尿道下裂发病相关基因突变的研究和包皮内板全厚皮片(阴囊中厚皮片)游离移植耦合包皮岛状皮瓣治疗各型尿道下裂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尿道下裂是男性泌尿生殖系统最常见的先天性畸形之一,是一种迄今为止原因不明的性分化异常,其发病率约为3‰,并且在许多国家中尿道下裂的发病率具有增加的趋势。
     大多数尿道下裂患者的发病原因仍不清楚,有关尿道下裂病因学的研究近年来得到了很大进展,但影响位置和影响方式尚未明确。综观目前的研究,主要有以下四方面的探索:遗传因素、内分泌因素、环境因素和其它因素。
     正常男性的性别分化是一个连续、有序和相互关联的过程,需要多种基因间的精确剂量平衡和相互作用。SRY基因是决定男性性分化的起点,它可以激活一系列的基因调控级联反应,对男性性分化的启动和性发育的正常进行有重要的影响。SOX9可能是SRY的一个下游基因,起着承前启后的作用。双氢睾酮是促使胚胎期男性外生殖器、尿道和前列腺发育的主要激素,而双氢睾酮是睾丸分泌的睾酮在Ⅱ型类固醇5α还原酶(SRD5A2)的作用下形成的。双氢睾酮和它的前体睾酮都是通过雄激素受体(AR)作用于它们的靶器官来发挥其生物学效应。WT1在早期发育中通过与SRY、MIS、SF1和DAX1等的相互作用来调节性分化的级联过程,而且有可能参与后来的发育调控。MID1在中缝结构的发育中起重要作用。SRY、SOX9、SRD5A2、AR、WT1、MID1这6个基因在男性生殖系统分化和发育中发挥至关重要的作用,所以挑选它们作为尿道下裂发病相关基因的首批突变筛查对象。
     我们以95例患者的基因组DNA作为模板,扩增了以上6个基因的全部外显子,利用PCR产物直接测序的方法来检测基因外显子的突变位点。利用双重PCR技术来检测SRY基因,如此大样本、多基因的系列筛查尿道下裂发病相关基因的突变,尚未见报道。
     我们在24名患者中发现了18个突变位点,在6名患者中发现染色体异常,二者占总患者人数的31.6%,10个突变位点未曾报道过。筛查的6个基因的突变结果如下:(1)SRY基因:未发现突变,但发现4例SRY阴性患者。其中,3例染色体核型为46,XX,临床检验证实一例为女性肾上腺皮质增生症;一例为真两性畸形;一例为阴囊型尿道下裂,另1例SRY阴性患者染色体核型不详,为阴茎型尿道下裂。我们还发现两例患者染色体核型异常,分别为45,XO(18%)/46,XY(82%)和46,X dic(Y)/45,XO,均为阴囊型尿道下裂。(2)SOX9基因:未发现突变。(3)SRD5A2基因:在14个病人中发现了8种突变,占总病人数的14.7%,表明约1/10的尿道下裂患者存在不同程度的类固醇5α—还原酶Ⅱ基因结构异常;我们筛查出的突变,包含5种错
Hypospadias, one of the most common congenital anomalies of male urogenital system, is a disease in sexual mal-differentiation, and its etiology is unclear. The incidence of hypospadias is 3‰ and the incidence is increasing in many countries.
    The etiology of hypospaias is still unclear, although great progress has been made. At present, there are four factors that maybe affect the onset of hypospadias, including genetic factor, endocrine, environment and others.
    Normal sex differentiation of male is a consecutive, ordered and inter-related process, requiring equilibrium of many gene interactions. SRY gene is the initial point of male sex differentiation. SRY gene initiates a series of molecular cascade reaction which is very important for normal sex development. S0X9 and WTl are important genes in the anterior differentiation phase besides SRY. S0X9 is a downstream gene of SRY and plays pivot roles. Dihydrotestosterone is the key hormone responsible for the development of the male external genitalia, urethra and prostate. Dihydrotestosterone is derived from testosterone by catalysis of 5 α -steroid reductase, which is encoded by the gene SRD5A2. Testosterone and dihydrotestosterone can only be effective through binding to the androgen receptor encoded by gene AR. WT1 not only regulates cascade reaction of sex differentiation through interacting with SRY, MIS, SF1 and DAX1 but also participates i n the posterior developmental phase. MID1 is essential for the development of midline structure. SRY, WTl, S0X9, SRD5A2 AR and MID1 are all important in differentiation and development of male genital system and act in different stages. Therefore, the six genes were selected as first choice for hypospadias genetic analysis.
    All exons of above six genes were amplified from the genomic DNA of 95 cases. It is the first t ime t hat t he s erial genes w hich are related t o h ypospadias a re detected i n s o many patients. Mutations were detected by directly sequencing of PCR products. SRY gene was tested using multiplex PCR.
    18 mutations were detected from 24 cases, and the karyotypes were abnormal in 6 cases. The cases for these two types accounted for 31.6% of all cases. 10 mutations are novel. While in contol group, 2 mutations were detected from 5 cases. The difference is significant b etween c ontrol group and test group. The results of tested six genes are as follows. (1) SRY: no mutation was detected. SRY was negative in 4 cases, within which 3
引文
1. Paulozzi LJ, et al. Hypospadias trends in two US surveillance systems. Pediatr, 1997, 100(5): 831-4
    2. Federman-DD, et al. Ambiguous genitalia—etiology diagnosis and therapy. Adv Endocrinol Metab. 1995; 6: 91-116
    3. Goodfellow PN, Lovell-Badge R. SRY and sex determination in mammals. Ann Rer Genet., 1993; 27: 71-92
    4. Graves JA, Interactions between SRY and SOX gene in mammalian sex determination. Bioessay, 1998; 20: 264-9
    5. Gustafson MN, Donahoe PK, Male sex determination: current concepts of male sexual differentiation. Annu. Rev. Med, 1994; 45: 505-24
    6. Swain A, Zanaria E, Hacker A, et al Mouse Daxl expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat. Genet., 1996; 12: 404-9
    7. Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kindney development. Cell, 1993; 74: 679
    8. Luo X, Ikeda Y, Parker KL, et al. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell, 1994; 77: 481-90
    9.张悦,鲁晓萱,单祥年.性别决定基因的研究进展.遗传,2000,22(5):328-30
    10.王毅,单祥年.SRY基因的研究进展.国外医学遗传学分册.2000,23(4):176-8
    11. Lovell-badge R, Hacker A. The molecular genetics of Sry and its role in mammalian sex determination. Phil Trans R Soc Lond, 1995, 350 (1333): 205-214
    12. Capel B, Swain A, Nocholis S et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell, 1993, 73 (5): 1019-1030
    13. Page DC. Mosher R, Simpson EM, et al. The sex-determining region of the human Y chromosome encodes a finger protein. Cell, 1987, 51: 1091
    14. Koopman P, Gubbay, J, Collignon J, et al. Zfy gene expression patterns are not compatible with a primary role in mouse sex determination. Nature, 1989, 342: 940
    15. Palmer MS, Sinclair AH, Berta P, et al. Genetic evidence that ZFY is not the testis-determining factor. Nature, 1989, 342: 937
    16. Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 1990, 346: 240
    17. Wiener JS, Marcelli M, Lamb DJ. Molecular determinats of sexual differentiation. World J Urol. 1996; 14: 278-294
    18. Berta P, Hawkins JR, Sinclair AH. et al. Genetic evidence equating SRY and the testis determining??factor. Nature, 1990, 348 (6300): 448-450
    19. Koopman P, Gubbay J, Vivian N. et al. Male development of chromosomally female transgenic for Sry. Nature, 1991, 351(6322): 117-121
    20. Su Hua, Chris Lau Y F. Identification of the transcriptional unit, structural organization, and promoter sequence o f t he human s ex-determining r egion Y (SRY) gene, using a reverse genetic approach. Am J Hum Genet, 1993, 52: 24
    21.刘国庆;赵蕊;叶志纯等,先天性尿道下裂与SRY基因关系的探讨 中华泌尿外科杂志 2001.04.15;22(4):241-242
    22. Lopez M, Torres L, Mendez JP, et al. Clinical traits and molecular findings in 46, XX males. Clin Genet 1995 Jul; 48(1): 29-34
    23. Denny P, Swift S, Cormor F, et al. An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J 1992 Oct; 11(10): 3705-12
    24. Stevanovic M, Lovell-Badge R, Collignon J, et al. SOX3 is an X-linked gene related to SRY. Hum Mol Genet 1993 Dec; 2(12): 2013-8
    25. Wright EM, Snopek B, Koopman P. Seven new members of the Sox gene family expressed during mouse development. Nucleic Acids Res 1993 Feb 11; 21(3): 744
    26. Tommerup N, Schempp W, Meinecke P, et al. Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia (CMPD1) to 17q24.3-q25.1. Nat Genet 1993 Jun; 4(2): 170-4
    27. Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994 Dec 8; 372(6506): 525-30
    28. Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994 Dec 16; 79(6): 1111-20
    29. Huang-B, et al. Autosomal XX sex reversal caused by duplication of SOX9. Am-J-Med-Genet. 1999 Dec 3; 87(4): 349-53
    30. Luo X, Ikeda Y, Parker KL. The cell-specific nuclear receptor steroidogenic factor 1 plays multiple roles in reproductive function. Philos Trans R Soc Lond B Biol Sci 1995 Nov 29; 350(1333): 279-83
    31. Giuili G, Shen WH, Ingraham HA. The nuclear receptor SF-1 mediates sexually dimorphic expression of Mullerian Inhibiting Substance, in vivo. Development 1997 May; 124(9): 1799-807
    32. Hanley N A, Ball S G, Clement-Jones M, et al. Expression o f s teroidogenic factor 1 and Wilims' tumor 1 during early human gonadal development and sex determination. Mech Dev, 1999; 87(1-2): 175-180
    33. Achermann JC, Ito M, Hindmarsh PC, et al. Mutation in the gene encoding steroidogenic factor1 causes XY sex reversal and adrenal failure in humans. Nature Genet, 1999; 22: 125-126
    34. Wilson-JD; Griffin-JE; Russell-DW Steroid 5 alpha-reductase 2 deficiency. Endocr-Rev. 1993 Oct;??14(5): 577-93
    35. Silver, -R-I; Russell, -D-W 5alpha-reductase type 2 mutations are present in some boys with isolated hypospadias. J-Urol. 1999 Sep; 162(3 Pt 2): 1142-5
    36. Hiort-O, et al. Molecular genetic analysis and human chorionic gonadotropin stimulation tests in the diagnosis of prepubertal patients with partial 5 alpha-reductase deficiency. Eur-J-Pediatr. 1996 Jun; 155(6): 445-51
    37. Zhou-L, et al. Identification of mutations of SRD5A2 gene and SRY gene in patients with hypospadias. Chung-Hua-I-Hsueh-I-Chuan-Hsueh-Tsa-Chih. 1999 Oct; 16(5): 311-4
    38. Ferraz, -L-F; Mathias-Baptista, -M-T New frameshift mutation in the 5alpha-reductase type 2 gene in a Brazilian patient with 5alpha-reductase deficiency. Am-J-Med-Genet. 1999 Nov 26; 87(3): 221-5
    39. Sinnecker-GH; Hiort-O; Dibbelt-L. et al. Phenotypic classification of male pseudohermaphroditism due to steroid 5 alpha-reductase 2 deficiency. Am-J-Med-Genet. 1996 May 3; 63(1): 223-30.
    40. Nordenskjold-A, et al. Molecular characterization of 5 alpha-reductase type 2 deficiency and fertility in a Swedish family. J-Clin-Endocrinol-Metab. 1998 Sep; 83(9): 3236-8
    41. Chang C, et al. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptor. Proc. Natl. Acad. Sci., USA, 1988; 85: 7211-5
    42. Lubahn DB, et al. Cloning of the X chromosome. Science 1988, 240: 327-30
    43. Cooke P. S. Young P. and Cunha G. R. Androgen receptor expression in developing male reproductive organs. Endocrinology. 1991, 128: 2867
    44. Kalloo N. B. Gearhart J. P. and Barrack E. R. Sexually dimorphic expression of estrogen receptors, but not of androgen receptors in human fetal external genitalia. J. Clin. Endocr. Metab. 1993, 77: 692.
    45. Kim K. S., Liu W., Cunha G R., et al, Expression of the androgen receptor and 5q-reductase type 2 in the developing human fetal penis and urethra. Cell Tissue Res 2002, 307: 145-153.
    46. Blauer M. Vaalasti A, Pauli S. L. et al, Location of androgen receptor in human skin. J Invest Dermatol 1991, 97: 264-268.
    47. Quigley C. A. Debellis A. Marschke K. B. et al. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev. 1995 Jun; 16(3): 271-321.
    48. Kaspar-F, Characterization of two point mutations in the androgen receptor gene of patients with perineoscrotal hypospadia. J-Steroid-Biochem-Mol-Biol. 1993 Dec; 47(1-6): 127-35
    49. Klocker-H, Androgen receptor alterations in patients with disturbances in male sexual development and in prostatic carcinoma. Urol-Int. 1995; 54(1): 2-5
    50. Evans-BA, et al. Phenotypic diversity in siblings with partial androgen insensitivity syndrome. Arch-Dis-Child. 1997 Jun; 76(6): 529-31
    51. Melo-KF, et al. A novel point mutation (R840S) in the androgen receptor in a Brazilian family with??partial androgen insensitivity syndrome. Hum-Mutat-Online. 1999 Oct; 14(4): 353
    
    52. Chu J, Zhang R, Zhao Z, et al. Male fertility is compatible with an Arg(840)Cys substitution in the AR in a large Chinese family affected with divergent phenotypes of AR insensitivity syndrome. J Clin Endocrinol Metab 2002 Jan;87(1):347-51
    
    53. Suzuki K, Fukabori Y, Nakazato H, et al. Novel amino acid substitutional mutation, tyrosine-739-aspartic acid, in the androgen receptor gene in complete androgen insensitivity syndrome.Int J Androl 2001 Jun;24(3): 183-8
    
    54. Rodien-P ,et al. Different phenotypes in a family with androgen insensitivity caused by the same M780I point mutation in the androgen receptor gene. J-Clin-Endocrinol-Metab. 1996 Aug; 81(8): 2994-8
    
    55. Hiort-O ,et al.Molecular characterization of the androgen receptor gene in boys with hypospadias. Eur-J-Pediatr. 1994 May; 153(5): 317-21
    
    56. Allera-A ,et al. Mutations of the androgen receptor coding sequence are infrequent in patients with isolated hypospadias. J-Clin-Endocrinol-Metab. 1995 Sep; 80(9): 2697-9
    
    57. Sutherland-RW ,et al.Androgen receptor gene mutations are rarely associated with isolated penile hypospadias. J-Urol. 1996 Aug; 156(2 Pt2): 828-31
    
    58. Nordenskjold-A ,et al .Screening for mutations in candidate genes for hypospadias. Urol-Res. 1999; 27(1): 49-55
    
    59. Aaronson LA, Cakmak MA,Ley LL. Defects of the testosterone biosyithetic pathway in boys with hypospadias. J Urol ,1997, 157: 1884-8
    
    60. Simpson ER. Genetic mutations resulting in loss of aromatase activity in humans and mice. J Soc Gynecol Investig 2000 Jan-Feb;7(1 Suppl):S18-21
    
    61. Krautschick-A; Bohrer-MH; Hoang-Bohm-J , et al . Remnants of the Mullerian duct. Case report based on a complex urogenital abnormality. Urologe-A. 1997 Jan; 36(1): 77-80
    
    62. Zhang L,et al. Characterization of two novel homozygous missense mutations involving codon 6 and 259 of type II 3beta-hydroxysteroid dehydrogenase (3betaHSD) gene causing, respectively, nonsalt-wasting and salt-wasting 3betaHSD deficiency disorder. J Clin Endocrinol Metab 2000 Apr;85(4):1678-85
    
    63. Knudson, A. G, Jr.; Strong, L. C, Familial Wilms's tumor. (Letter)Am. J. Hum. Genet. 27: 809-810,1975
    
    64. Fearon, E. R.; Vogelstein, B.; Feinberg, A. P., Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. Nature 309: 176-178,1984.
    
    65. Weissman, B. E.; Saxon, P. J.; Pasquale, S. R.; Jones, G. R.; Geiser, A. G; Stanbridge, E. J. : Introduction of normal human chromosome into a Wilms1 tumor cell line controls its tumorigenic expression. Science 236: 175-180, 1987
    66.李明,李江源。性别决定的分子机制。当代医学,7(2):53-56,2001
    67. Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, et al. Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell. 1998 May 1; 93(3): 445-54.
    68. Porteous, D. J.; Bickmore, W.; Christie, S.; et, al. HRASl-selected chromosome transfer generates markers t hat colocalize aniridia- and genitourinary dysplasia-associated translocation breakpoints and the Wilms tumor gene within band 11p13. Proc. Nat. Acad. Sci. 1987; 84: 5355-5359.
    69. Kohler-B, et al. Bilateral Wilms tumor in a boy with severe hypospadias and cryptochidism due to a heterozygous mutation in the WT1 gene. Pediatr-Res. 1999 Feb; 45(2): 187-90.
    70. Kohler, -B; Schumacher, -V; l'Allemand, -D; Royer-Pokora, -B; Gruters, -A. Germline Wilms tumor suppressor gene (WT1) mutation leading to isolated genital malformation without Wilms tumor or nephropathy. J-Pediatr. 2001 Mar; 138(3): 421-4.
    71. Ogawa-O, et al. A novel insertional mutation at the third zinc finger coding region of the WT1 gene in Denys-Drash syndrome. Hum-Mol-Genet. 1993 Feb; 2(2): 203-4.
    72. Tsuda-M, et al. A newly identified exonic mutation of the WT1 gene in a patient with Denys-Drash syndrome. Acta-Paediatr-Jpn. 1996 Jun; 38(3): 265-6.
    73. Klamt-B, et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio ofWT1+/-KTS splice isoforms. Hum-Mol-Genet. 1998 Apr; 7(4): 709-14.
    74. Klein-EA, et al. Testicular cancer in association with developmental renal anomalies and hypospadias. Urology. 1996 Jan; 47(1): 82-7.
    75. Denamur E,et al. WT1 splice-site mutations are rarely associated with primary steroid-resistant focal and segmental glomerulosclerosis. Kidney Int 2000 May; 57(5): 1868-72.
    76. Susann Schweiger, John Foerster, Tanja Lehmann, et al. The Opitz syndrome gene product, MID1, associates with microtubules. Proc. Natl. Acad. Sci. USA 1999 Mar; 96: 2794-2799.
    77. Timothy C. Cox, Lillian R. Allen, Liza L, Cox, et al. New mutations in MID1provide support for loss of function as the cause o f X-linked Opitz syndrome. Hum-Mol-Genet. 2000, 9(17): 2553-2562.
    78. Winter J, Lehmann T, Suckow V, et al. Duplication of the MID1 first exon in a patient with Opitz G/BBB syndrome. Hum Genet 2003 Mar; 112(3): 249-54.
    79. Francesca De Falco, Silvia Cainarca, Grazia Andolfi, et al. X-Linked Opitz Syndrome: Novel Mutations in the MID1 Gene and Redefinition of the Clinical Spectrum. American Journal of Medical Genetics 2003, 120A: 222-228.
    80. Dame C, et al. Candidate gene involved in genital ontogeny in chromosome region 16p13.3 [letter]. Am J Med Genet 1999 Sep 17; 86(3): 302-3
    81.李江源.单纯性尿道下裂.《性腺疾病》,李江源主编,天津科技翻译出版公司,1996,221-221
    82. Gupta C, Siegels S, Ellis D. The role of EGF in testosterone-induced reproductive tract differentiation. Dev Biol, 1991, 146: 106-1683. El-Gallay R ES, Smith E, Cohen C, et al. Epidermal growth factor (EGF) and EGF receptor in hypospadias. Br Urol, 1997, 79: 116-9.
    84. Bartsch-O, et al. The novel contiguous gene syndrome of myotubular myopathy (MTM1), male hypogenitalism and deletion in Xq28: report of the first familial case. Cytogenet-Cell-Genet. 1999; 85(3-4): 310-4
    85. Salerno A, et al. Townes-Brocks syndrome and renal dysplasia: a novel mutation in the SALL1 gene. Pediatr Nephrol 2000 Jan; 14(1): 25-8
    86. Hughes-Benzie RM, Hunter AG, Allanson JE, Mackenzie AE. Simpson-Golabi-Behmel syndrome associated with renal dysplasia and embryonal tumor: localization of the gene to Xqcen-q21. Am J Med Genet. 1992 Apr 15-May 1; 43(1-2): 428-35.
    87. Nagai-T, Myopathy with abnormal distribution of dystrophin, growth retardation, mental retardation, and hypospadia. Pediatr-Neurol. 1993 May-Jun; 9(3): 239-42
    88. Memmelear J. Use of bladder mucosa in one-stage hypospadias repair. J Urol 58: 68, 1947
    89. Burger RA, Muller SC. The buccal mucosal graft for urethral reconstruction: a preliminary report. J Urol 1992 Mar; 147(3): 662-4.
    90. Hodgson NB. A one-stage hypospadias repair. J Urol, 1970, 104: 281-283
    91. Klijn AJ, Dik P, de Jong TP. Results of preputial reconstruction in 77 boys with distal hypospadias. JUrol 2001 Apr; 165(4): 1255-7.
    92. Ferro F, Zaccara A, Spagnoli A. Skin graft for 2-stage treatment of severe hypospadias: back to the future? J Urol 2002 Oct; 168(4 Pt 2): 1730-3; discussion 1733.
    93. Elder JS, Duckett JW, etal. Onlay island flap in the repair of mid and distal penile hypospadias without chordee. J Urol, 1987, 138: 376-379.
    94. Joseph VT. A combined tubularized/onlay graft technique for total correction of severe hypospadias. J Pediatr Surg. 1999 Jun; 34(6): 992-5
    95. Snodgrass W. Tubularized incised plate urethroplastr for distal hypospadias. J Urol, 1994, 151: 464.
    96. Oswald J, Korner I, Riccabona M. Comparison of the perimeatal-based flap (Mathieu) and the tabularized incised-plate urethroplasty (Snodgrass) in primary distal hypospadias. BJU Int 2000 Apr; 85(6): 725-7.
    97. Snodgrass W, Patterson K, Plaire JC, et, al. Histology of the urethral plate: implications for hypospadias repair. J Urol 2000 Sep; 164(3 Pt 2): 988-9.
    98. Lopes JF, Schned A, Ellsworth PI, Cendron M. Histological analysis of urethral healing after tubularized incised plate urethroplasty. J Urol 2001 Sep; 166(3): 1014-7.
    99. Bleustein CB, Esposito MP, Soslow RA, et, al. Mechanism of healing following the Snodgrass repair. J Urol 2001 Jan; 165(1): 277-9.
    100.李式瀛,李森恺等.应用阴囊中隔血管蒂皮瓣修复尿道下裂.中国医学科学院学报,1984,6:??25.
    101.黄婉芬,李思聪等。4200例婴儿外科体检结果分析。中华小儿外科杂志,4:236,1987
    102. Harris EL, Beaty TH. Segregation analysis of hypospadias: a reanalysis of published pedigree data. Am J Med Genet. 1993 Feb 15; 45(4): 420-5
    103. Angerpointer TA. Hypospadias-genetics, epidemiology and other possible aetiological influences. Zeitschrift kinderchir, 1984, 39: 112-8
    104. Bauer S. B., et al, Genetic aspects of hypospadias. Urol. Clin. N. Amer., 1981, 8: 559
    105. Page LA. Inheritance of uncomplicated hypospadias. Pediatr 1979; 63: 788-790
    106. Frydman M, Greiber C, Cohen HA. Uncomplicated familial hypospadias: evidence for autosomal recessive inheritance. Am J Med Genet. 1985; 21: 51-60
    107.黄澄如,主编。小儿泌尿外科学。济南:山东科学技术出版社。1995,181-202
    108. Hacia J. G., Brody L. C., Chee M. S., Fodor S. P., Collins F. S.. (1996). Detection of heterozygous utations in BRCA1 using high density oligonucleotide arrays and two colour fluorescence analysis. Nat Genet, 14(4): 441-7.
    109. Olney PN, Kean LS, Graham D, Elsas LJ. May KM. 1999. Campomelic syndrome and deletion of SOX9. Am J Med Genet 84: 20-4
    110. Kurzrock EA, Jegatheesan P, Cunha GR, Baskin LS. Urethral development in the fetal rabbit and induction ofhypospadias: a model for human development. J Urol. 2000 Nov; 164(5): 1786-92.
    111. Tria A, Hiort O, Sinnecker GH. Steroid 5alpha-Reductase 1 Polymorphisms and Testosterone/Dihydrotestosterone Ratio in Male Patients with Hypospadias. Horm Res. 2004; 61(4): 180-183.
    112. Canto P, Vilchis F, Chavez B, Mutchinick O, Imperato-McGinley J, Perez-Palacios G, Ulloa-Aguirre A, Mendez JE Mutations of the 5 alpha-reductase type 2 gene in eight Mexican patients from six different pedigrees with 5 alpha-reduetase-2 deficiency. Clin Endocrinol (Oxf). 1997 Feb; 46(2): 155-60
    113. Johnson L, George FW, Neaves WB, Rosenthal IM, Christensen RA, Decristoforo A, Schweikert HU, Sauer MV, Leshin M, Griffin JE, et al. Characterization of the testicular abnormality in 5 alpha-reductase deficiency. J Clin Endoerinol Metab. 1986 Nov; 63(5): 1091-9
    114. Guang W, et al. [Detection of R277Q mutation of SRDSalpha2 gene by amplification refractory mutation system. Chung Hua I Hsueh I Chuan Hsueh Tsa Chih 1999 Dec; 16(6): 390-1
    115. Wigley WC, Prihoda JS, Mowszowicz I, et al. 1994 Natural mutagenesis study of the human steroid 5α-reduetase 2 isozyme. Biochemistry. 33: 1265-1270
    116. Thigpen AE, Russell DW. Four-amino acid segment in steroid 5 alpha-reductase 1 confers sensitivity to finasteride, a competitive inhibitor. J Biol Chem. 1992 Apr 25; 267(12): 8577-83
    117. Can S, Zhu Y S, Cai LQ, Ling Q, Katz MD, Akgun S, Shackleton C HL, Imperato-McGinley J??(1998) The identification of 5    
    118.Pinsky L, Trifiro M, Kaufman M, Beitel LK, Mhatre A, Kazemi-Esfarjani P, Sabbaghian N, Lumbroso R, Alvarado C, Vasiliou M, et al. Androgen resistance due to mutation of the androgen receptor. Clin Invest Med. 1992 Oct;15(5):456-72
    
    119. McPhaul MJ, Marcelli M, Zoppi S, Wilson CM, Griffin JE, Wilson JD (1992) Mutations in the ligand-binding domain of the androgen receptor gene c luster in two regions of the gene. J Clin Invest 90; 2097-2101.
    
    120. Imasaki K, Hasegawa T, Okabe T, Sakai Y, Haji M, Takayanagi R, Nawata H (1994) Single amino acid substitution (840 Arg→His) in the hormone-binding domain of the androgen receptor leads to incomplete androgen insensitivity syndrome associated with a thermolabile androgen receptor. Eur J Endocrinol 130; 569-574
    
    121. Beitel LK, Kazemi-Esfarjani P, Kaufman M, Lumbroso R, DiGeorge AM, Killinger DW, Trifiro MA, Pinsky L (1994) Substitution of arginine-839 by cysteine or histidine in the androgen receptor causes different receptor phenotypes in cultured cells and coordinate degrees of clinical androgen resistance. J Clin Invest 94; 546-54
    
    122. De Bellis A, Quigley CA, Marschke KB, el-Awady MK, Lane MV, Smith EP, Sar M, Wilson EM, French FS. Characterization of mutant androgen receptors causing partial androgen insensitivity syndrome. J Clin Endocrinol Metab. 1994 Mar;78(3):513-22
    
    123. Batch-JA ,et al.Mutations of the androgen receptor gene identified in perineal hypospadias. J Med Genet. 1993 Mar; 30(3): 198-201
    
    124. Wilson CM, Griffin JE, Wilson JD, Marcelli M, Zoppi S, McPhaul MJ. Immunoreactive androgen receptor expression in subjects with androgen resistance. J Clin Endocrinol Metab. 1992 Dec;75(6):1474-8
    
    125. Devine, C, Jr. and Horton, C: Aone-stage hypospadias repair. J Urol, 85: 166, 1961.
    
    126. Imamoglu MA, Bakirtas H, Tuygun C, et, al. Clinical experiences with different one-staged surgical methods for primary hypospadias cases. Int Urol Nephrol.2002; 33(1): 107-12.
    
    127. Powell, C. R., McAleer, I., Alagiri, M. and Kaplan, G. W.: Comparison of flaps versus grafts in proximal hypospadias surgery. J Urol, 2000, 163: 1286,.
    
    128. Hollowell, J. G., Keating, M. A., Snyder, H. M. and Duckett, J. W. Preservation of the urethral plate in hypospadias repair: extended applications and further experience with the onlay island flap urethroplasty. J. Urol., 143: 98, 1990.
    
    129. Baskin, L. S., Duckett, J. W., Ueoka, K., Seibold, J. and Snyder, H. M. Changing concepts of hypospadias curvature lead to more onlay island flap procedures. J. Urol., 151: 191,1994.
    130. Elbakry A. Complications of the preputial island flap-tube urethroplasty. BJU Int. 1999 Jul; 84(1): 89-94.
    131. Ducker JW. Current hypospadias techniques. Can J Urol. 1995 Mar; 2(Suppl): 30-2.
    132. Castanon M, Munoz E, Carrasco R, Rodo J, Morales L. Treatment of proximal hypospadias with a tubularized island flap urethroplasty and the onlay technique: a comparative study. J Pediatr Surg 2000 Oct; 35(10): 1453-5.
    133. Brinkmann A. O., Blok L. J., De Ruiter P. E., et al. Mechanisms of androgen receptor activation and function. Journal of Steroid Biochemistry and Molecular Biology. 1999, 69: 307-313.
    134. van Heyningen V, Bickmore WA, Seawright A, Fletcher JM, Maule J, Fekete G, Gessler M, Bruns GA, Huerre-Jeanpierre C, Junien C, et al. Role for the Wilms tumor gene in genital development? Proc Natl Acad Sci U S A. 1990 Jul; 87(14): 5383-6.
    135. Sultan C, Lumbroso S, Paris F, et al. Disorders of androgen action. Semin Reprod Med. 2002 Aug; 20(3): 217-28.
    136. Swain A, Lovell-Badge R. Mammalian sex determination: a molecular drama. Gen Dev, 1999; 13: 755-767
    137.白安胜,宋江虹,冯继周.阴茎皮肤和包皮动脉的解剖及临床应用.中国临床解剖学杂志;2002,20(1),73-74.
    138.夏家辉。染色体病。《人类染色体》,周焕庚等编著,科学出版社,1987,北京。8:189-268
    139. Shi M. M.. (2001). Enabling large scale pharmacogenetic studies by high throughput mutation detection and genotyping technologies. Clin Chem, 47(2): 164-72.
    140.Matin I Resnick,等主编.《美国最新临床问答》泌尿外科分册,海洋出版社,2000年,北京,P228
    141. Duckett JW. The island flap technique for hypospadias repair. Uuol Clin North Am 1981, 8: 503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700