组蛋白去乙酰化酶抑制剂诱导细胞有丝分裂灾变的分子机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     组蛋白去乙酰化酶抑制剂(HDACi)是一类能够有效抑制抑制肿瘤细胞增殖、诱导细胞分化、促进细胞凋亡的抗肿瘤新药。其杀伤肿瘤的作用机制可能涉及通过表观修饰调节基因表达及抑制分子伴侣蛋白Hsp90的功能。
     染色体乘客复合体(chromosomal passenger complex,CPC)是近年来发现报道的细胞内一组与染色体结合并负责细胞有丝分裂调控的蛋白分子,主要由Aurora B激酶、着丝粒中心蛋白(Inner centromere protein,INCENP)、Survivin及Borealin/DasarB等蛋白分子组成。研究证实CPC在有丝分裂过程中扮演了重要的角色,涉及纺锤体形成、染色体排列、姊妹染色单体分离、纺锤体检查点信号及胞质分裂等多种重要功能。
     热休克蛋白90(heat shock proteins,Hsp90)是细胞内重要的分子伴侣蛋白,能够参与细胞内一些重要蛋白分子的构象,稳定性及激酶活性的调节。研究表明CPC的两种重要的蛋白组分Aurora B和Survivin蛋白皆为热休克蛋白90的底物蛋白,我们先前的研究表明HDACi能够使Hsp90分子发生乙酰化而抑制Hsp90和其底物蛋白的结合,从而促进多种底物蛋白包括survivin通过泛素-蛋白酶体通路降解。
     我们在前期实验中观察到,应用HDACi处理多种肿瘤细胞,都会诱导细胞产生异常的有丝分裂现象。因此,提示我们思考HDACi能否通过影响CPC的正常定位和表达,进而杀伤肿瘤细胞,诱导有丝分裂灾变?围绕这一问题,我们针对HDACi对细胞CPC分子表达和着丝粒定位、相关的着丝粒表观修饰改变、动粒组装和细胞检查点功能等影响进行了系列的深入研究,对HDACi诱导肿瘤细胞发生有丝分裂灾变的分子机制进行探讨。
     研究内容及结果:
     1.HDACi诱导肿瘤细胞发生有丝分裂灾变
     HDAC抑制剂FK228、TSA及SAHA分别处理非小细胞肺癌、前列腺等细胞后,瑞氏-姬姆萨染色显示细胞形态出现了明显改变,表现为细胞胞浆皱缩、胞内颗粒逐渐增多、并出现大的多核细胞。多核细胞计数和有丝分裂各期细胞计数结果显示,FK228处理后多核细胞数明显增多,药物处理后有丝分裂后期和末期细胞的比例明显减少,出现明显前中期阻滞现象。免疫荧光染色结果显示FK228处理后细胞出现以细胞周期前中期阻滞染色体分离排列异常、多核细胞为特征的有丝分裂灾变现象。
     上述结果表明,HDACi处理能够诱导细胞发生有丝分裂灾变。在后续实验中我们主要以FK228进行相关实验
     2.FK228影响CPC分子的着丝粒定位和AuroraB激酶活性。
     免疫荧光染色证实FK228可以在作用12h后明显改变CPC各组成蛋白Survivin、AuroraB、INCENP及Borealin在有丝分裂过程中的着丝粒定位。伴随AuroraB激酶蛋白定位的改变,其底物蛋白组蛋白H3第十位点丝氨酸的磷酸化(H3Ser10-ph)明显降低,着丝粒CENP-A蛋白的磷酸化同样降低,提示AuroraB激酶的活性受到明显抑制。
     3.FK228对CPC分子定位的影响不是由于抑制Hsp90功能所致
     蛋白印记实验检测结果显示,FK228可以程度不同地降低A549和H1299细胞中AuroraB和survivin蛋白的表达,其中survivin蛋白的降低出现较早,可以在用药后24小时明显清除,48小时完全清除,而AuroraB蛋白的降低要在用药后48小时较为明显。
     随后免疫荧光染色证实FK228处理6小时,对survivin蛋白的定位尚无明显影响,12h后,survivin蛋白在着丝粒的定位即开始消失,这一结果明确证实survivin蛋白在着丝粒定位能力的消失早于蛋白水平的下降,即FK228影响CPC蛋白的着丝粒定位并不是由于抑制Hsp90功能,促进AuroraB及survivin蛋白降解所引起的。
     4.FK228明显改变着丝粒表观遗传修饰特征
     着丝粒是染色体上的一个特化的结构,由着丝粒DNA (CEN DNA)装配上复杂的染色体蛋白和着丝粒蛋白组成。CEN染色质中其组蛋白修饰谱与常染色质及侧翼的异染色质不同,CEN染色质的表观修饰特征包括组蛋白低乙酰化,同时缺少组蛋白H3第9位赖氨酸的二甲基化修饰(H3K9-Me2),仅在着丝粒外围呈现组蛋白H3第9位赖氨酸的三甲基化修饰(H3K9-Me3)。研究表明这种不同的修饰方式有助于其独特区域及着丝粒区三维结构的组成,代表着决定着丝粒特性的表观遗传信息,提示表观遗传修饰对着丝粒的功能起着重要的调控作用。我们研究发现FK228可明显改变其表观修饰,其作用包括
     (1).FK228作用后6h明显增强组蛋白乙酰化;
     (2).H3K9乙酰化的增强明显降低着丝粒H3K9-Me3修饰,但对核质内表达的H3K9-Me2没有影响;
     (3).FK228降低H3K9-Me3修饰并影响H3Ser10-ph修饰,直接导致着丝粒旁异染色质蛋白HP1在有丝分裂期解离障碍,表达增强;
     (4).CENP-A的磷酸化修饰减弱;
     5.FK228影响着丝粒的组装和功能
     着丝粒具有包括动粒形成、纺锤体介导的运动,姊妹染色体结合及有丝分裂检查点等多重的功能。FK228能够改变着丝粒旁的表观遗传修饰特征,而表观遗传修饰在着丝粒区起重要的调控作用,提示我们引一步研究着丝粒区表观遗传修饰特征的改变对着丝粒组装和功能的影响。我们的研究证实FK228对着丝粒具有如下影响:
     (1).FK228抑制着丝点(动粒)区外板蛋白CENP-E和CENP-F的定位;
     (2).FK228虽不影响动粒区内板蛋白CENP-A定位,但能够降低CENP-A蛋白的磷酸化,而磷酸化修饰对于CENP-A蛋白的功能是重要的;
     (3).FK228对内、外板蛋白定位的影响直接影响动粒的组装和功能,表现为着丝粒失去与微管的结合能力;
     6.FK228灭活细胞检查点功能
     (1).FK228降低检查点蛋白BubR1和Bub1蛋白的着丝粒定位;
     (2).FK228处理后纺锤体检查点在黏附和张力两方面的功能都受到了抑制;
     本研究结果首次证实组蛋白去乙酰化酶抑制剂FK228可通过改变着丝粒重要的表观修饰特征,从而影响HP1蛋白在有丝分裂期的释放,并影响着丝粒的正确组装和CPC分子的着丝粒正常定位,导致细胞纺锤体检查点灭活,最终造成细胞有丝分裂灾变。
Background:
     Histone deacetylase inhibitor (HDACi) is a promising class of anticancer agents with high efficiency on inhibiting tumor growth, inducing cell differentiation and/or apoptosis. The possible mechanisms for HDACi to kill cancer cells are related with epigenetic regulation of gene expression and inhibition of heat shock protein 90 (Hsp90 )chaperone function.
     The chromosomal passenger complex (CPC), is a group of protein consisting of Incenp, Survivin, Dasra (Borealin), and the kinase Aurora B. CPC plays important roles in key mitotic events, including kinetochore formation, the spindle assembly checkpoint, assembly of stable bipolar spindle and chromosome bi- directly orientation, and cytokinesis.
     Hsp90 is the important molecular chaperone of the cells, its function involving the modulation of protein conformation, stability and kinases activities. Previous studies show that CPC member Aurora B and Survivin both are the client protein of Hsp90. Our previous data suggested that HDACi can enhance the acetylation of Hsp90 and interrupt its chaperone function, which leads the depletion of several client proteins including Survivn via ubiquitin-proteasome pathway.
     Our preliminary data also showed that HDACi treatment induced abnormal mitosis in several tumor cell lines. It is rational to assume that HDACi may exert its effect on inducing mitotic catastrophe via affecting the localization and expression of CPC proteins. To confirm our hypothesis and elucidate the possible mechanisms, the effect of HDACi on the localization and expression of CPC proteins was detected, and the influence of FK228 on centromere epigenetic modification, assembly of centromere and the spindle checkpoint function was detected. We got the following
     Results and conclusion:
     1. HDACi induce mitotic catastrophe in tumor cells
     After treatment with HDACi, including FK228, TSA and SAHA respectively, the morphological changes of non small cell lung cancer cells and prostate cancer cells were observed with Wright-Giemsa stain. The results showed that after drugs exposure, the cells exhibited remarkable cytoplasm crimple and studded with increased mutinuclear cells, the mitosis cycle was arrested and show more prometaphase cells, and less anaphase and telophases cells followed FK228 exposure. Immunofluorescence microscopy confirmed that FK228 induced the mitotic catastrophe. Typical features including mitotic spindle disorganization, failed chromosome segregation such as lagging chromosome and multinucleated cells formation.
     2. FK228 influents the centromere localization and expression of CPC proteins and reduces the Aurora B kinase activity.
     The results of immunofluorescence stain showed that FK228 treatment for 12 hours, obviously disrupted the the centromere localization of CPC members including Survivin, AuroraB, INCENP and Borealin. The AuroraB kinase activity was also inhibited as the phosphorylation of its two substrates, H3( Ser10) and CENP-A (ser7) at kinetochores was reduced.
     3. The FK228-induced disruption of CPC centromere localization is not caused by its effect on inhibiting Hsp90 chaperone function.
     Western blotting results revealed FK228 depleted both Survivin and Aurora B proteins, followed FK228 treatment for 24hour, Survivin began to decline and disappeared at 48hour. Compared with Surivivn, the depletion of Aurora B protein appeared late until 48 hour. Meanwhile, immunofluorescence experiment showed that FK228-induced decline of Survivin at the centromere appeared as early as 12 hour. It indicated that the effect of FK228 on inhibiting the localization of Survivin at the centromeres happened earlier than its effect on depleting the protein. That is to say the lost of CPC proteins from centromeres is not caused by the downregulation of Survivin and Aurora B proteins through interrupting Hsp90 chaperone function.
     4. FK228 remarkable changes the epigenetic modification markers of pericentromere.
     The centromere (CEN) is a specific chromosomal locus that embedded in heterochromatin and contains blocks of histone H3 nucleosomes interspersed with the histone H3 variant CENP-A. CEN chromatin has unique epigenetic characteristics, which are distinct from that of both euchromatin and flanking heterochromatin, including hypoacetylation of histones; absence of H3 Lys4 dimethylation (H3 Lys4-diMe); and H3 Lys9-triMe is enriched in pericentric regions. The specific histone modifications in CEN may contribute to the diverse properties and function of the centromere.
     Followed FK228 treatment, we found that the epigenetics modification markers of centromere have been changed, including:
     (1) FK228 increased the acetylation of histone H3.
     (2) FK228 inhibited the expression of H3K9Me3 at the centromenere, but had no influence on the expression of H3K9Me2.
     (3) FK228 changed the binary 'methyl/phos switch' through inhibiting the H3K9Me3 and H3Ser10pho modification, which can inhibit the releasing of HP1 from metaphase chromosome and increase the accumulation of HP1 on pericentromere.
     (4) Decreased phosphorylation of CENP-A.
     5. FK228 affects the assembly and function of centromere. The centromere function including kinetochore formation, spindle-mediated movements, sister cohesion and a mitotic checkpoint. FK228 changed the epigenetic modification of pericentromere and centromere, which led us to further analyze whether these changes would influence the assembly and function of centromere. We got the following results:
     (1) FK228 inhibited the kinetochore proteins CENP-E and CENP-F located in outer plate of the cetromere.
     (2) FK228 had no effect on the localization of kinetochore inner plate protein CENP-A, but decreased the phosphorylation at ser7, an important modification for its function.
     (3) FK228 disrupted the attachment between centromere and microtubes during mitosis via inhibiting the kinetochore function.
     6.FK228 inhibits the function of spindle checkpoint
     (1) FK228 inhibited the localization of checkpoint proteins Bubl and Bub R1 at thecentromere.
     (2) FK228 inhibits the activation of mitotic checkpoint on either losing attachment or tension.
     In this study, we proved for the first time that the mechanisms for FK228-induced cancer cells mitotic catastrophe are related with its effect on changing epigenetic modification of centromere and pericentromere. These epigenetic changes inhibit the releasing of HP1 from metaphase chromosome, disrupt the kinetochore assembly and the localization of CPC proteins at the centromere, and finally inactivate the function of centromere and mitotic checkpoint.
引文
[1] Umov FD, Wolffe AP. Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene, 2001, 20(24):2991-3006.
    [2] Wade PA, Pruss D, Wolffe AP. Histone acetylation: chromatin in action. Trends BiochemSci, 1997,22(4): 128-132.
    [3] Khochbin S, Verdel A, Lemercier C, et al. Functional significance of histone deacetylase diversity. Curr Opin Genet Dev, 2001, 11 (2): 162-166.
    [4] Budillion A, Bruzzese F, Di Gennaro E, et al. Multiple-target drugs: inhibitors of heat shock protein 90 and of histone deacetylase. Curr Drug Targets, 2005, 6(3):337-351.
    [5] Pellegrini F, Budman DR. Review: tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest, 2005;23(3):264-273.
    
    [6] Xiaodan Yu, Z Sheng, Guo,Monica G. Marcu, et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228.J Natl Cancer Inst,2002;94(7):504-513.
    [7] Vagnarelli P, Earnshaw WC. Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma, 2004, 113(5):211-222.
    [8] Gassman R, Carvalho A, Henzing AJ, et al. Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol, 2004, 166(2): 179-191.
    [9] Vader G, Kauw JJ, Medema RH, et al. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO J, 2006, 7(1):85-92.
    [10] Hirota T, Lipp JJ, Toh BH, et al. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature, 2005, 438(7071):1176-1180.
    [11] Lan W, Zhang X, Kline-Smith SL, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol, 2004, 14(4):273-286.
    [12] Yang D, Welm A, Bishop JM. Cell division and cell survival in the absence of survivin. Proc Natl Acad Sci U S A, 2004, 101(42):15100-15105.
    [13]Furumai R, Matsuyama A, Kobashi N, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res,2002, 62(17):4916-4921.
    
    [14]Blagosklonny MV, Robey R, Sackett DL, et al. Histone Deacetylase Inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther, 2002, 1:937-941.
    [15] Vigushin DM, Coombes RC. Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs, 2002, 13(1):1-13.
    [16]Castedo M, Perfettini JL, Roumier T, et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene, 2004, 23(16):2825-2837.
    
    [17]Mayer TU, Kapoor TM, Haggarty SJ et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999;286:971-974.
    [18] Sakowicz R, Finer JT, Beraud C, et al. Antitumor activity of a kinesin inhibitor. Cancer Res 2004;64:3276-3280.
    [19] Zhou BB, Bartek J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer, 2004;4:216-225.
    [20] Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase, Nature, 2002 , 417(6887):455-458.
    [21]Budillion A, Bruzzese F, Di Gennaro E, et al. Multiple-target drugs: inhibitors of heat shock protein 90 and of histone deacetylase. Curr Drug Targets, 2005, 6(3):337-351.
    [22]McLaughlin F, La Thangue NB. Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol, 68(6):1139-1144.
    [23] Pellegrini F, Budman DR. Review: tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest, 2005;23(3):264-273.
    [24] Sampath SC, Ohi R, Leismann O, et al. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell, 2004, 118(2): 187-202.
    [25] Terada Y. Role of chromosomal passenger complex in chromosome segregation and cytokinesis. Cell Struct Funct, 2001, 26(6):653-657.
    [26] Giet R, Glover DM. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol, 2001, 152(4):669-682.
    [27] Wang Y, Wang SY, Zhang XH, et al. FK228 inhibits Hsp90 chaperone function in K562 cells via hyperacetylation of Hsp70. Biochem Biophys Res Commun, 2007, 356(4):998-1003.
    [28] Zeitlin SG, Barber CM, Allis CD, et al. Differential regulation of CENP-A and histone H3 phosphorylation in G2/M. J Cell Sci, 2001, 114(4):653-661.
    [29] Ducat D, Zheng Y. Aurora kinases in spindle assembly and chromosome segregation. Exp Cell Res, 2004 , 301(1):60-67.
    [30] Li F, Ackermann EJ, Bennett CF, et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol, 1999, 1(8):461-466.
    [31] Pennati M, Binda M, Colella G, et al. Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene, 2004, 23(2):386-394.
    [32] Beltrami E, Plescia J, Wilkinson JC, et al. Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. J Biol Chem, 2004, 279(3):2077-2084
    [33] Yang D, Welm A, Bishop JM. Cell division and cell survival in the absence of survivin. Proc Natl Acad Sci U S A, 2004,101(42):15100-15105.
    [34] Lens SM, Wolthuis RM, Klompmaker R, et al. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J, 2003, 22(12):2934-2947.
    [35] Carvalho A, Carmena M, Sambade C, et al. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci, 2003, 116(14):2987-2998.
    [36] Pereira G, Schiebel E. Separase regulates INCENP-Aurora B anaphase spindle function through Cdcl4. Science, 2003, 302(5653):2120-2124.
    [37] Hendzel MJ, Wei Y, Mancini MA, et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma, 1997, 106(6):348-360.
    [38] Murnion ME, Adams RR, Callister DM, et al. Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J Biol Chem, 2001, 276(28):26656-26665.
    [39] Fischle W, Tseng BS, Dormann HL,et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature. 2005, 438(7071): 1116-1122.
    [40]Jenuwein T, Allis CD. Translating the histone code. Science, 2001, 293(5532):1074-1080.
    [41] Sullivan BA, Karpen GH. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin.Nat Struct Mol Biol,2004,11(11):1076-1083.
    [42] Vos LJ, Famulski JK, Chan GK. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochem Cell Biol, 2006, 84(4):619-639.
    [43]Nielsen PR, Nietlispach D, Mott HR, et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature. 2002, 416(6876): 103-107.
    [44] Wolfe AP, Matzke MA. Epigenetics:regulation throush repression. Science, 1999, 286(5439): 481-486.
    [45]Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004, 429(6990):457-446.
    [46]Heit R, Underbill DA, Chan G, et al. Epigenetic regulation of centromere formation and kinetochore function. Biochem Cell Biol, 2006, 84(4):605-618.
    [47] Nicolas E, Roumillac C, Trouche D. Balance between acetylation and methylation of histone H3 lysine 9 on the E2F-responsive dihydrofolate reductase promoter. Mol Cell Biol, 2003 23(5): 1614-1622.
    [48] Grewal, S. I. & Elgin, S. C. Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev, 2002 ,12:178—187.
    [49]Eissenberg, J. C. & Elgin, S. C. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev, 2000,10:204—210.
    [50] Minc, E., Allory, Y, Worman, H. J., Courvalin, J. C. & Buendia, B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma, 1999,108: 220—234.
    
    [51]Feng J, Huang H, Yen TJ. CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay.Chromosoma, 2006,115(4):320-329.
    [52] Putkey FR, Cramer T, Morphew MK,et al. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell,
    [1] Vagnarelli P, Eamshaw WC. Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma, 2004, 113(5): 211~222
    [2] Sampath SC, Ohi R, Leismann O, et al. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell, 2004, 118(2): 187~202
    [3] Linggi BE, Brandt S J, Sun ZW, et al. Translating the histone code into leukemia. J Cell Biochem, 2005, 96(5): 938~950
    [4] Fischle W, Tseng BS, Dormann HL, et al. Regulation of HPl-chromatin binding by histone H3 methylation and phosphorylation. Nature, 2005, 438(7071): 1116~1122
    [5] Hirota T, Lipp JJ, Toh BH, et al. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature, 2005, 438(7071): 1176~1180
    [6] Li F, Ackermann EJ, Bennett CF, et ai. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol, 1999, 1(8):461 —466
    [7] Mirza A, McGuirk M, Hockenberry TN, et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene, 2002, 21(17):2613-2622[8] Pennati M, Binda M, Colella G, et al. Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene, 2004,23(2):386-394
    [9] Beltrami E, Plescia J, Wilkinson JC, et al. Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. J Biol Chem, 2004,279(3):2077—2084
    [10] Yang D, Welm A, Bishop JM. Cell division and cell survival in the absence of survivin. Proc Natl Acad Sci U S A, 2004, 101(42):15100— 15105
    [11] Lens SM, Wolthuis RM, Klompmaker R, et al. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J, 2003,22(12):2934—2947
    [12] Carvalho A, Carmena M, Sambade C, et al. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci, 2003,116(14):2987—2998
    [13] Pereira G, Schiebel E. Separase regulates INCENP-Aurora B anaphase spindle function through Cdcl4. Science, 2003, 302(5653):2120—2124
    [14] Gassman R, Carvalho A, Henzing AJ, et al. Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol, 2004, I66(2):179—191
    [15] Bolton MA, Lan W, Powers SE, et al. Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol Biol Cell, 2002, 13(9):3064-3077
    [16] Vader G, Kauw JJ, Medema RH, et al. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO J, 2006, 7(1): 85—92
    [17] Klein UR, Nigg EA, Gruneberg U. Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. Mol Biol Cell, 2006, 17(6):2547—2558
    [18] Lens SM, Rodriguez JA, Vader G, et al. Uncoupling the central spindle-associated function of the chromosomal passenger complex from its role at centromeres. Mol Biol Cell, 2006, 17(4):1897-1909
    [19] Sessa F, Mapelli M, Ciferri C, et al. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell, 2005, 18(3):379-391
    [20] Wheatley SP, Henzing AJ, Dodson H, et al. Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J Biol Chem, 2004,279(7):5655—5660
    [21]Beardmore VA, Ahonen LJ, Gorbsky GJ, et al. Survivin dynamics increases at centromeres during G2/M phase transition and is regulated by microtubule-attachment and Aurora B kinase activity. J Cell Sci, 2004,117(18):4033—4042
    [22] Musacchio A, Hardwick KG. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol, 2002, 3(10):731—741
    [23]Kallio MJ, McCleland ML, Stukenberg PT, et al. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr Biol, 2002, 12(11):900—905
    [24]Hauf S, Cole RW, LaTerra S, et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol, 2003, 161(2):281— 294
    [25]Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998, 396(6711):580—584
    [26] Giodini A, Kallio MJ, Wall NR, et al. Regulation of microtubule stability and mitotic progression by survivin. Cancer Res, 2002, 62(9):2462—2467
    [27] Rosa J, Canovas P, Islam A, et al. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol Biol Cell, 2006,17(3):1483—1493
    [28] Biggins S, Severin FF, Bhalla N, et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev, 1999, 13(5):532—544
    [29]Cheeseman IM, Anderson S, Jwa M, et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell, 2002, 111(2): 163—172
    [30]Murata-Hori M, Wang YL. The kinase activity of aurora B is required for kinetochore-microtubule interactions during mitosis. Curr Biol, 2002, 12(11):894—899
    [31] Lan W, Zhang X, Kline-Smith SL, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol, 2004,14(4):273—286
    [32] Gadea BB, Ruderman JV. Aurora B is required for mitotic chromatin-induced phosphorylation of Op18/Stathmin. Proc Natl Acad Sci USA, 2006, 103(12):4493—4498
    [33] Wheatley SP, Kandels-Lewis SE, Adams RR, et al. INCENP binds directly to tubulin and requires dynamic microtubules to target to the cleavage furrow. Exp Cell Res, 2001,262(2): 122—127
    [34] Goto H, Yasui Y, Kawajiri A, et al. Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem, 2003, 278(10):8526—8530
    [35] Minoshima Y, Kawashima T, Hirose K, et al. Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell, 2003,4(4): 4549—4560
    [36] Lee GH, Joo YE, Koh YS, et al. Expression of survivin in gastric cancer and its relationship with tumor angiogenesis. Eur J Gastroenterol Hepatol, 2006, 18(9):957—963
    [37] Chang JL, Chen TH, Wang CF, et al. Borealin/Dasra B is a cell cycle-regulated chromosomal passenger protein and its nuclear accumulation is linked to poor prognosis for human gastric cancer. Exp Cell Res, 2006, 312(7):962—973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700