一例智力障碍先症者及其儿子的分子细胞遗传学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们对本室追踪了25年的具有智力障碍和轻微面部异常表型特征的一名男性先症者进行分析研究,高分辨G-显带染色体检查发现明显的臂间倒位46,XY,inv(12)(p11q14)和一段细胞遗传学水平上不能识别的额外染色体物质插入异常的12号染色体长臂,核型为[46,XY,inv(12)(pter→p11.2::q14.1→p11.2::?::q14.1→qter)]。先症者的核型和表型都稳定地传递给了他的儿子。
     为了鉴定额外染色体物质的来源,分析这种不明原因综合征的基因型/核型与表型的关系,探索智力障碍的发病机制,我们首先应用荧光原位杂交技术(FISH)对先症者及其儿子进行染色体断点定位研究,发现额外染色体物质来源于12号染色体短臂,将短臂断裂重接点/重复片断着丝粒端边界定位于12p11.22的124kb(chr12:28755133-28878898)内,长臂断裂重接点定位于12q14.1的70kb(chr12:58510500-58580370)内,重复片断端粒端起点定位于12p12.31(chr12:17695757-17725491)的29kb内[12p重复片断范围定位于12p12.31-p11.22的liMb(chr12-17695757-28878898)内,双色FISH确定重复片断反向插入长臂断裂重接点中。
     进一步应用具有116,314个SNPs(分辨率为0.3-0.5Mb)的Mapping SNP Array全基因组CN检测技术进行分析,结果显示12号染色体短臂重复片断端粒端边界位于HindⅢ芯片的SNP_A-1662961和XabI芯片的SNP_A-1662196之间的232kb(chr12:17708381-17940493、)内,着丝粒端边界位于XabI芯片的SNP_A-1716707和SNP_A-1757551之间的165kb(chr12:28724178-28889151)内,重复片断位于SNP_A-1662961和SNP_A-1757551之间的11Mb(chr12:17708381-28889151)范围内,即dup(12)(p12.31p11.22),结果与FISH分析高度吻合。这是10万个SNPs以上级别的Mapping SNPArray Copy Number检测技术应用于染色体病诊断方面的首次报道。
     先症者父母的染色体检查未见异常。应用微卫星标记进行重复片段等位基因的亲-子传递分析,明确地显示先症者的染色体异常起源于母亲,并提示在母体配子形成期的第二次减数分裂中发生姐妹染色
A male proband with mental retardation and mild facial features has been clinically investigated since 1981 and high resolution chromosome G-banding show that he carries an apparently pericentric inversion 46, XY, inv(12)(pllql4) and a cytogenetically unrecognizable extra chromosomal material inserted into 12q[46, XY, inv(12)(pter→ p11.2::q14.1→p11.2::?::q14.1→qter)]. Both of the karyotype and phenotype were steadfastly transmitted to his son. To identify the extra chromosomal material and the breakpoints, delineate the genotype/ karyotype-phenotype correlation for this unknown syndrome and find out the pathogenesis of mental retardation, the chromosomal painting for the breakpoints was carried out using fluorescence in situ hybridization (FISH) in both proband and his son, which implied that the extra segment was derived from 12p. Further FISH analysis mapped 12p breakpoint or the proximal end of 12p duplication to a 124kb (chr12: 28755133-28878898) region on 12p11.22, 12q breakpoint to a 70kb (chr12: 58510500-58580370) on 12q14.1 and the distal end of 12p duplication to a 29kb (chr12: 17695757-17725491) on 12p12.31, resulting in a HMb(chr12: 17695757-28878898) of 12p duplication [dup(12) (p12.31p11.22)], which was shown to insert reversely at one of the reunion points in the long arm of the inv(12) chromosome by double-color FISH.
    We further performed the genome-wide copy number detection in both the proband and his son by GeneChip Mapping 100K Array with 116,314 SNPs and a resolution of 0.3-0.5Mb, which showed the proximal end of 12p duplication within a 165kb(chr12: 28724178-28889151) between SNP_A-1716707 and SNP_A-1757551 of XabI array on 12p11.22 and the distal end of 12p duplication within a 232kb (chr12: 17708381-17940493) between SNP_A-1662961 of HindIII array and SNP_A-1662196 of XabI array on 12p12.31, resulting in a 11Mb(chr12: 17708381-28889151) of 12p duplication between SNP_A-1662961 and SNP_A-1757551 (12p12.31-p11.22). The results were co-confirmed with those by FISH. It is the first report to analyze copy number using
引文
[1] Caspersson T, Zech L, Johansson C. Analysis of human metaphase chromosome set by aid of DNAbinding fluorescent agents. Exp. Cell Res. 1970, 62: 490-492.
    [2] 夏家辉主编,2004年,《医学遗传学》,第六章染色体病,137页。人民卫生出版社。
    [3] International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004, 21; 431 (7011): 931-45.
    [4] Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Dormelly P. International HapMap Consortium. A haplotype map of the human genome. Nature. 2005, 27; 437(7063): 1299-320.
    [5] Croen LA, Grether JK, Selvin S. The epidemiology of mental retardation of unknown cause. Pediatrics. 2001, 107(6): e86.
    [6] Yeargin-Allsopp M, Murphy CC, Cordero JF, Decoufle P, Hollowell JG. Reported biomedical causes and associated medical conditions for mental retardation among 10-year-old children, metropolitan Atlanta, 1985 to 1987. Dev Med Child Neurol. 1997, 39: 142-9.
    [7] Kabra M, Gulati S. Mental retardation. Indian J Pediatr. 2003, 70(2): 153-8.
    [8] Soto-Ares G, Joyes B, Lema(?)tre MP, Vallee L, Pruvo JP. MRI in children with mental retardation. Pediatr Radiol. 2003, 33: 334-45.
    [9] Battaglia A, Carey JC. Diagnostic evaluation of developmental delay/mental retardation: an overview. Am J Med Genet. 2003, 117C: 3-14.
    [10] Patterson MC, Zoghbi HY. Mental retardation. X marks the spot. Neurology. 2003, 61: 156-7.
    [11] Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994, p. 39-46.
    [12] Xu J, Chen Z. Advances in molecular cytogenetics for the evaluation of mental retardation. Am J Med Genet. 2003, 117C: 15-24.
    [13] Rittey CD. Learning difficulties: what the neurologist needs to know. J Neurol Neurosurg Psychiatry. 2003, 74 Suppl Ⅰ: 30-36.
    [14] Phelan MC, Crawford EC and Bealer DM. Mental retardation in South Carolina Ⅲ. Chromosome aberrations. Proc Green Genet Center 15. 1996, pp. 45-60.
    [15] Winter RM and Barraitser M. London Dysmorphology Database. Oxford University Press, electronic publishing. 1998, Version 2.1.
    
    [16] Saccone S, Sario AD, Delia-Valle G and Bernadi G. The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosome. Proc Natl Acad Sci USA. 1992, 89: 4913-4917.
    
    [17] Castellvi-Bel S, Mila M. Genes responsible for nonspecific mental retardation. Mol Genet Metab. 2001, 72: 104-108.
    
    [18] Tommerup N. Mendelian cytogenetics. Chromosome rearrangements associated with mendelian disorders. J Med Genet. 1993,30: 713-27.
    
    [19] Collins FS. Positional cloning moves from perditional to traditional. Nat Genet. 1995,9:347-50.
    
    [20] Billuart P, Bienvenu T, Ronce N, des Portes V, Vinet MC, Zemni R, Roest Crollius H, Carrie A, Fauchereau F, Cherry M, Briault S, Hamel B, Fryns JP, Beldjord C, Kahn A, Moraine C, Chelly J. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature. 1998,392: 923-6.
    
    [21] Zemni R, Bienvenu T, Vinet MC, Sefiani A, Carrie A, Billuart P, McDonell N, Couvert P, Francis F, Chafey P, Fauchereau F, Friocourt G, Portes V, Cardona A, Frints S, Meindl A, Brandau O, Ronce N, Moraine C, Bokhoven H, Ropers HH, Sudbrak R, Kahn A, Fryns JP, Beldjord C, Chelly J. A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat Genet. 2000, 24: 167-70.
    
    [22] Kutsche K, Yntema H, Brandt A, Jantke I, Nothwang HG, Orth U, Boavida MG, David D, Chelly J, Fryns JP, Moraine C, Ropers HH, Hamel BC, van Bokhoven H, Gal A. Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nat Genet. 2000,26: 247-50.
    
    [23] Vervoort VS, Beachem MA, Edwards PS, Ladd S, Miller KE, de Mollerat X, Clarkson K, DuPont B, Schwartz CE, Stevenson RE, Boyd E, Srivastava AK. AGTR2 mutations in X-linked mental retardation. Science. 2002,296: 2401-3.
    
    [24] Endris V, Wogatzky B, Leimer U, Bartsch D, Zatyka M, Latif F, Maher ER, Tariverdian G, Kirsch S, Karch D, Rappold GA. The novel Rho-GTPase activating gene MEGAP/ srGAP3 has a putative role in severe mental retardation. Proc Natl Acad Sci U S A. 2002,99(18): 11754-9.
    
    [25] Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM, Mathews CA, Pauls DL, Rasin MR, Gunel M, Davis NR, Ercan-Sencicek AG, Guez DH, Spertus JA, Leckman JF, Dure LS 4th, Kurlan R, Singer HS, Gilbert DL, Farhi A, Louvi A, Lifton RP, Sestan N, State MW. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science. 2005, 310(5746): 317-20.
    [26] Mefford HC, Trask BJ. The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet. 2002,3: 91-102.
    [27] Lupski JR. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 1998:417-22.
    [28] Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers EW, Li PW, Eichler EE. Recent segmental duplications in the human genome. Science. 2002,297:1003-7.
    [29] Lejeune J, Turpin MR, Gautier M. Etude des chromosomes de neuf enfants mongoliens. Contes Rendus Acad Sci. 1959,248: 1721-2.
    [30] Flint J, Wilkie AO, Buckle VJ, Winter RM, Holland AJ, McDermid HE. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nat Genet. 1995,9:132-40.
    [31] Biesecker LG The end of the beginning of chromosome ends. Am J Med Genet, 2002,107: 263-6.
    [32] Flint J, Knight S. The use of telomere probes to investigate submicroscopic rearrangements associated with mental retardation. Curr Opin Genet Dev. 2003, 13:310-16.
    [33] Kriek M, White SJ, Bouma MC, Dauwerse HG, Hansson KBM, Nijhuis JV, Bakker B, van Ommen G-JB, den Dunnen JT, Breuning MH. Genomic imbalances in mental retardation. J Med Genet. 2004,41: 249-255.
    [34] Gotter AL, Shaikh TH, Budarf ML, Rhodes CH, Emanuel BS. A palindrome-mediated mechanism distinguishes translocations involving LCR-B of chromosome 22q11.2.Hum Mol Genet. 2004,13(1): 103-15.
    [35] Stengel-Rutkowski S, Albert A, Murken JD, Zahn-Messow K, Rodewald A, Zankl M, Saule H, Stene J. New chromosomal dysmorphic syndromes. 4. Trisomy 12p. Eur J Pediatr. 1981,136(3): 249-62.
    [36] Uchida IA, Lin CC. Identification of partial 12 trisomy by quinacrine fluorescence. J Pediatr. 1973, 82:269-272.
    [37] Armendares S, Salamanca F, Nava S, Ramirez S, Cantu J-M. The 12p trisomy syndrome. Ann Genet. 1975,18: 89-94.
    [38] Rethore MO, Kaplan JC, Junien C, Cruveiller J, Dutrillaux B, Aurias A, Carpentier S, Lafourcade J, Lejeune J. Augmentation de l'activite de la LDH-B chez un garcon trisomique 12p par mal segregation d'une translocation matemelle t(12; 14)(q12;p11). Ann Genet. 1975, 18: 81-87.
    [39] Alfi OS, Lange M. Trisomy 12p, a clinically recognizable syndrome. In Bergsma D, Lowry, RB (eds): "New Syndromes." 1977, New York Alan R. Liss, Inc. for The National Foundation-March of Dimes, BD: OAS XIII(3B): 231-232.
    [40] Biederman B, Bowen P, Robertson C, SchiffD. Partial trisomy 12p due to t(12;21)pat Translocation. Hum Genet. 1977, 36: 3541.
    [41] Tenconi R, Piovan E, Preto A, Magnabosco R, Baccichetti C. Syndrome +12p. Case report and Review. Hum Genet. 1977, 39: 97-101.
    [42] Hansteen IL, Schirmer L, Hestetun S. Trisomy 12p syndrome. Evaluation of a family with a t(12;21)(p12.1;p11) translocation with unbalanced offspring. Clin Genet. 1978, 13: 339-349.
    [43] Suerinck E, Suerinck A, Kaplan JC, Meyer J, Junien C, Noel B, Rethore MO. Trisomie 12p par malsegregation d'une translocation patemelle t(12;22)(p11;p11). Ann Genet. 1978, 21: 243-246.
    [44] Parslow M, Chambers D, Drummond M, Hunter W. Two cases of trisomy 12p due to rcpt(12;21)(p11;p11) inherited through three generations. Hum Genet. 1979, 47: 253-260.
    [45] Kondo I, Hamaguchi H, Haneda T. De novo occurrence of mosaic trisomy 12p in a mentally retarded boy. Hum Genet. 1979, 46: 135-140.
    [46] Dallapiccola B, Brinchi V, Magnani M, Dacha M. Identification of the origin of a 22p+ chromosome by triplex dosage effect of LDHB, GAF'HD, TPI and EN02. Ann Genet. 1980, 23: 111-113.
    [47] Qazi QH, Kanchanapoomi R, Cooper R, Madahar C, Belier E. Brief clinical report: dup (12p) and hypoplastic left heart. Am J Med Genet. 1981, 9: 195-199.
    [48] Ray M, Chudley AE, Christie N, Seargeant L. A case of de novo trisomy 12p syndrome. Ann Genet. 1985, 28: 235-238.
    [49] Rivera H, Garcia-Esquivel L, Jimenez-Sainz M, Vaca G; Ibarra B, Cantd J. Centric fusion, centromere-telomere fusion and isochromosome formation: A possible origin of a de novo 12p trisomy. Clin Genet. 1987, 31: 393-398.
    [50] Tayel S, McCorquodale MM, Rutherford T, Kurczynski TW, Abdel-Aziz AM, El-Gabaldy F, Sharaf EA. A case of de novo trisomy 12p syndrome. Clin Genet. 1989, 35: 382-386.
    [51] Guerrini R, Bureau M, Mattei MG, Battaglia A, Galland MC, Roger J. Trisomy 12p syndrome: A chromosomal disorder associated with generalized 3-Hz spike and wave discharges. Epilepsia. 1990, 31(5): 557-566.
    [52] Karki CB, Waiters RM. Trisomy 12p mosaieism syndrome. J Ment Def Res. 1990, 34: 75-80.
    [53] Pfeiffer RA, Legat G, Trautmann U. Acrocallosal syndrome in a child with de novo inverted tandem duplication of 12p11.2-p13.3. Ann Genet. 1992, 35: 41-46.
    [54] Leana-Cox J, Levin S, Surana R, Wulfsberg E, Keene CL, Raffel LJ, Sullivan B, Schwartz S. Characterization of de novo duplications in eight patients by using fluorescence in situ hybridization with chromosome-specific DNA libraries. Am J Hum Genet. 1993, 52: 1067-1073.
    [55] Zelante L, Calvan S, Dallapiccola B, Mingarel L, Rocchi M. Patient with de novo 12p+ syndrome identified as dir dup(12)(p13) using subchromosomal painting libraries from somatic cell hybrids. Clin Genet. 1994, 46: 368-371.
    [56] Allen TL, Brothman AR, Carey JC, Chance PF. Cytogenetic and molecular analysis in trisomy 12p. Am J Med Genet. 1996, 63: 250-256.
    [57] Rauch A, Trautmann U, Pfeiffer RA. Clinical and molecular cytogenetic observations in three cases of "trisomy 12p syndrome". Am J Med Genet. 1996, 63: 243-249.
    [58] Tekin M, Jackson-Cook C, Pandya A. De Novo inverted tandem duplication of the short arm of chromosome 12 in a patient with microblepharon. Am J Med Genet. 2001, 104: 42-46.
    [59] Zumkeller W, Volleth M, Muschke P, Tonnies H, Heller A, Liehr T, Wieacker P, Stumm M. Genotype/phenotype analysis in a patient with pure and complete trisomy 12p. Am J Med Genet. 2004, 129A: 261-264.
    [60] Tsai AC-H, DiGiovanni M, Walton C, Cotter PD. De novo duplication of the short arm of chromosome 12: dup(12)(p13.1p13.3). Am J Med Genet. 2005, 134A: 229-230.
    [61] Schinzel A. "Catalogue of Unbalanced Chromosome aberrations in Man." Berlin: Walter de Gruyter, 1984, p459.
    [62] Sugawara H, Harada N, Ida T, Ishida T, Ledbetter DH, Yoshiura K, Ohta T, Kishino T, Niikawa N, Matsumoto N. Complex low-copy repeats associated with a common polymorphic inversion at human chromosome 8p23. Genomics. 2003, 82: 238-244.
    [63] Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996,380:152-154.
    [64] ISCN 1995: An International System for Human Cytogenetic Nomenclature (1995). 1995. Mitelman F (ed), Cytogenet Cell Genet (Suppl).
    [65] Tzvetkov MV, Becker C, Kulle B, Nurnberg P, Brockmoller J, Wojnowski L. Genome-wide single-nucleotide polymorphism arrays demonstrate high fidelity of multiple displacement-based whole-genome amplification. Electrophoresis. 2005,26(3): 710-5
    [66] Herr A, Grutzmann R, Matthaei A, Artelt J, Schrock E, Rump A, Pilarsky C. High-resolution analysis of chromosomal imbalances using the Affymetrix 10K SNP genotyping chip. Genomics. 2005, 85(3): 392-400.
    [67] Koed K, Wiuf C, Christensen LL, Wikman FP, Zieger K, Moller K, von der Maase H, Orntoft TF. High-density single nucleotide polymorphism array defines novel stage and location-dependent allelic imbalances in human bladder tumors. Cancer Res. 2005, 65(1): 34-45.
    [68] Wong K, Tsang Y, Shen J, Cheng R, Chang Y, Man T, Lau C. Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA. Nucleic Acids Research. 2004,32(9): e69.
    [69] Bignell GR, Huang J, Greshock J, Watt S, Butler A, West S, Grigorova M, Jones KW, Wei W, Stratton MR, Futreal PA, Weber B, Shapero MH, Wooster R. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Research. 2004,2: 287-95.
    [70] Lieberfarb ME, Lin M, Lechpammer M, Li C, Tanenbaum DM, Febbo PG, Wright RL, Shim J, Kantoff PW, Loda M, Meyerson M, Sellers WR. Genome-wide Loss of Heterozygosity Analysis from Laser Capture Microdissected Prostate Cancer Using Single Nucleotide Polymorphic Allele (SNP) Arrays and a Novel Bioinformatics Platform dChipSNP. Cancer Research. 2003, 63: 4781-4785.
    [71] Janne PA, Li C, Zhao X, Girard L, Chen TH, Minna J, Christiani DC, Johnson BE, Meyerson M. High-resolution single nucleotide polymorphism array and clustering analysis of loss of heterozygosity in human lung cancer cell lines. Oncogene. 2004, 15: 2716-26.
    [72] Zhao X, Li C, Paez JG, Chin K, Janne PA, Chen TH, Girard L, Minna J, Christiani D, Leo C, Gray JW, Sellers WR, Meyerson M. An integrated view of copy number and aUelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Research. 2004, 64(9): 3060-71.
    [73] Arrays Huang J, Wei W, Zhang J, Liu G, Bignell GR, Stratton MR, Futreal PA, Wooster R, Jones KW, Shapero MH. Whole Genome DNA Copy Number Changes Identified by High Density Oligonucleotide. Human Genomics. 2004, 1(4): 287-99.
    [74] Rauch A, Ruschendorf F, Huang J, Trautmann U, Becker C, Thiel C, Jones KW, Reis A, Nurnberg P. Molecular karyotyping using an SNP array for genomewide genotyping. J Med Genet. 2004, 41: 916-922.
    [75] Matsuzaki H, Dong S, Loi H, Di X, Liu G, Hubbell E, Law J, Berntsen T, Chadha M, Hui H, Yang G; Kennedy GC, Webster TA, Cawley S, Walsh PS, Jones KW, Fodor SP, Mei R. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat Methods. 2004, 1(2): 109-11.
    [76] Kennedy GC, Matsuzaki H, Dong S, Liu WM, Huang J, Liu G; Su X, Cao M, Chen W, Zhang J, Liu W, Yang G, Di X, Ryder T, He Z, Surti U, Phillips MS, Boyce-Jacino MT, Fodor SP, Jones KW. Large-scale genotyping of complex DNA. Nat Biotechnol. 2003, 21(10): 1233-7.
    [77] Van Dyke D. 1988. Isochromosomes and interstitial tandem direct and inverted duplications. In: Daniel A, ed. The cytogenetics of mammalian autosomal rearrangements. Vol 21. New York: Alan R Liss, 635-665.
    [78] Eichler EE. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 2001, 17: 661-669.
    [79] Ji Y, Eichler EE, Schwartz S, Nicholls RD. Structure of chromosomal duplicons and their role in mediating human genomic disorders. Genome Res. 2000, 10: 597-610.
    [80] Samonte RV, Eichler EE. Segmental duplications and the evolution of the primate genome. Nat Rev Genet. 2002, 3: 65-72.
    [81] Armengol L, Pujana MA, Cheung J, Scherer SW, Estivill X. Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements. Hum Mol Genet. 2003, 12: 2201-2208.
    [82] Locke DP, Archidiacono N, Misceo D, Cardone MF, Deschamps S, Roe B, Rocchi M, Eichler EE. Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biol. 2003a, 4:R50.
    
    [83] Locke DP, Segraves R, Carbone L, Archidiacono N, Albertson DG, Pinkel D, Eichler EE. Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. Genome Res. 2003b, 13:347-357.
    
    [84] Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE. Hotspots of mammalian chromosomal evolution. Genome Biol. 2004, 5:R23.
    
    [85] Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet. 2002,18:74-82.
    
    [86] Chance PF, Abbas N, Lensch MW, Pentao L, Roa BB, Patel PI, Lupski JR. Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum Mol Genet. 1994, 3:223-228.
    
    [87] Shaw CJ, Bi W, Lupski JR. Genetic proof of unequal meiotic crossovers in reciprocal deletion and duplication of 17p22.2. Am J Hum Genet. 2002, 71:1072-1081.
    
    [88] Puissant H, Azoulay M, Serre JL, Piet LL, Junien C. Molecular analysis of a reciprocal translocation t(5;11) (q11;p13) in a WAGR patient. Hum Genet. 1988, 79: 280-2.
    
    [89] Kumar A, Becker LA, Depinet TW, Haren JM, Kurtz CL, Robin NH, Cassidy SB, Wolff DJ, Schwartz S. Molecular characterization and delineation of subtle deletions in de novo "balanced" chromosomal rearrangements. Hum Genet. 1998, 103: 173-8.
    
    [90] Wirth J, Nothwang HG, van der Maarel S, Menzel C, Borck G, Lopez-Pajares I, Brondum-Nielsen K, Tommerup N, Bugge M, Ropers HH, Haaf T. Systematic characterisation of disease associated balanced chromosome rearrangements by FISH: cytogenetically and genetically anchored YACs identify microdeletions and candidate regions for mental retardation genes. J Med Genet. 1999, 36: 271-8.
    
    [91] Mohrschladt MF, Bijlsma EK, Sluijter S, De Coo RF, Hoovers JM, Leschot NJ. A patient with a de novo t (6;9) and an interstitial duplication of (9)(q21.2q22.1). Clin Dysmorphol. 1999, 8: 211-14.
    [92] Kleinjan DJ, van Heyningen V. Position effect in human genetic disease. Hum Mol Genet. 1998, 7: 1611-18.
    [93] Velagaleti G, Bien-Willner GA, Northup JK, Lockhart LH, Hawkins JC, Jalal SM, Withers M, Lupski JR, Stankiewicz P. Position Effects Due to Chromosome Breakpoints that Map approximately 900 Kb Upstream and approximately 1.3 Mb Downstream of SOX9 in Two Patients with Campomelic Dysplasia. Am. J. Hum. Genet. 2005, 76: 652-662.
    [94] Zhang XX, Snijders A, Segraves R, Zhang XQ, Niebuhr A, Albertson D, Yang HM, Gray J, Niebuhr E, Bolund L, Pinkell D. High-Resolution Mapping of Genotype-Phenotype Relationships in Cri du Chat Syndrome Using Array Comparative Genomic Hybridization. Am J Hum Genet. 2005, 76: 312-326.
    [95] Wassman ER, Cheyovich DL, Nakahara Y. "Possibly" de novo translocations: prenatal risk counseling. Am J Obstet Gynecol. 1989, 161: 698-702.
    [96] Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet. 1991, 49: 995-1013.
    [97] Kirchhoff M, Rose H, Maahr J, Gerdes T, Bugge M, Tommerup N, Tumer Z, Lespinasse J, Jensen PK, Wirth J, Lundsteen C. High resolution comparative genomic hybridisation analysis reveals imbalances in dyschromosomal patients with normal or apparently balanced conventional karyotypes. Eur J Hum Genet. 2000, 8: 661-8.
    [98] Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH, Martin CL. Comparative Genomic Hybridization-Array Analysis Enhances the Detection of Aneuploidies and Submicroscopic Imbalances in Spontaneous Miscarriages Am J Hum Genet. 2004, 74: 1168-1174.
    [1] Arnold J. Beobachtungen uber Kerntheilungen in den Zellen der Geschwulste. Virchows Archiv. 1879, 78: 279-301.
    [2] Flemming W. Beitrage zur Kenntnis der Zelle und ihrer Lebenserscheinungen. 3. Teil. Archiv fur mikroskopische Anatomie. 1881, 20: 1-86.
    [3] Hansemann D. Uber asymmetrische Zellteilung in Epithelkrebsen mad deren biologische Bedeutung. Arch. Pathol. Anat. 1890, 119: 299-326.
    [4] Tjio JH, Levan A. The chromosome number of man. Hereditas. 1956, 42: 1-6.
    [5] Ford CE, Hamerton JL. The chromosomes of man. Nature. 1956, 178: 1020-1023.
    [6] Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960, 132: 1497.
    [7] POMERAT CM, MOORHEAD PS. Thermal stress and tissue culture. Ⅶ. The effect of glycerol on cells with special reference to protection against freezing, ex Rep Biol Med. 1956; 14(2): 237-53.
    [8] Lejeune JM, Gautier M, Turpin R. Etude des chromosomes somatiques de neuf enfants mongoliens. CR Acad. Sci. Paris. 1958, 248: 1721-1722.
    [9] Jacobs PA, Strong JA. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature. 1959, 183: 302-303.
    [10] Ford CE, Jones KW, Polani PE, De Almeida JC, Briggs JH. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet. 1959, 1: 711-713.
    [11] Caspersson T, Zech L, Johansson C. Analysis of human metaphase chromosome set by aid of DNAbinding fluorescent agents. Exp. Cell Res. 1970, 62: 490-492.
    [12] Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973, 243: 290-293.
    [13] Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl Acad. Sci. USA. 1969, 63: 378-383.
    [14] Rudldn GT, Stollar BD. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature. 1977, 265: 472-473.
    [15] Bauman JG, Wiegant J, Borst P, van Duijn P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp. Cell Res. 1980, 128: 485-490.
    [16] Langer PR, Waldrop AA, Ward DC. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc. Natl Acad. Sci. usA. 1981, 78: 6633-6637.
    [17] Landegent JE, Jansen in de Wal N, Dirks RW, Baas F, van der Ploeg M. Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum. Genet. 1987, 77: 366-370.
    [18] Pinkel D. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl Acad. Sci. USA. 1988, 85: 9138-9142.
    [19] Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 1988, 80: 224-234.
    [20] Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L. Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum. Genet. 1988, 80: 235-246.
    [21] 夏家辉主编,2004年,《医学遗传学》,第十一章 遗传病的诊断与预防,358页。人民卫生出版社。
    [22] Hadharan IK, Adams JM. cDNA sequence for human bcr, the gene that translocates to the abl oncogene in chronic myeloid leukaemia. EMBO J. 1987, 6(1): 115-9.
    [23] Lubs HA. A marker X chromosome. Am J Hum Genet. 1969, 21(3): 231-44.
    [24] Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991, 65(5): 905-14.
    [25] Lindenbaum RH, Clarke G; Patel C, Moncrieff M, Hughes JT. Muscular dystrophy in an X; 1 translocation female suggests that Duchenne locus is on X chromosome short ann. J Med Genet. 1979, 16(5): 389-92.
    [26] Wood DS, Zeviani M, Prelle A, Bonilla E, Salviati G; Miranda AF, DiMauro S, Rowland LP. Is nebulin the defective gene product in Duchenne muscular dystrophy? N Engl J Med. 1987, 316(2): 107-8.
    [27] 许发明,李麓芸,何小轩,夏家辉。睾丸决定因子定位的重新探讨—混合 性和单纯性性腺发育不全各一例。湖南医学院学报,1983,8(2):135-138。
    [28] Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, Fellous M. Genetic evidence equating SRY and the testis-determining factor. Nature. 1990, 348(6300): 448-50.
    [29] Keamey L. Molecular cytogenetics. Best Pract Res Clin Haematol. 2001, 14: 645-669.
    [30] McNeil N, Ried T. Novel molecular cytogenetic techniques for identifying complex chromosomal rearrangements: technology and applications in molecular medicine. Expert Rev Mol Med. 2000, 2: 1-14.
    [31] Harrison CJ, Kempski H, Hammond DW, Kearney L. Molecular eytogenetics in childhood leukemia. Methods Mol Med. 2004, 91: 123-137.
    [32] Gray JW, Kallioniemi A, Kallioniemi O, Pallavicini M, Waldman F, Pinkel D. Molecular cytogenetics:diagnosis and prognostic assessment. Curr Opin Biotechnol. 1992, 3:623-631.
    [33] Speicher MR, Ward DC. The coloring of cytogenetics. Nat Med. 1996, 2:1046-1048.
    [34] Speicher MR, Gwyn Ballard S, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 1996:12:368-375.
    [35] Schrock E, du Manoir S, Veldman T et al. Multicolor spectral karyotyping of human chromosomes. Science. 1996, 273:494—497.
    [36] Knight SJ, Flint J. Perfect endings:a review of subtelomeric probes and their use in clinical diagnosis. J Med Genet. 2000, 37: 401-409.
    [37] Colleaux L, Heuertz S, Molinari F, Rio M. Fluorescence genotyping for screening cryptic telomeric rearrangements. Methods Mol Biol. 2002, 204: 181-189.
    [38] Fan YS, Zhang Y, Speevak M, Farrell S, Jung JH, Siu VM. Detection of submicroscopic aberrations in patients with unexplained mental retardation by fluorescence in situ hybridization using multiple subtelomeric probes. Genet Med. 2001, 3: 416-421.
    [39] Jalal SM, LawME, LindorNM, Thompson KJ, Sekhon GS. Application of multicolor fluorescent in situ hybridization for enhanced characterization of chromosomal abnormalities in congenital disorders. Mayo Clin Proc. 2001, 76: 16-21
    [40] Saracoglu K, Brown J, Kearney L et al. New concepts to improve resolution and sensitivity of molecular cytogenetic diagnostics by multicolor fluorescence in situ hybridization. Cytometry. 2001,44: 7-15.
    [41] Uhrig S, Schuffenhauer S, Fauth C et al. Multiplex-FISH for pre- and postnatal diagnostic applications. Am J Hum Genet. 1999,65: 448-462.
    [42] Veltman JA, Fridlyand J, Pejavar S et al. Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. Cancer Res. 2003,63: 2872-2880.
    [43] Veltman JA, Schoenmakers EF, Eussen BH et al. Highthroughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization. Am J Hum Genet. 2002,70: 1269-1276.
    [44] Carter NP. Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J. Med. Genet. 1992,29: 299-307.
    [45] Nederlof PM. Three color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry. 1989,10:20-27.
    [46] Nederlof PM, van der Flier S, Vrolijk J, Tanke HJ, Raap AK. Fluorescence ratio measurements of double labeled probes for multiple in situ hybridization by digital imaging microscopy. Cytometry. 1992,13: 839-845.
    [47] Speicher MR, Ballard SG, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet. 1996,12: 368-375.
    [48] Schrock E. Multicolor spectral karyotyping of human chromosomes. Science. 1996,273:494-497.
    [49] Tanke HJ. New strategy for multi-colour fluorescence in situ hybridisation: COBRA: Combined Binary RAtio labelling. Eur. J. Hum. Genet. 1999,7: 2-11.
    [50] Fauth C, Speicher MR. Classifying by colors: FISHbased genome analysis. Cytogenet. Cell Genet. 2001,93: 1-10.
    [51] Azofeifa J. An optimized probe set for the detection of small interchromosomal aberrations by 24-color FISH. Am. J. Hum. Genet. 2000,66: 1684-1688.
    [52] Brown J. Subtelomeric chromosome rearrangements are detected using an innovative 12-colour FISH assay (M-TEL). Nature Med. 2001,7:497-501.
    [53] Fauth C. A new strategy for the detection of subtelomeric rearrangements. Hum. Genet. 2001,109: 576-583.
    [54] Muller S, O'Brien PC, Ferguson-Smith MA, Wienberg J. Cross-species colour segmenting: a novel tool in human karyotype analysis. Cytometry. 1998, 33: 445-452.
    [55] Chudoba I. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet. Cell Genet. 1999, 84: 156-160.
    [56] Mitelman F, Johansson B, Mertens F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature Genet. 2004, 36: 331-334.
    [57] Kallioniemi A. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992,258: 818-821.
    [58] du Manoir S. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum. Genet. 1993,90: 590-610.
    [59] McNeil N, Montagna C, Difilippantonio MJ, Ried T. Comparative Genomic Cytogenetics, in Atlas of Genetics and Cytogenetics in Oncology and Haematology. Bethesda, MD:NCI/NIH, 2003.
    [60] Speicher MR, du Manoir S, Schrock E et al. Molecular cytogenetic analysis of formalin-fixed, paraffin-embedded solid tumors by comparative genomic hybridization after universal DNA-amplification. Hum Mol Genet. 1993, 2: 1907-1914.
    [61] Albertson DG, Pinkel D. Genomic microarrays in human genetic disease and cancer. Hum Mol Genet. 2003,2: 145-152.
    [62] Speicher MR. Molecular cytogenetic analysis of archived, paraffin embedded solid tumors by comparative genomic hybridization after universal PCR. Hum. Mol. Genet. 1993,2: 1907-1914.
    [63] Speicher MR. Correlation of microscopic phenotype with genotype in a formalin fixed, paraffin embedded testicular germ cell tumor using universal DNA amplification, comparative genomic hybridization and interphase cytogenetics. Am. J. Pathol. 1995,146:1332-1340.
    [64] Wiltshire RN. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res. 1995, 55: 3954-3957.
    [65] Wilton L, Williamson R, McBain J, Edgar D, Voullaire L. Birth of a healthy infant after preimplantation confirmation of euploidy by comparative genomic hybridization. New Eng. J. Med. 2001,345:1537-1541.
    [66] Wells D. First clinical application of comparative genomic hybridization and polar body testing for preimplantation genetic diagnosis of aneuploidy. Fertil. Steril. 2002, 78: 543-549.
    [67] Schmidt-Kittler O. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 2003, 100:7737-7742.
    [68] Gangnus R, Langer S, Breit S, Pantel K, Speicher MR. Genomic profiling of viable and proliferative micrometastatic cells from early stage breast cancer patients. Clin. Cancer Res. 2004,10: 3457-3464.
    [69] Langer S, Geigl JB, Gangnus R, Speicher MR. Sequential application of interphase-FISH and CGH to single cells. Lab. Invest. 2005, 85: 582-592.
    [70] van den Engh G, Sachs R, Trask BJ. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. Science. 1992, 257: 1410-1412.
    [71] Trask BJ. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 1991,7:149- 154.
    [72] Tkachuk D. Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science. 1990,250: 559-562.
    [73] Arnoldus EP. Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet. Cell Genet. 1990, 54:108-111.
    [74] Hicks DG, Tubbs RR. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum. Pathol. 2005,36: 250-261.
    [75] Chin K. In situ analyses of genome instability in breast cancer. Nature Genet. 2004, 36: 984-988.
    [76] Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nature Rev. Cancer. 2004, 4: 448-456.
    [77] Solakoglu O. Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc. Natl Acad. Sci. USA 2002,99:2246-2251.
    [78] Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997,386: 623-627.
    [79] Heng HH, Squire J, Tsui L. C. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl Acad. Sci. USA 1992, 89: 9509-9513.
    [80] Parra I, Windle B. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nature Genet. 1993, 5: 17-21.
    [81] Fidlerova H, Senger G, Kost M, Sanseau P, Sheer D. Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet. Cell Genet. 1994, 65: 203-205.
    [82] Bensimon A. Alignment and sensitive detection of DNA by a moving interface. Science 1994, 265: 2096-2098.
    [83] Florijn RJ. High-resolution DNA fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Hum. Mol. Genet. 1995, 4:831-836.
    [84] Bentley DR. The physical maps for sequencing human chromosomes 1, 6, 9, 10, 13, 20 and X. Nature 2001, 409: 942-943.
    [85] Solinas-Toldo S. Matrix-based comparative genomie hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997, 20: 399-407.
    [86] Pinkel D. High resolution analysis of DNA copy number variations using comparative genomic hybridization to microarrays. Nature Genet. 1998, 20: 207-211.
    [87] Snijders AM. Assembly of microarrays for genomewide measurement of DNA copy number. Nature Genet. 2001, 29: 263-264.
    [88] Fiegler H. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer 2003, 36: 361-374.
    [89] Veltman JA. High-throughput analysis ofsubtelomerie chromosome rearrangements by use ofarray-based comparative genomic hybridization. Am. J. Hum. Genet. 2002, 70: 1269-1276.
    [90] Schwaenen C. Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc. Natl Acad. Sci. USA 2004, 101: 1039-1044.
    [91] Ishkanian AS. A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genet. 2004, 36: 299-303.
    [92] Krzywinski M. A set of BAC clones spanning the human genome. Nucleic Acids Res. 2004, 32: 3651-3660.
    [93] Pollack JR. Genome-wide analysis of DNA copynumber changes using cDNA microarrays. Nature Genet. 1999, 23: 41-46.
    [94] Dhami P. Exon array CGH: detection of copynumber changes at the resolution of individual exons in the human genome. Am. J. Hum. Genet. 2005, 76: 750-762.
    [95] Carvalho B, Ouwerkerk E, Meijer GA, Ylstra B. High resolution microarray comparative genomic hybridization analysis using spotted oligonucleotides. J. Clin. Pathol. 2004, 57: 644-646.
    [96] Barrett MT. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl Acad. Sci. USA 2004, 101: 17765-17770.
    [97] Lucito R. Representational oligonucleotidemicroarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003, 13: 2291-2305.
    [98] Lindblad-Toh K. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nature Biotechnol. 2000, 18: 1001-1005.
    [99] Bignell GR. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 2004,14:287-295.
    [100] Zhao X. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 2004, 64: 3060-3071.
    [101] Kennedy GC. Large-scale genotyping of complex DNA. Nature Biotechnol. 2003,21:1233-1237.
    [102] Matsuzaki H. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nature Methods 2004,1:109-111.
    [103] Raghavan M. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparentaldisomy due to somatic recombination in acute myeloid leukemias. Cancer Res. 2005,65: 375-378.
    [104] Vissers LE. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature Genet. 2004, 36: 955-957.
    [105] Sebat J. Large-scale copy number polymorphism in the human genome. Science 2004, 305: 525-528.
    [106] Iafrate AJ. Detection of large-scale variation in the human genome. Nature Genet. 2004,6: 949-951.
    [107] Sharp AJ. Segmental duplications and copynumber variation in the human genome. Am. J. Hum. Genet. 2005, 77:78-88.
    [108] Fiegler H. Array painting: a method for the rapid analysis of aberrant chromosomes using DNA microarrays. J. Med. Genet. 2003,40: 664-670.
    [109] Gribble SM. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J. Med. Genet. 2005,42:8-16.
    [110] Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998, 396:643-649.
    [111] Gilbert N. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 2004,118: 555-566.
    [112] d'Adda di Magagna F. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003,426:194-198.
    [113] Kondo Y, Shen L, Yan PS, Huang TH, Issa JP. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc. Natl Acad. Sci. USA 2004,101:7398-7403.
    [114] Dutrillaux B, Couturier J, Richer CL, Viegas-Pequignot E. Sequence of DNA replication in 277 R and Q-bands of human chromosomes using a BrdU treatment. Chromosoma 1976,58:51-61.
    [115] Ganner E, Evans HJ. The relationship between patterns of DNA replication and of quinacrine fluorescence in the human chromosome complement. Chromosoma 1971,35:326-341.
    [116] Holmquist G, Gray M, Porter T, Jordan J. Characterization of Giemsa dark- and light-band DNA. Cell 1982, 31:121-129.
    [117] Watanabe Y. Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: disease-related genes in timing-switch regions. Hum. Mol. Genet. 2002,11:13-21.
    [118] Sinnett D, Flint A, Lalande M. Determination of DNA replication kinetics in synchronized human cells using a PCR-based assay. Nucleic Acids Res. 1993, 21:3227-3232.
    [119] Selig S, Okumura K, Ward DC, Cedar H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 1992,11:1217-1225.
    [120] Singh N. Coordination of the random asynchronous replication of autosomal loci. Nature Genet. 2003,33:339-341.
    [121] Raghuraman MK. Replication dynamics of the yeast genome. Science 2001, 294:115-121.
    [122] Schubeler D. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genet. 2002, 32:438-442.
    [123] Woodfine K. Replication timing of the human genome. Hum. Mol. Genet. 2004, 13:191-202.
    [124] Woodfine K. Replication timing of human chromosome 6. Cell Cycle 2005, 4:172-176.
    [125] Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2001,2:292-301.
    [126] Fisher AG, Merkenschlager M. Gene silencing, cell fate and nuclear organisation. Curr. Opin. Genet. Dev. 2002,12:193-197.
    [127] Cremer T, Kupper K, Dietzel S, Fakan S. Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol. Cell 2004, 96:555-567.
    [128] Bolzer A. Three-dimensional maps of all chromosome positions indicate a probabilistic order in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol.2005,3:e157.
    [129] Croft JA. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 1999,145:1119-1131.
    [130] Cremer M. Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J. Cell Biol. 2003,162:809-820.
    [131] Sun HB, Shen J, Yokota H. Size-dependent positioning of human chromosomes in interphase nuclei. Biophys. J. 2000,79:184-190.
    [132] Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell R. A. Interchromosomal associations between alternatively expressed loci. Nature 2005,435:637-645.
    [133] Belmont A. Dynamics of chromatin, proteins, and bodies within the cell nucleus. Curr. Opin. Cell Biol. 2003,15:304-310.
    [134] Spector DL. The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem. 2003,72:573-608.
    
    [135] Wang TL. Digital karyotyping. Proc. Natl Acad. Sci. USA 2002, 99:16156-16161.
    [136] Nilsson M. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 1994,265:2085-2088.
    [137] Lizardi PM. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet. 1998,19:225-232.
    [138] Zhong XB, Lizardi PM, Huang XH, Bray-Ward PL, Ward D. C. Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc. Natl Acad. Soi. USA 2001, 98:3940-3945.
    [139] Lage JM. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res. 2003, 13:294-307.
    [140] Zardo G. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nature Genet. 2002, 32:453-458.
    [141] Garraway LA. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005, 436:117-122.
    [142] Velagaleti GV. Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 13 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am. J. Hum. Genet. 2005, 6:652-662.
    [143] Inoue K. Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am. J. Hum. Genet. 2002, 71:838-853.
    [144] Tuzun E. Fine-scale structural variation of the human genome. Nature Genet. 2005, 37, 727-732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700