitro.Coal tar pitch smoke extracts exposured can lead to chromosomal instability. DNA damage may be the initiating agent of the CIN and malignant transformation to the cell included with coal tar pitch smoke extract. The disfunction of spindle checkpoint may be an important agent of the CIN and malignant transformation to the cell included with coal tar pitch smoke extract.
引文
[1]卫正义,樊生才.煤焦油加工技术进展及产业化评述[J].煤化工,2007,35(1):7~ 1O
    [2]何扣宝.我国煤焦油行业的发展方向[J].上海化工,2007,32(6):22-25
    [3] Leonard SA, Stegemann JA, Roy A. Characterization of acid tars [ J]. Hazard Mater,2010, 175 (1~3) :382~392
    [4] Matson CW, Gillespie AM. McCarthy C, et al. Wildlife toxicology:biomarkers ofgenotoxic exposures at a hazardous waste site [J]. Wildlife toxicology, 2009,18 (7): 886-898
    [5] Gibbs GW, Armstrong B, Sevigny M. Mortality and cancer experience of Quebec aluminumreduction plant workers. Part 2: mortality of three cohorts hired on or before January 1, 1951 [J]. Occup Environ Med, 2007, 49(10): 1105-1123
    [6] Armstrong B, Hutchinson E, Unwin J, et al. Lung Cancer Risk after Exposure to PolycyclicAromatic Hydrocarbons: A Review and Meta-Analysis[j]. Environ Health Perspect, 2004,112(9): 970-978
    [7] Li R, Yerganian G, Duesberg P, et al. Aneuploidy correlated 100% with chemicaltransformation of Chinese hamster cells [J]. Proc Natl Acad Sci USA, 1997, 94(26):14506-14511
    [8]董波,陆肖华,张浩等.一种改进的用于测定细胞周期的细胞制备方法[J].军事医学 院院刊,2002,26(2):124-129
    [9]sehobert H.ehemiealsandmaterialsfromcoa一intheZlsteentu卿[J〕.Fuel,2002,51(l): 15~32
    [10]马建亮,窦畅郑.煤焦油加工的国内外现状及发展趋势探讨[J].河南冶金,2006,14 (5):22-24
    [11] Lavou J, Gerin M, Cote J, et al. Mortalityand cancer experience of Quebec aluminum reduction plant workers. Part I: The reduction plants and coal tar pitch volatile (CTPV) exposure assessment [J]. Occup Environ Med, 2007, 49 (9): 997—1008
    [12] Spinelli JJ, Demers PA, Le ND, et al. Cancer risk in aluminum reduction plant workers(Canada) [j]. Cancer Causes Control, 2006, 17 (7): 939-948
    [13] Berenblum I, Schoental R. Carcinogenic constituents of coal tar Brit [j]. Cancer, 1947, 1: 157-165
    [14]李瑛,孙金秀.人支气管上皮细胞体外转化试验及其在致癌机制研究中的应用[J].国 外医学卫生学分册,2007,34(5):288-293
    [15]朱进国,吴庆深,孔令文.人支气管上皮细胞恶变过程中生物学特性及超微结构的研 究[J].四川肿瘤治,2005,18(4):209-212
    [16] Hagima N. Morphometric analysis of the stepwise apperance of adeorectal cancer [j]. Vire hows Arch pathol Anat, 1998, 413-499
    [17] 王海波,龚建平,裘法组等.人类肿瘤细胞分化中细胞周期素的表达规律及作用机制[J].中华实验外科杂志, 2003, 20 (1): 39-40
    [18] Jones TO, Easterly CE. Analysis of National Toxicity Program Data: Predictions for 30Compounds to Be Tested in Rodent Carcinogenesis Experiments [j]. Environ HealthPerspect, 1996, 104 (5): 1017-1030
    [19] Suzuki J, Shishido T. Regulation of cellular transformation by oncogenic and normal Ablkinases [j]. JBiochem (Tokyo), 2007, 141 (4): 453-458
    [20] McCormick JJ, Maher VM. Towards an understanding of the malignant transformation ofdiploid human fibroblasts [j]. Mutat Res, 1988, 199 (2): 273~291
    [21] Hei TK, Piao CQ, Willey JC, et al. Malignant transformation of human bronchial epithelialcells by radon-stimulateda-particles [j]. Carcinogenesis, 1994, 15(3): 431-437
    [22] Daly AK. Pharmacogenetics of cytochromes P450[j]. Curr Top Med Chem, 2004, 4(16):1733-44
    [23] Puga A, Xia Y, Elferink C Role of the aryl hydrocarbon receptor in cell cycle regulation[J]. Chem Biol Interact. 2002, 141 (1—2): 117-30
    [24] Rajagopalan H, Lengauer C Aneuploidy and cancer [j]. Nature, 2004, 4(32): 338-341
    [25] Weaver BA, DW Cleveland. Aneuploidy: instigator and inhibitor of tumorigenesis[J]. Cancer Res, 2007, 67 (21): 10103-10105
    [26] Sachs RK, Levy D, Hahnfeldt P, et al- Quantitative analysis of radiation-inducedchromosome aberrations [j]. Cytogenet Genome Res, 2004, 104 (4): 142-148
    [27] Wassmann K, Benezra R. Mitotic checkpoints: from yeast to cancer [j]. Curr Opin GenetDev, 2001, 11 (1): 83-90
    [28] Lopes CS, Sunkel CE. The spindle checkpoint: from normal cell division to tumorigenesis[J]. Arch Med Res, 2003, 34 (3): 155~65
    [29] King RW. When 2+2=5: the origins and fates of aneuploid and tetraploid cells [j]. BiochimBiophys Acta, 2008, 1786 (1): 4~14
    [30]CiminiD, F Degrassi. Aneuploidy: a matter of bad connections [j]. Trends Cell Biol,2005, 15 (8): 442-451
    [31] Minhas KM, Singh B, Jiang WW, et al. Spindle assembly checkpoint defects andchromosomal instability in head and neck squamous cell carcinoma [ J]. Int J Cancer, 2003,107 (1): 46-52
    [32] Musio A, Montagna C, Zambroni D, et al. Inhibition of Bub 1 results in genomic instabilityand anchorage-independent growth of normal human fibroblasts [j]. Cancer Res, 2003 ,63 (11): 2855-2863
    [33] Dobles M, Liberal V, Scott ML, et al. Chromosome missegregation and apoptosis in micelacking the mitotic checkpoint protein Mad2 [j]. Cell, 2000, 101 (6): 635-645.
    [34] Wang Q, Liu T, Fang Y, et al. BubRl deficiency results in abnormal megakaryopoiesis[J]. Blood, 2004, 103 (4): 1278-1285
    [35] Baker DJ, Jeganathan KB, Cameron JD, et al. BubRl insufficiency causes early onset ofaging-associated phenotypes and infertility in mice [j]. Nat Genet, 2004, 36(7): 744—749.
    [36] Weaver BA, Silk ad, Montagna C, et al. Aneuploidy acts both oncogenically and as a tumorsuppressor. [j]. Cancer Cell, 2007, 11 (1): 25—36
    [37] Michel LS, Liberal V, Chatterjee A, et al. Mad2 haplo-insufficiency causes prematureanaphase and chromosome instability in mammalian cells [j]. Nature, 2001, 409(6818):355-359
    [38] Dai W, Wang Q, Liu T, et al. Slippage of mitotic arrest and enhanced tumor developmentin mice with BubRl haploinsufficiency [J]. Cancer Res, 2004. 64(2): 440-445
    [39] Jeganathan K, Malureanu L, Baker DJ, et al. Bubl mediates cell death in response tochromosome missegregation and acts to suppress spontaneous tumorigenesis [j]. Cell Biol,2007, 179 (2): 255-267
    [40] Matsumoto T, Baker DJ, d'Uscio LV, et al. Aging-associated vascular phenotype in mutantmice with low levels of BubRl [j]. Stroke, 2007, 38 (3): 1050-1061
    [41] Hartman TK, Wengenack TM, Poduslo JF, et al. Mutant mice with small amounts of BubRldisplay accelerated age-related gliosis [j]. Neurobiol Aging, 2007, 28 (6): 921-927
    [42] Percy MJ, Myrie KA, Neeley CK, et al. Expression and mutational analyses of the humanMad2Ll gene in breast cancer cells [j]. Genes Chromosomes Cancer, 2000, 29(4): 356—362
    [43] Wang X, Jin DY, Wong YC, et al. Correlation of defective mitotic checkpoint with aberrantlyreduced expression of Mad2 protein in nasopharyngeal carcinoma cells [J]. Carcinogenesis,2000, 21 (12): 2293-2297
    [44] Wang X, Jin DY, Ng RW, et al. Significance of Mad2 expression to mitotic checkpointcontrol in ovarian cancer cells [j]. Cancer Res, 2002, 62 (6): 1662-1668
    [45]工莉,尹芳,杜焊蕾等.Mad2蛋白在人正常组织和胃癌组织中的表达[J].现代肿瘤 医学,2009,17(11):2045-2048
    [1]Green DR, Evan GI. A matter of life and death [J]. Cancer Cell,2002,1 (1):19~30
    [2]Vermeulen K, Van Bockstaele DR, Berneman ZN. Apoptosis:mechanisms and relevance in cancer [J]. Ann Hematol,2005,84 (10):627~639
    [3]Vogelstein B, Kinzler KW. The multistep nature of cancer [J]. Trends Genet,1993,9 (4):138~141
    [4]Weinberg RA. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis [J]. Cancer Res,1989,49 (14):3713~3721
    [5]Tomlinson IP, Novelli MR. Bodmer WF[J]. Proc Natl Acad Sci USA,1996,93 (25): 14800~14803
    [6]Nowell PC. The clonal evolution of tumor cell populations [J]. Science,1976,194(4260): 23~28
    [7]Jackson AL, Loeb LA. The mutation rate and cancer [J]. Genetics,1998,148(4):1483~ 1490
    [8]Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer [J]. Nat Rev Cancer, 2002,2 (5):331~341
    [9]Esteller M. Epigenetics in cancer [J]. N Engl J Med,2008,358 (11):1148~1159
    [10]Prehn RT. Cancers beget mutations versus mutations beget cancers [J]. Cancer Res,1994, 54 (20):5296~5300
    [11]Prehn RT. Stimulatory effects of immune reactions upon the growths of untransplanted tumors [J]. Cancer Res,1994,54 (4):908~914
    [12]Soto AM, Sonnenschein C. The somatic mutation theory of cancer:growing problems with the paradigm? [J]. Bioessays,2004,26 (10):1097~1107
    [13]Anderson, E. The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis[J]. Breast Cancer Res,2002,4 (5):197~201
    [14]Strickland JE, Ueda M, Hennings H, et al. A model for initiated mouse skin:suppression of papilloma but not carcinoma formation by normal epidermal cells in grafts on athymic nude mice [J]. Cancer Res,1992,52 (6):1439~1444
    [15]Baer CF, Miyamoto MM, Denver DR. Mutation rate variation in multicellular eukaryotes: causes and consequences [J]. Nat Rev Genet,2007,8 (8):619~631
    [16]Lindahl T. Instability and decay of the primary structure of DNA [J]. Nature,1993,362 (6422):709~715
    [17]Land H, Parada LF, Weinberg RA. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes [J]. Nature,1983,304(5927):596~602
    [18]Knudson AG. Two genetic hits (more or less) to cancer [J]. Nat Rev Cancer,2001, 1 (2):157-62
    [19]Mattison J, van der Weyden L, Hubbard T, et al. Cancer gene discovery in mouse and man [J]. Biochimica et Biophysica Acta,2009,1796 (2):140~161
    [20]Steen HB. The origin of oncogenic mutations:where is the primary damage? [J] Carcinogenesis,2000,21 (10):1773~1776
    [21]Duesberg P, Li R, Fabarius A, et al. Aneuploidy and cancer:from correlation to causation [J]. Contrib Microbiol,2006,13:16~44
    [22]Cairns, J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis [J]. Proc Natl Acad Sci USA,2002,99 (16):10567~105670
    [23]Fabarius A, Li R, Yerganian G, et al. Specific clones of spontaneously evolving karyotypes generate individuality of cancers [J]. Cancer Genet Cytogenet,2008,180 (2):89~99
    [24]Li R, Sonik A, Stindl R, Rasnick D. Aneuploidy vs. gene mutation hypothesis of cancer: Recent study claims mutation but is found to support aneuploidy [J]. Proc Natl Acad Sci USA,2000,97 (7):3236-3241
    [25]Teixeira da Costa L, Lengauer C Exploring and exploiting instability[J]. Cancer Biol Ther, 2002,1 (3):212~225
    [26]Masuda A,Takahashi T. Chromosome instability in human lung cancers:possible underlying mechanisms and potential consequences in the patho2genesis [J]. Oncogene, 2002,21 (45):6884-6897
    [27]Ried T, Heselmeyer-Haddad K, Blegen H, et al. Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors:a phenotype/genotype correlation [J]. Genes Chromosomes Cancer,1999,25 (3):195~204
    [28]Pilch H, Gunzel S, Schaffer U, et al. Evaluation of DNA ploidy and degree of DNA abnormality in benign and malignant melanocytic lesions of the skin using video imaging [J]. Cancer,2000,88 (6):1370~1377
    [29]Choma D, Daures JP, Quantin X, et al. Aneuploidy and prognosis of non-small-cell lung cancer:a meta-analysis of published data [J]. Br J Cancer,2001,85 (1):14~22
    [30]Ikeguchi M, Ohfuji S, Oka A, et al. Aneuploidy of tumor cells in cases of gastric cancer with esophageal invasion:another indicator of poor prognosis [J]. J Surg Oncol,1995,58(2): 83~90
    [31]Sciallero S, Giaretti W, Geido E, et al. DNA aneuploidy is an independent factor of poor prognosis in pancreatic and peripancreatic cancer [J]. hit J Pancreatol,1993,14(1):21~ 28
    [32]Magkou C, Mylona E, Theohari I, et al. An immunohistochemical evaluation of phosphorylated Akt at threonine 308[pAkt(Thr308)] in invasive breast cancer[J]. In Vivo, 2007,21 (6):967~972
    [33]Carter SL, Eklund AC, Kohane IS, et al. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers [J]. Nat Genet,2006,38 (9):1043~1048
    [34]Ruley HE. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture [J]. Nature,1983,304 (5927):602~606
    [35]Kiyono T, Foster SA, Koop JI, et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells [J]. Nature,1998,396(6706):84~ 88
    [36]Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements [J]. Nature,1999,400 (6743):464~468
    [37]Kendall SD, Linardic CM, Adam SJ, et al. A network of genetic events sufficient to convert normal human cells to a tumorigenic state [J]. Cancer Res,2005,65 (21):9824~9828
    [38]Fabarius A, Li R, Yerganian G, et al. Specific clones of spontaneously evolving karyotypes generate individuality of cancers [J]. Cancer Genet Cytogenet,2008,180 (2):89~99
    [39]Ricke RM, van Ree JH, van Deursen JM. Whole chromosome instability and cancer:a complex relationship [J]. Trends Genet,2008,24 (9):457~466
    [40]Phillips JL, Hayward SW, Wang Y, et al. The consequences of chromosomal aneuploidy on gene expression profiles in a cell line model for prostate carcinogenesis [J]. Cancer Res, 2001,61 (22):8143~8149
    [41]Upender MB, Habermann JK, McShane LM, et al. Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells [J]. Cancer Res,2004,64 (19):6941~6949
    [42]Hyman E, Kauraniemi P, Hautaniemi S, et al. Impact of DNA amplification on gene expression patterns in breast cancer [J]. Cancer Res,2002,62 (21):6240~6245
    [43]Pollack JR, Sφrlie T, Perou CM, et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors [J]. Proc Natl Acad Sci USA,2002,99 (20):12963~12968
    [44]Virtaneva K, Wright FA, Tanner SM, et al. Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics [J]. Proc Natl Acad Sci USA,2001,98 (3):1124~1129
    [45]Duesberg P, Li R. Multistep carcinogenesis:a chain reaction of aneupl oidizations [J]. Cell Cycle,2003,2 (3):202~210
    [46]Wassmann K, Benezra R. Mitotic checkpoints:from yeast to cancer [J]. Curr Opin Genet Dev,2001,11 (1):83~90
    [47]Lopes CS, Sunkel CE. The spindle checkpoint:from normal cell division to tumorigenesis [J]. Arch Med Res,2003,34 (3):155~165
    [48]King RW. When 2+2=5:the origins and fates of aneuploid and tetraploid cells[J]. Biochim Biophys Acta,2008,1786 (1):4~14
    [49]Yu H. Regulation of APC-Cdc20 by the spindle checkpoint [J]. Curr Opin Cell Biol,2002, 14 (6):706~714
    [50]Sironi L, Melixetian M, Faretta M, et al. Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint [J]. EMBO J,2001,20 (22): 6371-6382
    [51]Luo X, Tang Z, Xia G, et al. The Mad2 spindle checkpoint protein has two distinct natively folded states [J]. Nat Struct Mol Biol,2004,11 (4):338~345
    [52]Wassmann K, Liberal V, Benezra R. Mad2 phosphorylation regulates its association with Mad1 and the APC/C [J]. EMBOJ,2003,22 (4):797~806
    [53]Brunet S, Pahlavan G, Taylor S, et al. Functionality of the spindle checkpoint during the first meiotic division of mammalian oocytes [J]. Reproduction,2003,126 (4):443~450
    [54]Chen RH. Phosphorylation and activation of Bub 1 on unattached chromosomes facilitate the spindle checkpoint [J]. EMBO J,2004,23 (15):3113~3121
    [55]Johnson VL, Scott MI, Holt SV, et al. Bubl is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression [J]. J Cell Sci,2004, 117 (8):1577-1589
    [56]Sharp-Baker H, Chen RH. Spindle checkpoint protein Bubl is required for kinetochore localization of Madl, Mad2, Bub3, and CENP-E, independently of its kinase activity [J]. J Cell Biol,2001,153 (6):1239~1250
    [57]Taylor SS, Hussein D, Wang Y, et al. Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bubl and BubRl are differentially regulated by spindle events in human cells [J]. Cell Sci,2001,114 (24):4385~4395
    [58]Yu H, Tang Z. Bubl multitasking in mitosis [J]. Cell Cycle,2005,4 (2):262~265.
    [59]Millband DN, Hardwick KG. Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mphlp-dependent manner [J]. Mol Cell Biol,2002,22 (8):2728~2742
    [60]Zhou J, Panda D, Landen JW, et al. Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint [J]. Biol Chem, 2002,277 (19):17200~17208
    [61]Tang Z, Bharadwaj R, Li B, et al. Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubRl. Dev Cell [J].2001,1 (2):227~237
    [62]Skoufias DA, Andreassen PR, Lacroix FB, et al. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints [J]. Proc Nat1 Acad Sci USA,2001,98 (8):4492~4497
    [63]Mao Y, Desai A, Cleveland DW. Microtubule capture by CENP-E silences BubRl-dependent mitotic checkpoint signaling [J]. Cell Biol,2005,170(6):873~880
    [64]McEwen BF, Chan GK, Zubrowski B, et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells [J]. Mol Biol Cell,2001,12 (9):2776~2789
    [65]Hornig NC, Knowles PP, McDonald NQ, et al. The dual mechanism of separase regulation by securin [J]. Curr Biol,2002,12 (12):973~982
    [66]Zachariae W, Nasmyth K. Whose end is destruction:cell division and the anaphase-promoting complex [J]. Genes Dev,1999,13 (16):2039~2058
    [67]Millband DN, Campbell L, Hardwick KG. The awesome power of multiple model systems: interpreting the complex nature of spindle checkpoint signaling [J]. Trends Cell Biol,2002, 12 (5):205~209
    [68]Peters JM. The anaphase-promoting complex:proteolysis in mitosis and beyond [J]. Mol Cell,2002,9 (5):931~943
    [69]Kallio MJ, Beardmore VA, Weinstein J, et al. Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells [J]. Cell Biol,2002,158(5): 841~847
    [70]Cimini D, Degrassi F. Aneuploidy:a matter of bad connections [J]. Trends Cell Biol, 2005,15 (8):442~451
    [71]Minhas KM, Singh B, Jiang WW, et al. Spindle assembly checkpoint defects and chromosomal instability in head and neck squamous cell carcinoma [J]. Int J Cancer,2003, 107 (1):46~52
    [72]Musio A, Montagna C, Zambroni D, et al. Inhibition of Bub1 results in genomic instability and anchorage-independent growth of normal human fibroblasts [J]. Cancer Res,2003, 63 (11):2855-2863
    [73]Dobles M, Liberal V, Scott ML, et al. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2 [J]. Cell,2000,101 (6):635~645
    [74]Wang Q, Liu T, Fang Y, Xie S, et al. BubRl deficiency results in abnormal megakaryopoiesis [J]. Blood,2004,103 (4):1278~1285
    [75]Baker DJ, Jeganathan KB, Cameron JD, et al. BubRl insufficiency causes early onset of aging-associated phenotypes and infertility in mice [J]. Nat Genet,2004,36(7):744~ 749
    [76]Weaver BA, Silk ad, Montagna C, et al. Aneuploidy acts both oncogenically and as a tumor suppressor [J]. Cancer Cell,2007,11 (1):25~36
    [77]Michel LS, Liberal V, Chatterjee A, et al. Mad2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells [J]. Nature,2001,409 (6818): 355~359
    [78]Dai W, Wang Q, Liu T, et al. Slippage of mitotic arrest and enhanced tumor development in mice with BubRl haploinsufficiency [J]. Cancer Res,2004,64(2):440~445
    [79]Jeganathan K, Malureanu L, Baker DJ, et al. Bubl mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis [J]. Cell Biol, 2007,179 (2):255~267
    [80]Matsumoto T, Baker DJ, d'Uscio LV, et al. Aging-associated vascular phenotype in mutant mice with low levels of BubRl [J]. Stroke,2007,38 (3):1050~1056
    [81]Hartman TK, Wengenack TM, Poduslo JF, et al. Mutant mice with small amounts of BubRl display accelerated age-related gliosis [J]. Neurobiol Aging,2007,28 (6):92
    [82]Nakagawa H, Yokozaki H, Oue N, et al. No mutations of the Bubl gene in human gastric and oral cancer cell lines [J]. Oncol Rep,2002,9 (6):1229~1232
    [83]Percy MJ, Myrie KA, Neeley CK, et al. Expression and mutational analyses of the human Mad2L1 gene in breast cancer cells [J]. Genes Chromosomes Cancer,2000,29(4):356~ 362
    [84]Wang Xiang Hong, Jin Dong Yan, Wong YC, et al. Correlation of defective mitotic checkpoint with aberrantly reduced expression of Mad2 protein in nasopharyngeal carcinoma cells [J]. Carcinogenesis,2000,21 (12):2293~2297
    [85]Wang X, Jin DY, Ng RW, et al. Significance of Mad2 expression to mitotic checkpoint control in ovarian cancer cells [J]. Cancer Res,2002,62 (6):1662~1668
    [86]王莉,尹芳,杜煜蕾等.Mad2蛋白在人正常组织和胃癌组织中的表达[J].现代肿瘤医学,2009,17(11):2045-2048
    [87]Lin Sheng Fung; Lin Pai-Mei; Yang Ming Chi, et al. Expression of hBubl in acute myeloid leukemia [J]. Leuk Lymphoma,2002,43 (2):385~391
    [88]Masayoshi Shichiri, Keigo Yoshinaga, Hisashi Hisatomi, et al. Genetic and epigenetic inactivation of mitotic checkpoint genes hBubl and hBubR1 and their relationship to survival [J]. Cancer Res,2002,62 (1):13~17
    [89]Masahiro Seikea, Akihiko Gemmaa, Yoko Hosoyaa, et al. The promoter region of the human BubRl gene and its expression analysis in lung cancer [J]. Lung Cancer,2002,38 (3): 229~234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700