高IgM综合征及IPEX临床与分子特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:HIGM分子与T细胞亚群特征分析
     目的:建立HIGM基因及流式细胞仪检测方法,确诊HIGM患儿,分析其临床及分子特征。检测HIGM患儿中Treg、Th17、Th1细胞亚群变化规律与自身免疫发生相关性。
     方法:收集两年来HIGM疑似患儿外周血,PCR扩增CD40L、CD40、AID、UNG、NEMO等基因后测序比对,并与健康对照比较,确定致病突变。流式细胞仪检测突变患儿及移植患儿移植前后CD40L、CD40蛋白表达及Treg、Th1、Th17细胞亚群变化。
     结果:通过临床、免疫学筛查和基因分析,发现中国12例HIGM患儿,基因确诊8例,均为CD40L突变。其中错义突变1例,无义突变3例,缺失突变4例。其P7发生染色体微缺失(缺失5369bp)。8例突变中发现新型突变6例。突变分布于各外显子及启动子区域,主要集中在羧基末端胞外区。4例疑诊患儿未发现上述基因突变。8例CD40L突变患儿其CD40L均无表达。同时发现XHIM患儿中Treg明显下降(1.265±0.4801 N=6 VS 2.718±0.3963 N=12 P=0.04),Th17呈下降趋势(0.4200±0.1525 N=6 VS 0.9600±0.2076 N=12 P=0.1)。同时Th1/Treg细胞比例在XHIM中亦呈上升趋势(21.39±14.64 N=6 VS 10.50±2.596 N=12)。对移植前后2例XHIM患儿Treg、Th1、Th17检测发现,移植后Th17/Treg/Th1均较移植前呈上升趋势。
     结论:通过临床及其基因蛋白筛查手段,确诊中国较大宗HIGM患儿,发现6例CD40L新型突变。调节性T细胞降低与Th1/Treg比上升可能与XHIM患儿自身免疫发生相关。第二部分:IPEX临床及其分子特征分析
     目的:探讨表现为顽固性腹泻、有或无胰岛素依赖性糖尿病以及皮疹的疑似IPEX患儿FOXP3基因变异及其蛋白表达水平。
     方法:对近两年来我院收治的5例表现为早发性顽固性腹泻、有或无胰岛素依赖性糖尿病、以及皮疹的疑似IPEX男性患儿进行FOXP3基因扩增及测序分析,将发现的可疑突变位点通过数据库查询及与100例健康儿童相同位点序列比较,采用流式细胞仪检测CD4+CD25+FOXP3+调节性T细胞比例和FOXP3蛋白表达。
     结果:5例疑似患儿中发现3例FOXP3突变,P1为FOXP3基因13098与13099位碱基之间插入碱基A(g.13098-13099 ins A),随后立即形成终止密码子。CD4+CD25+ FOXP3+调节性T细胞缺失。其临床表现为典型IPEX三联征。P2为13128位碱基错义突变(g.13128 G>A),导致FOXP3蛋白370位氨基酸由甲硫氨酸替换为异亮氨酸(Met370Ile),CD4+CD25+ FOXP3+调节性T细胞比例升高,患儿母亲为携带者。患儿临床表现为不完全症状。100例正常儿童FOXP3基因相同位点未见变异,故可排除该位点多态性可能。P3为此前已报道的错义突变(g.11628 T>C;p.F324L),临床表现为典型轻型症状。P1与P2为此前未见报道的新发突变。调节性T细胞比例降低。
     结论:通过临床、免疫学筛查和基因分析,首次发现中国3例IPEX患儿,其中两例为新发突变。同时调节性T细胞数量与其临床严重性呈正相关关系。对早发胰岛素依赖性糖尿病、顽固性腹泻及不明原因肾脏等多系统损害婴幼儿,应考虑IPEX可能并进行FOXP3基因分析。第三部分:天然突变FOXP3蛋白抑制功能研究
     目的:诱变及表达天然突变FOXP3蛋白,探索不同突变FOXP3蛋白抑制IL-2转录功能与IPEX临床表型相关关系。
     方法:常规由外周血cDNA扩增FOXP3基因CDS区,构建表达载体,DpnI酶消化法在正常FOXP3表达载体基础上定点诱变产生突变FOXP3蛋白(N326Kfs1X; V408M; A384T; R337Q; F324L; 251delE; L242P; R146W; P187L; T108M; M370I),与IL-2启动子荧光素酶报告基因载体共转染Jurkat T细胞,PMA与离子霉素活化后双荧光素酶报告体系检测海肾荧光素与萤火虫荧光素。计算突变FOXP3对IL-2转录抑制活性变化。
     结果:成功建立11种天然突变FOXP3蛋白表达载体,建立双荧光素酶表达检测系统。共转染体系检测发现N326Kfs1X; V408M; A384T; R337Q; F324L; 251delE; L242P; R146W; P187L; T108M; M370I突变体抑制IL-2转录功能均下降,其中严重突变类型251delE、N326Kfs1X和亮氨酸拉链区域突变L242P、R146W完全失去抑制功能。但仅251delE、N326Kfs1X等严重突变体与严重抑制功能障碍和IPEX临床三联征具有相关性。
     结论:FOXP3严重突变和亮氨酸拉链区域突变常导致FOXP3抑制功能完全丧失,且仅严重突变体与严重抑制功能障碍及IPEX临床三联征具有相关性,因此基因诊断是IPEX最终确诊手段。
Part one: Analysis of Clinical and Molecular Characteristics of HIGM in 12 Patients from 12 Unrelated Chinese Families
     Objective: To analyze the genes encoding the CD40L, CD40, AID, UNG, NEMO and CD40L, CD40 protein expression in 12 Chinese patients from 12 unrelated families with the hyper-IgM phenotype. To detect the relatitonship among lymphocyte sybsets of Treg, Th1 and Th17 freqency and autoimmunity in HIGM. Methods: The CD40L, CD40, AID, UNG, NEMO gene mutations were screened through direct sequencing of exon and cDNA specific polymerase chain reaction (PCR) products. Flow cytometry was used to determine the CD40L and CD40 expression on activated T lymphocytes. Treg, Th1 and Th17 freqency were detected by FCM in patient with HIGM including the petients after bone marrow transplantation. Results: In the present study, molecular defects involved in the HIGM in 12 patients were investigated. We identified 8 distinct CD40L mutations, 6 of which had not been previously described. All 8 patients with CD40L mutation showed no production of CD40L protein on activated T cells. The frequency of regulatory T cells decresed when compared with healthy control (1.265±0.4801 N=6 VS 2.718±0.3963 N=12 P=0.04), so the proportion of Th1/Treg also decreased (21.39±14.64 N=6 VS 10.50±2.596 N=12). Besides, the frequency of Th17 also trend to dcreased. Two out of the eight genetically defined patients received umbilical cord blood stem cell transplantation from unrelated donor and achieved clinical remission. The expression of CD40L on the PBMC restored. The Treg and Th17 cells increased. Conclusion: We demonstrated 8 XHIM patients with CD40L mutations, six of wich were novel mutations. All of the mutations led to null protein expression of CD40L. The decreased Treg frequency and proportion of Th1/Treg may associate with antoimmunity in XHIM patients. Part two: Analysis of Clinical and Molecular Characteristics of IPEX in 3 Patients from 3 Unrelated Chinese Families
     Objective To investigate variations in FOXP3 gene and its expression in male children presented with IPEX phenotype. Methods Five male children presented with early-onset severe enteropathy, rash, with or without insulin-dependent diabetes mellitus (IDDM) were subjected to the detection of FOXP3 expression on CD4+CD25+ T cells and frequency of regulatory T cells (Tregs) by flow cytometry. The cDNA and relative coding exons including promoter region of FOXP3 gene were amplified by PCR and sequenced. The candidate mutation sites were compared with those of 100 healthy controls to exclude polymorphism. Results Genetic analysis revealed 1 insertion and 2 missense mutations out of the total 5 children. P1 presented classical IPEX clinical phenotype. A novel frameshift insertion occurred in exon 11 (p.N361KfsX1) which led to complete abrogation of Tregs. P2 showed incomplete IPEX form and carryied a missense mutation in exon 11 (p.M370I) with slightly increased frequency of Tregs, whereas P3 presented relatively mild classical manifestations of IPEX and was demonstrated a previously reported missense mutation in exon 10 (p.F324L) with decreased frequency of Tregs. Conclusions: Three cases of IPEX presented as different clinical form with 2 novel mutations were identified from three unrelated families in China. Our limited data indicates somewhat correlation between genotype and phenotype of this disease as well. Part three: the relationships between suppression function of natural mutated FOXP3 and IPEX clinical characterizations
     Objective To analyze the relationship between the suppression function of natural mutated FOXP3 and IPEX clinical characterizations.
     Methods FOXP3 gene CDS region was amplified by PCR with the template of normal cDNA and then cloned into pReceiver-12 vector. The mutated FOXP3 expression vectors were constructed by site-directed mutagenesis. The pReceiver-12 vector and IL-2 promoter luciferase reporter vector were cotransfected to Jurkat T cells and stimulated with 50 ng/ml of phorbol myristate acetate and 500 ng/ml ionomycin for 6–7 hrs before lysing cells and analyzed by means of dual luciferase assay normalized with Renilla luciferase activity according to the manufacturer’s protocol. Results Eleven mutated foxp3 protein were constructed and expressed (N326Kfs1X; V408M; A384T; R337Q; F324L; 251delE; L242P; R146W; P187L; T108M; M370I). The mutated FOXP3 of 251delE, N326Kfs1, L242P, M370I and R146W absolutely lost suppression function and the others partly lost. The analysis of clinical characterization shows no relationship with the FOXP3 suppression function except that the severe mutation 251delE, N326Kfs1 always showed triad of IPEX and severely suppression function defect. Conclusions: Severe FOXP3 mutations are associated with severe suppression function defect and triad of IPEX. The clinical phenotype was determined by gene bachground and environment and FOXP3 gene analysis was the final diagnosis.
引文
[1] Notarangelo LD, Fischer A, Geha RS, et al. Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol. 2009. 124(6): 1161-78.
    [2] Cunningham-Rundles C, Ponda PP. Molecular defects in T- and B-cell primary immunodeficiency diseases. Nat Rev Immunol. 2005. 5(11): 880-92.
    [3] Primary immunodeficiency diseases. Report of an IUIS Scientific Committee. International Union of Immunological Societies. Clin Exp Immunol. 1999. 118 Suppl 1: 1-28.
    [4] Notarangelo L, Casanova JL, Conley ME, et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee Meeting in Budapest, 2005. J Allergy Clin Immunol. 2006. 117(4): 883-96.
    [5] Geha RS, Notarangelo LD, Casanova JL, et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol. 2007. 120(4): 776-94.
    [6] Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001. 27(1): 20-1.
    [7] Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol. 2003. 15(4): 430-5.
    [8] DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 1993. 361(6412): 541-3.
    [9] Korthauer U, Graf D, Mages HW, et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993. 361(6412): 539-41.
    [10] Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000. 102(5): 565-75.
    [11] Ferrari S, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001. 98(22): 12614-9.
    [12] Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001. 2(3): 223-8.
    [13] Doffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001. 27(3): 277-85.
    [14] Imai K, Slupphaug G, Lee WI, et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003. 4(10): 1023-8.
    [15] Fischer A. Human primary immunodeficiency diseases. Immunity. 2007. 27(6): 835-45.
    [16] Chan KW, Chen T, Jiang L, et al. Identification of Bruton tyrosine kinase mutations in 12 Chinese patients with X-linked agammaglobulinaemia by long PCR-direct sequencing. Int J Immunogenet. 2006. 33(3): 205-9.
    [17] Chan KW, Lee TL, Chung BH, Yang X, Lau YL. Identification of five novel WASP mutations in Chinese families with Wiskott-Aldrich syndrome. Hum Mutat. 2002. 20(2): 151-2.
    [18] Becker PS. The current status of gene therapy in autologous transplantation. Acta Haematol. 2005. 114(4): 188-97.
    [19] Tsai EJ, Malech HL, Kirby MR, et al. Retroviral transduction of IL2RG into CD34(+) cells from X-linked severe combined immunodeficiency patients permits human T- and B-cell development in sheep chimeras. Blood. 2002. 100(1): 72-9.
    [20] Ariga T. Gene therapy for primary immunodeficiency diseases: recent progress and misgivings. Curr Pharm Des. 2006. 12(5): 549-56.
    [21]杨锡强.原发性免疫缺陷病的历史、现状和展望.中华儿科杂志. 2004. (08).
    [1] Korthauer U, Graf D, Mages HW, et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993. 361(6412): 539-41.
    [2] Kroczek RA, Graf D, Brugnoni D, et al. Defective expression of CD40 ligand on T cells causes "X-linked immunodeficiency with hyper-IgM (HIGM1)". Immunol Rev. 1994. 138: 39-59.
    [3] Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000. 102(5): 565-75.
    [4] Ferrari S, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001. 98(22): 12614-9.
    [5] Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001. 2(3): 223-8.
    [6] Doffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001. 27(3): 277-85.
    [7] Imai K, Slupphaug G, Lee WI, et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003. 4(10): 1023-8.
    [8] Durandy A, Peron S, Fischer A. Hyper-IgM syndromes. Curr Opin Rheumatol. 2006. 18(4): 369-76.
    [9] Seyama K, Kobayashi R, Hasle H, et al. Parvovirus B19-induced anemia as the presenting manifestation of X-linked hyper-IgM syndrome. J Infect Dis. 1998. 178(2): 318-24.
    [10] Lacroix-Desmazes S, Resnick I, Stahl D, et al. Defective self-reactive antibody repertoire of serum IgM in patients with hyper-IgM syndrome. J Immunol. 1999. 162(9): 5601-8.
    [11] Levy J, Espanol-Boren T, Thomas C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997. 131(1 Pt 1): 47-54.
    [12] Winkelstein JA, Marino MC, Ochs H, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore). 2003. 82(6): 373-84.
    [13] Orange JS, Levy O, Geha RS. Human disease resulting from gene mutations that interfere with appropriate nuclear factor-kappaB activation. Immunol Rev. 2005. 203: 21-37.
    [14] Kumanogoh A, Wang X, Lee I, et al. Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development. J Immunol. 2001. 166(1): 353-60.
    [15] Druet P, Sheela R, Pelletier L. Th1 and Th2 cells in autoimmunity. Chem Immunol. 1996. 63: 138-70.
    [16] Kagami S. IL-23 and Th17 cells in infections and psoriasis. Nihon Rinsho Meneki Gakkai Kaishi. 2011. 34(1): 13-9.
    [17] Costantino CM, Baecher-Allan CM, Hafler DA. Human regulatory T cells and autoimmunity. Eur J Immunol. 2008. 38(4): 921-4.
    [18]钱娟,张眉,王耀平.散发型高IgM综合征CD_(40)配体基因突变检测.中华儿科杂志. 1998. (06).
    [19] Korthauer U, Graf D, Mages HW, et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993. 361(6412): 539-41.
    [20] Kroczek RA, Graf D, Brugnoni D, et al. Defective expression of CD40 ligand on T cells causes "X-linked immunodeficiency with hyper-IgM (HIGM1)". Immunol Rev. 1994. 138: 39-59.
    [21] Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000. 102(5): 565-75.
    [22] Ferrari S, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001. 98(22): 12614-9.
    [23] Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001. 2(3): 223-8.
    [24] Doffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasia withimmunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001. 27(3): 277-85.
    [25] Imai K, Slupphaug G, Lee WI, et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003. 4(10): 1023-8.
    [26] Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999. 93(3): 190-7.
    [27] Hollenbaugh D, Grosmaire LS, Kullas CD, et al. The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J. 1992. 11(12): 4313-21.
    [28] Shimadzu M, Nunoi H, Terasaki H, et al. Structural organization of the gene for CD40 ligand: molecular analysis for diagnosis of X-linked hyper-IgM syndrome. Biochim Biophys Acta. 1995. 1260(1): 67-72.
    [29] Notarangelo LD, Peitsch MC, Abrahamsen TG, et al. CD40lbase: a database of CD40L gene mutations causing X-linked hyper-IgM syndrome. Immunol Today. 1996. 17(11): 511-6.
    [30] Van Hoeyveld E, Zhang PX, De Boeck K, Fuleihan R, Bossuyt X. Hyper-immunoglobulin M syndrome caused by a mutation in the promotor for CD40L. Immunology. 2007. 120(4): 497-501.
    [31] Durandy A, Peron S, Fischer A. Hyper-IgM syndromes. Curr Opin Rheumatol. 2006. 18(4): 369-76.
    [32] Lacroix-Desmazes S, Resnick I, Stahl D, et al. Defective self-reactive antibody repertoire of serum IgM in patients with hyper-IgM syndrome. J Immunol. 1999. 162(9): 5601-8.
    [33] Seyama K, Kobayashi R, Hasle H, et al. Parvovirus B19-induced anemia as the presenting manifestation of X-linked hyper-IgM syndrome. J Infect Dis. 1998. 178(2): 318-24.
    [34] Notarangelo LD, Peitsch MC, Abrahamsen TG, et al. CD40lbase: a database of CD40L gene mutations causing X-linked hyper-IgM syndrome. Immunol Today. 1996. 17(11): 511-6.
    [35] Costantino CM, Baecher-Allan CM, Hafler DA. Human regulatory T cells and autoimmunity. Eur J Immunol. 2008. 38(4): 921-4.
    [36] Forger F, Marcoli N, Gadola S, Moller B, Villiger PM, Ostensen M. Pregnancy induces numerical and functional changes of CD4+CD25 high regulatory T cells in patients with rheumatoid arthritis. Ann Rheum Dis. 2008. 67(7): 984-90.
    [37] Chentoufi AA, Binder NR, Berka N, Abunadi T, Polychronakos C. Advances in type I diabetes associated tolerance mechanisms. Scand J Immunol. 2008. 68(1): 1-11.
    [38] Liblau RS, Singer SM, McDevitt HO. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today. 1995. 16(1): 34-8.
    [39] Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003. 278(3): 1910-4.
    [40] Weaver CT, Murphy KM. The central role of the Th17 lineage in regulating the inflammatory/autoimmune axis. Semin Immunol. 2007. 19(6): 351-2.
    [41] Smook ML, Heeringa P, Damoiseaux JG, et al. Leukocyte CD40L deficiency affects the CD25(+) CD4 T cell population but does not affect atherosclerosis. Atherosclerosis. 2005. 183(2): 275-82.
    [42] Kumanogoh A, Wang X, Lee I, et al. Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development. J Immunol. 2001. 166(1): 353-60.
    [1] Geha RS, Notarangelo LD, Casanova JL, et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol. 2007. 120(4): 776-94.
    [2] Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001. 27(1): 18-20.
    [3] Godfrey VL, Wilkinson JE, Rinchik EM, Russell LB. Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc Natl Acad Sci U S A. 1991. 88(13): 5528-32.
    [4] Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001. 27(1): 20-1.
    [5] Chang X, Zheng P, Liu Y. FoxP3: a genetic link between immunodeficiency and autoimmune diseases. Autoimmun Rev. 2006. 5(6): 399-402.
    [6] Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells. J Allergy Clin Immunol. 2007. 120(4): 744-50; quiz 751-2.
    [7] Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001. 27(1): 18-20.
    [8] Godfrey VL, Wilkinson JE, Rinchik EM, Russell LB. Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc Natl Acad Sci U S A. 1991. 88(13): 5528-32.
    [9] Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001. 27(1): 20-1.
    [10] Le BS, Geha RS. IPEX and the role of Foxp3 in the development and function of human Tregs. J Clin Invest. 2006. 116(6): 1473-5.
    [11] Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev Biol. 2002. 250(1): 1-23.
    [12] Ono M, Yaguchi H, Ohkura N, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature. 2007. 446(7136): 685-9.
    [13] Fuchizawa T, Adachi Y, Ito Y, et al. Developmental changes of FOXP3-expressing CD4+CD25+ regulatory T cells and their impairment in patients with FOXP3 gene mutations. Clin Immunol. 2007. 125(3): 237-46.
    [14] Suzuki S, Makita Y, Mukai T, Matsuo K, Ueda O, Fujieda K. Molecular basis of neonatal diabetes in Japanese patients. J Clin Endocrinol Metab. 2007. 92(10): 3979-85.
    [15] der Vliet HJ v, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3. Clin Dev Immunol. 2007. 2007: 89017.
    [16] Torgerson TR, Linane A, Moes N, et al. Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology. 2007. 132(5): 1705-17.
    [17] Bennett CL, Brunkow ME, Ramsdell F, et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA-->AAUGAA) leads to the IPEX syndrome. Immunogenetics. 2001. 53(6): 435-9.
    [18] Bacchetta R, Passerini L, Gambineri E, et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest. 2006. 116(6): 1713-22.
    [19] Gambineri E, Perroni L, Passerini L, et al. Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J Allergy Clin Immunol. 2008. 122(6): 1105-1112.e1.
    [1] Chang X, Zheng P, Liu Y. FoxP3: a genetic link between immunodeficiency and autoimmune diseases. Autoimmun Rev. 2006. 5(6): 399-402.
    [2] Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells. J Allergy Clin Immunol. 2007. 120(4): 744-50; quiz 751-2.
    [3] Gambineri E, Perroni L, Passerini L, et al. Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J Allergy Clin Immunol. 2008. 122(6): 1105-1112.e1.
    [4] Ono M, Yaguchi H, Ohkura N, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature. 2007. 446(7136): 685-9.
    [5] Li B, Samanta A, Song X, et al. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol. 2007. 19(7): 825-35.
    [6] Bacchetta R, Passerini L, Gambineri E, et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest. 2006. 116(6): 1713-22.
    [7] Li B, Samanta A, Song X, et al. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol. 2007. 19(7): 825-35.
    [8] Rubio-Cabezas O, Minton JA, Caswell R, et al. Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care. 2009. 32(1): 111-6.
    [1] Sneller MC, Dale JK, Straus SE. Autoimmune lymphoproliferative syndrome. Curr Opin Rheumatol. 2003. 15(4): 417-21.
    [2] Halonen M, Eskelin P, Myhre AG, et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J Clin Endocrinol Metab. 2002. 87(6): 2568-74.
    [3] Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol. 2003. 15(4): 430-5.
    [4] Russell WL, Russell LB, Gower JS. EXCEPTIONAL INHERITANCE OF A SEX-LINKED GENE IN THE MOUSE EXPLAINED ON THE BASIS THAT THE X/O SEX-CHROMOSOME CONSTITUTION IS FEMALE. Proc Natl Acad Sci U S A. 1959. 45(4): 554-60.
    [5] Levy-Lahad E, Wildin RS. Neonatal diabetes mellitus, enteropathy, thrombocytopenia, and endocrinopathy: Further evidence for an X-linked lethalsyndrome. J Pediatr. 2001. 138(4): 577-80.
    [6] Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2002. 39(8): 537-45.
    [7] Kobayashi I, Imamura K, Yamada M, et al. A 75-kD autoantigen recognized by sera from patients with X-linked autoimmune enteropathy associated with nephropathy. Clin Exp Immunol. 1998. 111(3): 527-31.
    [8] Gavin MA, Torgerson TR, Houston E, et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A. 2006. 103(17): 6659-64.
    [9] Wang J, Ioan-Facsinay A, der Voort EI v, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol. 2007. 37(1): 129-38.
    [10] Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev Biol. 2002. 250(1): 1-23.
    [11] Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature. 2007. 445(7130): 936-40.
    [12] Lopes JE, Torgerson TR, Schubert LA, et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol. 2006. 177(5): 3133-42.
    [13] Ono M, Yaguchi H, Ohkura N, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature. 2007. 446(7136): 685-9.
    [14] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003. 299(5609): 1057-61.
    [15] Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2004. 16(11): 1643-56.
    [16] Lin W, Haribhai D, Relland LM, et al. Regulatory T cell development in theabsence of functional Foxp3. Nat Immunol. 2007. 8(4): 359-68.
    [17] Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 2007. 445(7129): 771-5.
    [18] Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol. 2006. 177(12): 8338-47.
    [19] Mazzolari E, Forino C, Fontana M, et al. A new case of IPEX receiving bone marrow transplantation. Bone Marrow Transplant. 2005. 35(10): 1033-4.
    [20] Rao A, Kamani N, Filipovich A, et al. Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning. Blood. 2007. 109(1): 383-5.
    [21] Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995. 3(4): 521-30.
    [22] Sharfe N, Dadi HK, Shahar M, Roifman CM. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A. 1997. 94(7): 3168-71.
    [23] Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007. 119(2): 482-7.
    [24] Roifman CM. Human IL-2 receptor alpha chain deficiency. Pediatr Res. 2000. 48(1): 6-11.
    [25] Loddenkemper C, Maul J, Berg E, Stein H, Zeitz M, Duchmann R. Analysis of FOXP3 protein expression in human CD4(+)CD25(+) regulatory T cells at the single-cell level. Eur J Immunol. 2006. 36(1): 245; author reply 246.
    [26] D'Cruz LM, Klein L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol. 2005. 6(11): 1152-9.
    [27] Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005. 6(11): 1142-51.
    [28] Kim HP, Imbert J, Leonard WJ. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev. 2006. 17(5): 349-66.
    [29] Bernasconi A, Marino R, Ribas A, et al. Characterization of immunodeficiency in a patient with growth hormone insensitivity secondary to a novel STAT5b gene mutation. Pediatrics. 2006. 118(5): e1584-92.
    [30] Hwa V, Little B, Adiyaman P, et al. Severe growth hormone insensitivity resulting from total absence of signal transducer and activator of transcription 5b. J Clin Endocrinol Metab. 2005. 90(7): 4260-6.
    [31] Cohen AC, Nadeau KC, Tu W, et al. Cutting edge: Decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J Immunol. 2006. 177(5): 2770-4.
    [32] Yao Z, Kanno Y, Kerenyi M, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood. 2007. 109(10): 4368-75.
    [33] Antov A, Yang L, Vig M, Baltimore D, Van Parijs L. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol. 2003. 171(7): 3435-41.
    [34] Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol. 2003. 4(4): 350-4.
    [35] Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002. 298(5597): 1395-401.
    [36] Kuroda N, Mitani T, Takeda N, et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J Immunol. 2005. 174(4): 1862-70.
    [37] Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D. The cellular mechanism of Aire control of T cell tolerance. Immunity. 2005. 23(2): 227-39.
    [38] Aschenbrenner K, D'Cruz LM, Vollmann EH, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol. 2007. 8(4): 351-8.
    [39] Kekalainen E, Tuovinen H, Joensuu J, et al. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Immunol. 2007. 178(2): 1208-15.
    [40] Ryan KR, Lawson CA, Lorenzi AR, Arkwright PD, Isaacs JD, Lilic D. CD4+CD25+ T-regulatory cells are decreased in patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Allergy Clin Immunol. 2005. 116(5): 1158-9.
    [41] Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr. 1994. 125(6 Pt 1): 876-85.
    [42] Dupuis-Girod S, Medioni J, Haddad E, et al. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 2003. 111(5 Pt 1): e622-7.
    [43] Humblet-Baron S, Sather B, Anover S, et al. Wiskott-Aldrich syndrome protein is required for regulatory T cell homeostasis. J Clin Invest. 2007. 117(2): 407-18.
    [44] Marangoni F, Trifari S, Scaramuzza S, et al. WASP regulates suppressor activity of human and murine CD4(+)CD25(+)FOXP3(+) natural regulatory T cells. J Exp Med. 2007. 204(2): 369-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700