21三体综合征21qCpG岛DNA甲基化水平研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验目的:21三体综合征是由于21号染色体不分离所导致的一种染色体病,表现为严重的智力发育障碍和多发性先天畸形,是临床最常见的严重出生缺陷之一,由于该病缺乏有效的治疗手段,给社会、家庭带来异常沉重的负担,因而进行孕早期筛查和产前染色体诊断是降低其发生率的有效途径。但目前仍未见21三体患者CpG岛DNA甲基化状态的相关报道,因此,研究21三体患者CpG岛甲基化状态,这对探索更有效、更特异的用于21三体产前风险评估的表观遗传学分子靶点具有重要的科学意义和临床实践价值。
     实验方法:运用HpaII–McrBC PCR(HM-PCR)方法筛检分析21qCpG岛甲基化状态。首先从UCSC数据库获得21qCpG岛DNA序列,并与华大基因炎黄数据库比对,验证序列和引物。然后建立HM-PCR检测方法,并利用HM—PCR技术筛查和分析了150例21三体患者21q上2690个CpG岛,并将患者CpG岛甲基化状态与正常个体进行比较。
     实验结果:本研究首先验证了149个CpG岛的DNA序列和148对CpG岛引物的准确性,明确序列和引物在中国汉族人群运用的可行性。建立了简化的HM—PCR方法。HM—PCR筛查发现21三体患者21号染色体长臂的CpG岛中, 98个无甲基化,30个完全甲基化,12个杂合甲基化,8个不完全甲基化,在健康个体21号染色体长臂的148个CpG岛中也得到完全相同结果。有4个杂合甲基化CpG岛(编号:11,15,27,71)与日本人存在差异,日本人群呈现出无甲基化状态;有1个杂合甲基化CpG岛(编号:93)与日本人不一致,日本人群呈现出完全甲基化状态。这种差异是否是种族之间的差异,尚需对这5个CpG岛进行重亚硫酸盐测序确认。第103号CpG岛没有HpaII和HhaI酶切位点,因此,需要利用重亚硫酸盐测序检测。
     实验结论:21三体患者与健康个体之间在21qCpG岛上不存在DNA甲基化状态的差异;21qCpG岛DNA甲基化状态在同一种族内高度一致,那么21qCpG岛DNA甲基化状态可否为种族间识别的表观遗传学标记,尚需重亚硫酸盐测序法予以证实。
Background: Trisomy 21 is a chromosomal condition caused by the presence of all or part of an extra 21st chromosome. Often Trisomy 21 is associated with some impairment of cognitive ability and physical growth, and is one of the high incidence birth defect. Individuals with Trisomy 21 are incurable, so prenatal screens for Trisomy 21 are likely lead to reductions in overall social welfare burden. Although some scientists reported a few epigenetic markers for the prenatal screen of Trisomy 21, there is still short of the research about the DNA methylation status of CpG islands in 21q. Therefore exploring the DNA methylation status of CpG islands in 21q is essential for developing a series of specific and effective epigenetic marker for the prenatal screen of Trisomy 21.
     Method: First DNA sequences of CpG islands in 21q from USCS database were achieved, and 149 sequences and 148 pairs of primers in BGI YH database were aligned. Then the HM-PCR assay was improved, to determine the DNA methylation status of CpG islands in patients with Trisomy 21. Finally there were totally 2690 CpG island analyzed by HM-PCR assay, and a comparison of the DNA methylation status of CpG islands were made between the control and patients with Trisomy 21
     Results: According to the results of alignment in BGI YH database, 149 DNA sequences of CpG islands in 21q and 148 pairs of primers for 148 CpG islands are feasible to be used in HM-PCR. HM-PCR assay developed by Yamada were further improved to a simple assay by optimizing experimental condition. Using the improved HM-PCR assay, the results showed that there was no difference in the DNA methylation status of 21q CpG islands between patients with Trisomy 21 and the control. Totally 148 CpG islands in 21q were screened, including 98 null methylation, 30 complete methylation, 12 composite methylation and 8 incomplete methylation. However, 4 null methylation CpG islands (No. 11, 15, 27, 71) and 1complete methylation (No.93) in Japanese were composite methylation in Chinese. The 5 CpG islands were different in DNA methylation level between Japanese and Chinese. Whether the difference is due to the race difference or not, the bisulfite sequencing will be used to detect the DNA methylation status of the 5 CpG islands. Another one CpG island (No.103) will be detected by bisulfite sequencing, because the DNA sequence is no HpaII and HhaI recognition site.
     Conclusion: There is no difference in the DNA methylation status of 21q CpG islands between patients with Trisomy 21 and the control. The hypothesis that the homogeneity of DNA methylation status of 21q CpG islands in Chinese indicates that DNA methylation is a epigenetic marker to distinguish the different race, is need to be verified by bisulfite sequencing to detect the DNA methylation status.
引文
[1] Capelle X, Schaaps JP, Foidart JM. New methods of prenatal screening for trisomy 21 [J].Rev Med Liege. 2008,63(2):82~86
    [2] Zhang ZX, Gu Q,Wu BS, et al. An epidemiological study of trisomy21 syndrome in China [J]. J Chin Psye , 1996, 4: 129~131
    [3] Lejeune J, Gautier M, Turpin R. Study of somatic chromosomes from 9 mongoloid children [J]. C R Hebd Seances Acad Sci. 1959, 248(11):1721~1722.
    [4] Conley RW. Down syndrome: economic burdens and benefits of prevention [J]. Basic LifeSci.1985,36(1):35~59
    [5] Eyman RK,Call TL. Life expectancy of persons with Down syndrome [J]..Am J Ment Retard,1991,95:603~612.
    [6]刘晓红.孕早期孕中期母血清产前筛查结果回顾[J].内蒙古医学杂志. 2003, 35 (5): 429~432
    [7] Hook FB.Down syndrome:frequency in human populations and factors partinent to variation in rates.In:delacmz FF,Gerald PS,eds.Trisomy 21(Down syndrome):research perspectives,Baltimore:UniversityParkPress.1981.3~67
    [8] Schuber R,Raft R,Schwarfitz G.Molecular cytogenetic investigation of tenplacentas in case of prenatal diagnosed mosaicism [J].PrenatDiagn. 1996,16: 907~911
    [9]王峻峰,孟西娜,耿金花. 6093例孕中期唐氏综合征的血清筛查和产前诊断分析[J].中国优生与遗传杂志. 2007, 15(12):37,74.
    [10] Wolffe AP, Matzke MA.Epigenetics:regulation through repression [J].Science,1999,286(5439):481~486.
    [11]吴南,桂建芳.组蛋白变体及组蛋白替换[J].遗传. 2006, 28(4): 493~500.
    [12] Bird A.Perceptions of epigenetics [J]. Nature, 2007, 447(7143): 396~398.
    [13] Jones PA,Baylin SB.The fundamental role of epigenetic events in cancer[J].Nat Rev Genet, 2002,3(6):415~442.
    [14]董玉玮,侯进慧,朱必才,等.表观遗传学的相关概念和研究进展[J].生物学杂志. 2005, 22(1): 1~3
    [15] Devinoy E,Rijnkels M. Epigenetics in mammary gland biology and cancer [J].J Mammary Gland Biol Nenplasia. 2010, 15(1): 1~4.
    [16] Sharrard RM,Royds JA,Rogers S, et al. Patterns of methylation of the c-myc gene in human coloreetal cancer progression [J]. Br J Cancer,1992, 65(5): 667~672.
    [17] Old RW, Crea F, Puszyk W, et al. Candidate epigenetic biomarkers for non-invasive prenatal diagnosis of Down syndrome [J]. Reprod Biomed Online. 2007, 15(2): 227~235.
    [18] Chim SS, Jin S, Lee TY, et al. Systematic search for placental DNA-methylation markers on chromosome 21:toward a maternal plasma-based epigenetic test for fetal trisomy 21 [J]. Clin Chem. 2008, 54(3): 500~511.
    [1] Hattori M, Fujiyama A, Taylor TD,et al. Chromosome 21 mapping and sequencing consortium. The DNA sequence of human chromosome 21 [J]. Nature. 2000, 405(6784): 311~319.
    [2] http://genome.ucsc.edu/cgi-bin/hgGateway
    [3] Wang J, Wang W, Li R, et al. The diploid genome sequence of an Asian individual [J]. Nature. 2008, 456(7218): 60~65.
    [4] Gardiner-Garden M, Frommer M.CpG islands in vertebrate genomes [J]. J Mol Biol. 1987,196(2):261~282.
    [5] Yamada Y, Watanabe H, Miura F, et al. A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q [J]. Genome Res. 2004, 14(2): 247~266.
    [6] Chim SS, Jin S, Lee TY, et al. Systematic search for placental DNA-methylation markers on chromosome 21:toward a maternal plasma-based epigenetic test for fetal trisomy 21 [J]. Clin Chem.2008,54(3):500~511
    [7] Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool [J]. J Mol Biol. 1990, 215 (3): 403~410.
    [8] Sonnhammer EL, Durbin R.A workbench for large-scale sequence homology analysis [J]. Comput Appl Biosci. 1994, 10(3):301~307.
    [9]黄庆,郭颖,府伟灵.人类表观基因组计划[J].生命的化学,2004, 24(2): 101~102.
    [10] Li Y, Zhu J, Tian G, et al. The DNA methylome of human peripheral blood mononuclear cells [J]. PLoS Biol. 2010, 8(11):e1000533.
    [1] Yamada Y, Watanabe H, Miura F, et al. A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q [J]. Genome Res.2004, 14(2): 247~266.
    [2] Sutherland E, Coe L, Raleigh EA. McrBC: a multisubunit GTP-dependent restriction endonuclease [J]. J Mol Biol. 1992, 225(2): 327~334.
    [3] Stewart FJ, Raleigh EA. Dependence of McrBC cleavage on distance between recognition elements [J]. Biol Chem. 1998, 379(4-5):611~616.
    [4] Panne D, Raleigh EA, Bickle TA .The McrBC endonuclease translocates DNA in a reaction dependent on GTP hydrolysis [J].J Mol Biol. 1999, 290(1): 49~60.
    [5] Stewart FJ, Panne D, Bickle TA, et al. Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme [J]. J Mol Biol. 2000, 298(4):611~622.
    [6] Mann MB, Smith HO. Specificity of Hpa II and HaeⅢDNA methylases [J]. Nucleic Acids Research.1977, 4(12): 4211~4221
    [7] Nelson M, McClelland M. The effect of site-specific methylation on restriction-modification enzymes [J]. Nucleic Acids Res. 1987, 15(Suppl): r219~r230.
    [8] Ehrlich M, Gama Sosa MA, Huang L-H, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells [J]. Nucleic Acids Research. 1982, 10 (8): 2709~2721
    [9] Bird AP, Southern EM. Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis [J]. J Mol Biol. 1978, 118(1):27~47.
    [10] Rae PM, Steele RE.Absence of cytosine methylation at C-C-G-G and G-C-G-C sites in the rDNA coding regions and intervening sequences of Drosophila and the rDNA of other insects [J]. Nucleic Acids Res. 1979, 6(9): 2987~2995.
    [11] Chotai KA , Payne SJ. A rapid, PCR based test for differential molecular diagnosis of Prader-Willi and Angelman syndromes. J Med Genet 1998 35: 472~475
    [12] Singer J, Roberts-Ems J, Riggs AD.Methylation of mouse liver DNA studied by means of the restriction enzymes msp I and hpa II [J]. Science. 1979, 203(4384):1019~1021.
    [13] Ho P, Kong KF, Chan YH, et al.An unusual S-adenosylmethionine synthetase gene from dinoflagellate is methylated [J]. BMC Mol Biol. 2007, 8: 87.
    [14] Blouin MS, Thuillier V, Cooper B, et al. No evidence for large differences in genomic methylation between wild and hatchery steelhead (Oncorhynchus mykiss) [J].Can J Fish Aquat Sci. 2010, 67: 217~224
    [15] Hube F, Reverdiau P, Iochmann S, et al. Improved PCR method for amplification of GC-rich DNA sequences [J]. Mol Biotechnol. 2005, 31(1):81~84.
    [16] Sahdev S, Saini S, Tiwari P, et al. Amplification of GC-rich genes by following a combination strategy of primer design, enhancers and modified PCR cycle conditions [J]. Mol Cell Probes. 2007, 21(4):303~307.
    [17] Henke W, Herdel K, Jung K, et al. Betaine improves the PCR amplification of GC-rich DNA sequences [J]. Nucleic Acids Res. 1997, 25 (19): 3957~3958.
    [18] Musso M, Bocciardi R, Parodi S, et al. Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences [J]. J Mol Diagn. 2006, 8(5): 544~550.
    [19] Kang J, Lee MS, Gorenstein DG. The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: application to in vitro combinatorial selection of aptamers [J]. J Biochem Biophys. Methods. 2005, 64(2): 147~151.
    [20] Turner SL, Jenkins FJ. Use of deoxyinosine in PCR to improve amplification of GC-rich DNA [J]. Biotechniques. 1995, 19(1):48~52.
    [1] Old RW, Crea F, Puszyk W, et al. Candidate epigenetic biomarkers for non-invasive prenatal diagnosis of Down syndrome [J]. Reprod Biomed Online. 2007, 15(2): 227~235.
    [2] Chim SS, Tong YK, Chiu RW, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma [J]. Proc Natl Acad Sci USA. 2005, 102(41): 14753~14758.
    [3] Tong YK, Ding C, Chiu RW, et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma:Theoretical and empirical considerations [J]. Clin Chem. 2006, 52(12): 2194~2202.
    [4] Lo YM, Chiu RW. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis [J]. Clin Chem. 2008, 54(3): 461~466.
    [5] Chim SS, Jin S, Lee TY, et al. Systematic search for placental DNA-methylation markers on chromosome 21:toward a maternal plasma-based epigenetic test for fetal trisomy 21 [J]. Clin Chem.2008, 54(3): 500~511
    [6] Tong YK, Chiu RW, Akolekar R, et al.Epigenetic-genetic chromosome dosage approach for fetal trisomy 21 detection using an autosomal genetic reference marker [J]. PLoS One. 2010, 5(12): e15244
    [7] Bird AP. CpG-rich islands and the function of DNA methylation [J]. Nature, 1986, 321: 209~213.
    [8] Riggs A D, Jones P D. 5-methylcytosine, gene regulation and cancer [J]. Adv Cancer Res, 1984, 40: 1~30.
    [9] Cottrell SE. Molecular diagnostic applications of DNA methylation technology [J]. Clin Biochem. 2004, 37(7): 595~604.
    [10] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer [J]. Nat Rev Genet. 2002, 3(6): 415~428.
    [11] Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A.Specific gene hypomethylation and cancer: New insights into coding region feature trends [J]. Bioinformation. 2009. 3 (8): 340~343.
    [12] Yamada Y, Watanabe H, Miura F, et al. A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q [J]. Genome Res.2004, 14(2): 247~266.
    [13] VlkováB, Szemes T, Minárik G, et al.Advances in the research of fetal DNA in maternal plasma for noninvasive prenatal diagnostics [J]. Med Sci Monit. 2010, 16(4):RA85~91.
    [14] CoppedèF.The complex relationship between folate/homocysteine metabolism and risk of Down syndrome [J]. Mutat Res. 2009, 682(1): 54~70.
    [15] Young-In Kim. Nutritional Epigenetics: Impact of Folate Deficiency on DNA Methylation and Colon Cancer Susceptibility [J]. J Nutr. 2005, 135: 2703~2709.
    [16] Gillian R.Wasson, Angela P.McGlynn, C.Stephen Downes, et al. Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation [J].J Nutr. 2006, 136: 2748~2753.
    [17] Park BH, Kim YJ, Park JS, et al. Folate and homocysteine levels during pregnancy affect DNA methylation in human placenta [J]. J Prev Med Public Health. 2005, 38(4): 437~442.
    [18] James SJ, Pogribna M, Pogribny IP, et al. Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome [J]. Am J Clin Nutr. 1999, 70: 495~501.
    [19] Hobbs CA, Sherman SL, Yi P, et al. Polymorphisms in Genes Involved in Folate Metabolism as Maternal Risk Factors for Down Syndrome [J]. Am J Hum Genet. 2000, 67(3): 623~630.
    [20] Du Y, Zhang J, Wang H, et al.Hypomethylated DSCR4 is a placenta-derived epigenetic marker for trisomy 21 [J]. Prenat Diagn. 2011, 31(2): 207~214
    [21] Tong YK, Jin S, Chiu RW, Ding C, et al.Noninvasive prenatal detection of trisomy 21 by an epigenetic-genetic chromosome-dosage approach [J]. Clin Chem. 2010,56(1):90~98
    [22] Papageorgiou EA, Karagrigoriou A, Tsaliki E, et al. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21 [J]. Nat Med. 2011 Mar 6.
    [23] Papageorgiou EA, Fiegler H, Rakyan V, Beck S, et al. Sites of differential DNA methylation between placenta and peripheral blood: molecular markers for noninvasive prenatal diagnosis of aneuploidies [J]. Am J Pathol. 2009. 174(5):1609~1618.
    [24] Patterson D.Genetic mechanisms involved in the phenotype of Down syndrome [J]. Ment Retard Dev Disabil Res Rev. 2007, 13(3):199~206.
    [25] Kerkel K, Schupf N, Hatta K, et al.Altered DNA methylation in leukocytes with trisomy 21 [J]. PLoS Genet. 2010, 6(11):e1001212.
    [26] Obermann-Borst SA, van Driel LM, Helbing WA, et al.Congenital heart defects and biomarkers of methylation in children: a case-control study [J]. Eur J Clin Invest. 2011, 41(2):143~150
    [27] Tarantini L, Bonzini M, Apostoli P, et al. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation [J]. Environ Health Perspect, 2009, 117(2): 217-22.
    [28] Woodson K, Hayes R, Wideroff L, et al. Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US blacks and whites [J]. Prostate. 2003, 55(3):199~205.
    [29] Woodson K, Hanson J, Tangrea J.A survey of gene-specific methylation in human prostate cancer among black and white men [J]. Cancer Lett. 2004, 205(2):181~188.
    [1] Wolffe AP, Matzke MA.Epigenetics:regulation through repression [J].Science,1999,286(5439):481~486.
    [2]吴南,桂建芳。组蛋白变体及组蛋白替换[J].遗传. 2006, 28(4): 493~500.Bird A.Perceptions of epigenetics[J]. Nature, 2007, 447(7143): 396~398.
    [3] JonesPA,Baylin SB.The fundamental role of epigenetic events in cancer[J].Nat Rev Genet, 2002,3(6):415~442.
    [4]董玉玮,侯进慧,朱必才,李培青,庞永红。表观遗传学的相关概念和研究进展[J]。生物学杂志,2005, 22(1): 1~3
    [5] Devinoy E,Rijnkels M. Epigenetics in mammary gland biology and cancer [J].J Mammary Gland Biol Nenplasia. 2010, 15(1): 1~4.
    [6] Sharrard RM,Royds JA,Rogers S,et a1.Patterns of methylation of the c-myc gene in human coloreetal cancer progression [J]. Br J Cancer,1992, 65(5): 667~672.
    [7] Old RW, Crea F, Puszyk W, Hultén MA. Candidate epigenetic biomarkers for non-invasive prenatal diagnosis of Down syndrome [J]. Reprod Biomed Online. 2007, 15(2): 227~235.
    [8] Bird A P. CpG-rich islands and the function of DNA methylation [J]. Nature, 1986, 321: 209~213.
    [9] Riggs A D, Jones P D. 5-methylcytosine, gene regulation and cancer [J]. Adv Cancer Res, 1984, 40: 1~30.
    [10] Gardiner-Garden M, Frommer M.CpG islands in vertebrate genomes [J]. J Mol Biol. 1987,196(2):261~282.
    [11] Cottrell SE. Molecular diagnostic applications of DNA methylation technology [J]. Clin Biochem. 2004, 37(7): 595~604.
    [12] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer [J]. Nat Rev Genet. 2002, 3(6): 415~428.
    [13] Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A.Specific gene hypomethylation and cancer: New insights into coding region feature trends [J]. Bioinformation. 2009. 3 (8): 340~343.
    [14] Adkins RM, Krushkal J, Tylavsky FA, Thomas F. Racial differences in gene-specific DNA methylation levels are present at birth [J]. Birth Defects Res A Clin Mol Teratol. 2011,doi: 10.1002/bdra.20770.
    [15] Nielsen DA, Hamon S, Yuferov V, Jackson C, Ho A, Ott J, Kreek MJ.Ethnicdiversity of DNA methylation in the OPRM1 promoter region in lymphocytes of heroin addicts [J]. Hum Genet. 2010, 127(6): 639~649
    [16] Dumitrescu RG, Marian C, Krishnan SS, Spear SL, Kallakury BV, Perry DJ, Convit JR, Seillier-Moiseiwitsch F, Yang Y, Freudenheim JL, Shields PG.Familial and racial determinants of tumour suppressor genes promoter hypermethylation in breast tissues from healthy women [J]. J Cell Mol Med. 2010, 14(6B): 1468~1475.
    [17] Wallace K, Grau MV, Levine AJ, Shen L, Hamdan R, Chen X, Gui J, Haile RW, Barry EL, Ahnen D, McKeown-Eyssen G, Baron JA, Issa JP.Association between folate levels and CpG Island hypermethylation in normal colorectal mucosa [J]. Cancer Prev Res (Phila). 2010, 3(12): 1552~1564.
    [18] Kwabi-Addo B, Wang S, Chung W, Jelinek J, Patierno SR, Wang BD, Andrawis R, Lee NH, Apprey V, Issa JP, Ittmann M.Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men [J]. Clin Cancer Res. 2010, 16(14): 3539~3547.
    [19] Woodson K, Hayes R, Wideroff L, Villaruz L, Tangrea J.Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites [J]. Prostate. 2003, 55(3):199~205.
    [20] Woodson K, Hanson J, Tangrea J.A survey of gene-specific methylation in human prostate cancer among black and white men [J]. Cancer Lett. 2004, 205(2): 181~188.
    [21] Rybicki B, Mitrache N, Do K, Jankowski M, Tang D, Rundle A, Bock C, Beebe-Dimmer J, Belinsky S. Methylation of Retinoic Acid Receptor, Beta (RARB) Gene Increases Risk for Prostate Cancer in African-American Men [J]. Cancer Epidemiol Biomarkers Prev. 2011, 20(4): 718.
    [22] Powell MA, Mutch DG, Rader JS, Herzog TJ, Huang TH, Goodfellow PJ. Ribosomal DNA methylation in patients with endometrial carcinoma: an independent prognostic marker [J]. Cancer. 2002; 94(11):2941~2952.
    [23] Christensen BC, Kelsey KT, Zheng S, Houseman EA, Marsit CJ, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Kushi LH, Kwan ML, Wiencke JK.Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake [J]. PLoS Genet. 2010, 6(7):e1001043.
    [24] Stephen JK, Chen KM, Shah V, Havard S, Kapke A, Lu M, Benninger MS, Worsham MJ.DNA hypermethylation markers of poor outcome in laryngeal cancer [J]. Clin Epigenetics. 2010, 1(1-2): 61~69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700