三峡库区紫色砂岩林地土壤优先流特征及其形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
优先流是一种快速非平衡的土壤水分运动过程。森林流域中优先流的发生可提高土壤水分有效性,减少地表径流形成,对流域森林水文过程具有重要影响,有利于水资源保护和调控。探讨不同环境条件下优先流与土壤基质的相互作用,揭示优先流形成机理是当今土壤学和水文学交叉部分亟待解决的重点和难点问题之一。
     本研究采用亮蓝溶液染色示踪与积水渗透试验相结合的方法,对三峡库区紫色砂岩地区广泛分布的阔叶林、针叶林、针阔混交林和灌丛等4种林地的土壤优先流过程进行观测,依据体视学原理,空间点格局方法和水分穿透曲线理论,分别对林地优先流的形态特征与发生类型,优先路径的分布状态和数量特征进行研究,揭示了紫色砂岩林地土壤优先流的形成机理。研究主要结论如下:
     (1)以体视学原理为基础,通过分析三峡库区紫色砂岩林地壤中流形态,发现土壤优先流多伴随基质流一同发生,其运移速率约为基质流的4-18倍。不同类型林地的土壤优先流发展过程具有一定差别,随土壤垂直深度增加,林地土壤优先流的空间异质性逐渐加剧。以染色路径宽度<10 mm和>100 mm为标准,参考水流运动形态变化状况,可将林地壤中流类型划分为:均质基质流、非均质指流、高相互作用大孔隙流、混合作用大孔隙流和低相互作用大孔隙流等5类,其中指流和大孔隙流均属于土壤优先流范畴。紫色砂岩林地土壤优先流主要以大孔隙流的形式产生和发展,一般发生于土壤10-20 cm深度位置并直达剖面母质层顶部。
     (2)采用点格局方法对三峡库区紫色砂岩林地优先路径的空间分布规律进行研究。结果显示在不同渗透水量条件下,半径25 cm的土壤剖面空间尺度范围内,林地优先路径整体上表现出了显著的聚集分布状态,且随着空间尺度扩大其分布状态具有向均匀分布发展的趋势。植物根系和优先路径的空间分布关系,在表层0-20 cm土壤范围内表现出显著正关联性,表土层优先路径的形成与植物浅根系生长密切相关;20-50 cm的中低层土壤中,紫色砂岩碎砾逐渐增多,植物根系数量减少,二者空间分布关联性逐渐降低;土壤剖面底层范围内植物根系与优先路径表现出了一定空间分布负关联性,可能是乔木垂直根系生长堵塞了土壤中原有裂隙所致。
     (3)紫色砂岩林地优先流染色区和未染色区内土壤水分穿透曲线特征具有显著差异,水分出流速率与穿透时间成显著对数曲线关系,未染色区土壤达到水分稳定出流阶段的时间较其对应的染色区土壤一般滞后5-10 s。通过土壤水分穿透曲线计算得到紫色砂岩林地土壤大孔隙当量半径可分为0.3-0.5 mm、0.5-0.7 mm、0.7-1.5mm和1.5-3.0 mm等4个级别,不同类型林地的土壤大孔隙数量具有一定差别,染色区和未染色区相同当量半径的土壤大孔隙数量相差了近一个数量级。土壤大孔隙数量与土壤饱和渗透率的相关关系随其孔径减小逐渐降低。染色区内较密集的大孔隙分布状况,促进了林地土壤优先流的发生,以及优先流空间异质性的产生。
     (4)林地土壤优先流的形成是通过外部因素和内部因素共同作用实现的。水分条件是优先流形成的外部因素,优先流形成的内部因素是与“植物-土壤”相关的环境因子。以Spearman相关分析结果为基础,筛选出土壤密度、砂粒含量、粉黏比、有机质含量、根孔数量、根重密度、根长密度、土壤初始含水量和渗透水量等13个环境因子进行主成分分析,结果表明土壤孔隙结构因素、土壤水分状况因素、土壤类型因素和外部降水因素等四个主成分影响着三峡库区紫色砂岩林地土壤优先流形成,其中土壤孔隙结构因素是林地土壤优先流形成的最重要因素,可解释其46.76%的方差变异。
Preferential flow is a fast and non-equilibrium soil water movement process. Preferential flow in soils of forested watershed can increase soil water availability and reduce the genesis of surface runoff, which has an important influence on forest hydrological processes and is conducive to water resources conservation and regulation. Predicting formation mechanism of preferential flow and their interactions with the soil matrix under different environmental conditions has been identified as a key area where synergies between pedology and hydrology are urgently needed.
     Brilliant blue dye tracing and ponding infiltration methods were applied to observe preferential flow processes in four different forest soils (broadleaf forest, coniferous forest, mixed forest and shrub), which are widespread in purple sandstone regions of the Three Gorges Reservoir area. Based on the principles of stereology, spatial point pattern analysis and water breakthrough curves method, the morphological characteristics and occurrence types of preferential flow, the quantity and distribution characteristics of preferential flow paths were studied, respectively. The formation mechanism of preferential flow in forest soil of purple sandstone regions was revealed. The main results in this research were as follows:
     (1) Based on the principles of stereology, in purple sandstone forest soils of the Three Gorges Reservoir area, the morphological characteristics of interflow showed that preferential flow commonly occurred with soil matrix flow, and the water transport rates of preferential flow were 4 to 18 times faster than that of matrix flow. The preferential flow processes in different types of forest land were distinctive. The spatial variability of preferential flow in soils was gradually intensified with the soil depth. With stained path width<10 mm and> 100 mm as the criteria, and consulting water flow pattern changes, the forest interflow could be classified as five types:homogenous matrix flow, heterogeneous fingering flow, macropore flow with high interaction, macropore flow with mixed interaction and macropore flow with low interaction, which refers that fingering flow and macropore flow belong to preferential flow. Preferential flow in purple sandstone forest soils was mainly macropore flow, which generally occur at 10-20 cm depth of soil profiles and could reach to the top of parent material layers.
     (2) Point pattern analysis was used to reveal the spatial distribution of preferential flow paths in purple sandstone forest soils of the Three Gorges Reservoir area. The results showed that under different infiltration water volumes, with spatial scales in radius of 25 cm, the distribution of preferential flow paths was significant accumulation. Following the spatial scale expansion, preferential flow paths distribution trended to uniform. In the 0-20 cm depth soil surface layers, the spatial position of preferential flow paths and plant roots had a significant positive correlation. The formation of preferential flow paths in the surface soil layers was related to the growth of plant shallow roots. In the depth middle and deeper soil layers (20-50 cm), by purple sandstone debris gradually increased and amount of plant roots reduced, the spatial positive correlation of preferential flow paths and plant roots was decreases. In the bottom soil layers, the spatial distribution of preferential flow paths and plant roots showed a little negative correlation, which may be caused by the growth of tree vertical roots plugged original soil cracks.
     (3) Water breakthrough curves of soil samples in the dye stained area and the blank area were significantly different. The water effluent rate and its penetration time had a significant logarithmic relationship. The time of water effluent rate to stabilize in blank area was generally 5-10 s later than that in the dye stained area. The macropores in purple sandstone forest soils could be divided into four pore equivalent radius levels as 0.3-0.5 mm,0.5-0.7 mm,0.7-1.5 mm and 1.5-3.0 mm, respectively, which was calculated by water breakthrough curves. The quantities of soil macropores in different types of forest were distinctive, and macropores amounts in the dye stained area were 10 times bigger than that in the blank area. The correlation between macropore number and water stable effluent rates was dropped with the decreasing of macropores equivalent radius. More densely macropores distribution in the dye stained area promoted the formation of preferential flow, and generated its spatial heterogeneity.
     (4) Preferential flow occurrence in forest soil was attributed to external factors and internal factors. Water conditions were the external factors and environmental terms relevant to plant-soil were the internal factors. Thirteen environmental factors with higher Spearman correlation coefficient were selected for the principal component analysis, namely soil density, sand content, slit clay ration, organic matter content, root holes amount, root weight density, root length density, initial soil water content and infiltration water volume. The result showed that the soil pore structure factor, soil moisture factor, soil type factor, precipitation factor were the four principal components of formation mechanism of preferential flow in forest soils of purple sandstone regions, the Three Gorges Reservoir area. The soil pore structure was the most important factor with occurrence of preferential flow in forest soils, which accounted for 46.76% of the variance.
引文
[1]白永飞,李凌浩,王其兵,等.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J].植物生态学报.2000,24(6):667-673.
    [3]陈风琴,石辉.岷江上游三种典型植被下土壤优势流现象的染色法研究[J].生态科学.2006,25(1):69-73.
    [4]陈伟烈,江明喜,赵常明,等.三峡库区谷地的植物与植被[M].北京:中国水利水电出版社,2008.
    [5]陈伟烈,张喜群,梁松筠,等.三峡库区的植物与复合农业生态系统[M].北京:科学出版社,1994.
    [6]程金花,张洪江,史玉虎,等.长江三峡花岗岩地区优先流对渗流和地表径流的作用[J].水土保持通报.2007a,27(2):1-7.
    [7]程金花,张洪江,史玉虎,等.长江三峡花岗岩区林地优先流影响因子分析[J].水土保持学报.2006,20(5):28-33.
    [8]程金花,张洪江,史玉虎,等.长江三峡库区优先流模型修正及验证[J].山东农业大学学报.2007b,38(4):605-609.
    [9]程金花,张洪江,史玉虎.长江三峡库区“优先路径”与土壤特性关系[J].中国水土保持科学.2005,3(1):97-101.
    [10]程金花.长江三峡花岗岩林地坡面优先流模型研究[D].北京林业大学博士论文,2005.
    [11]程云,张洪江,史玉虎,等.长江三峡花岗岩坡面土管空间分布特征[J].北京林业大学学报.2001,23(5):19-22.
    [12]程竹华,张佳宝.分形理论在不同土壤对优势流敏感性研究中的应用[A].见:徐福安,周凌云.豫北平原农业生态系统研究(第2集)[C].北京:气象出版社.1999,25-30.
    [13]丁一汇,任国玉,石广玉,等.气候变化国家评估报告Ⅰ:中国气候变化的历史和未来趋势[J].气候变化研究进展.2006,2(1):3-8.
    [14]冯杰,郝振纯,陈启慧.分形理论在土壤大孔隙研究中的应用及其展望[J].土壤.2001,33(3):123-129.
    [15]冯杰,郝振纯.CT扫描确定土壤大孔隙分布[J].水科学进展.2002,13(5):611-617.
    [16]冯杰,郝振纯.CT在土壤大孔隙研究中的应用评述[J].排水灌溉.2000,19(3):71-76.
    [17]龚子同等著.中国土壤系统分类——理论方法实践[M].北京:科学出版社,1999.
    [18]李伟莉,金昌杰,王安志,等.土壤大孔隙流研究进展[J].应用生态学报.2007c,18(4):888-894.
    [19]李伟莉,金昌杰,王安志,等.长白山主要类型森林土壤大孔隙数量与垂直分布规律[J].应用生态学报.2007b,18(10):2179-2184.
    [20]李伟莉,金昌杰,王安志.长白山北坡两种类型森林土壤的大孔隙特征[J].应用生态学报.2007a,18(6):1213-1218.
    [21]林大仪.土壤学实验指导[M].北京:中国林业出版社,2004:75-77.
    [22]林而达,许吟隆,蒋金荷,等.气候变化国家评估报告(Ⅱ):气候变化的影响与适应.气候变化研究进展[J].2006,2(2):51-56.
    [23]刘国花,谢吉荣.重庆四面山风景区森林植被调查研究[J].渝西学院学报(自然科学版).2005, 4(1):90-92.
    [24]刘杰,杨振.汶川地震的时空点格局分析[J].地震学报.2009,31(5):506-515.
    [25]刘伟,区自清,应佩峰.土壤大孔隙及其研究方法[J].应用生态学报.2001,12(6):465-468.
    [26]刘亚平,陈川.土壤非饱和带中的优先流[J].水科学进展.1996,7(1):85-89.
    [27]卢炜丽,张洪江,杜士才,等.重庆四面山地区几种不同配置模式水土保持林生物多样性研究[J].山地学报.2009a,27(3):319-325.
    [28]卢炜丽,张洪江,王伟,等.重庆四面山5种不同配置模式人工林生物多样性研究[J].西北植物学报.2009b,29(1):160-166.
    [29]卢炜丽.重庆四面山植物群落结构及物种多样性研究[D].北京林业大学博士论文,2009:52-54.
    [30]马惠.重庆市四面山森林植物群落类型及其分布[D].北京林业大学硕士论文,2010.
    [31]马克平.生物群落多样性的测度方法[A].见:钱迎倩,马克平主编.生物多样性研究原理与方法[M].北京:中国科学技术出版社,1994:141-165.
    [32]梅莉,王政权,韩有志,等.水曲柳根系生物量、比根长和根长密度的分布格局[J].应用生态学报.2006,17(1):1-4.
    [33]牛健植,余新晓,张志强.优先流研究现状及发展趋势[J].生态学报.2006,26(1):231-243.
    [34]秦耀东,胡克林.大孔隙对农田耕作层饱和导水率的影响[J].水科学进展.1998,9(2):107-111.
    [35]区自清,贾良清,金海燕,等.大孔隙和优先水流及其对污染物在上壤中迁移行为的影响[J].土壤学报.1999,36(3):341-347.
    [36]石辉,陈凤琴,刘世荣.岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J].生态学报.2005,25(3):507-512.
    [37]石辉,刘世荣.森林土壤大孔隙特征及其生态水文学意义[J].山地学报.2005.23(5):533-539.
    [38]宋永昌.植被生态学[M].上海:华东师范大学出版社,2001:43-56.
    [39]孙向阳.土壤学[M].北京:中国林业出版社,2005:145-156.
    [40]唐国平,李秀彬,刘燕华.全球气候变化下水资源脆弱性及其评估方法[J].地球科学进展.2000,15(3):313-317.
    [41]汪殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述[J].生态学杂志.2001,20(4):55-60.
    [42]王大力,尹澄清.植物根孔在土壤生态系统中的功能[J].生态学报.2000,20(5):869-874.
    [43]王焕之.稻田土壤水分优先流的发生、发展与模拟研究[D].浙江大学硕士论文.2002:30-32.
    [44]王伟,张洪江,程金花,等.四面山阔叶林土壤大孔隙特征与优先流的关系[J].应用生态学报.2010,21(5):1217-1223.
    [45]王育松,上官铁梁.关于重要值计算方法的若干问题[J].山西大学学报(自然科学版).2010,33(2):312-316.
    [46]肖文发,李建文,于长青.长江三峡库区陆生动植物生态[M].重庆:西南师范大学出版社,2000.
    [47]徐琪.三峡库区移民环境容量研究[M].北京:科学出版社,1993.
    [48]徐勤学,王天巍,李朝霞,等.紫色土坡地壤中流特征[J].水科学进展.2010,13(2):229-234.
    [49]张春雨,赵秀海.随机区块法在空间点格局分析中的应用[J].生态学报.2008,28(7):3108-3115.
    [50]张尔辉.重庆四面山大型真菌调查研究初报[J].重庆师范大学学报(自然科学版).1989,6(1): 45-51.
    [51]张洪江,程金花,何凡,等.长江三峡花岗岩地区优先流运动及其模拟[M].北京:科学出版社,2006.
    [52]张洪江,程金花,史玉虎.三峡库区花岗岩林地坡面优先流对降雨的响应[J].北京林业大学学报.2004,26(5):6-9
    [53]张洪江,程云,史玉虎.长江三峡花岗岩坡面林地土管特性及其对管流的影响[J].长江流域资源与环境.2003,12(1):55-60.
    [54]张洪江,王玉杰,北原曜,等.长江三相爱花岗岩坡面管流实验研究[J].北京林业大学学报.2000,22(5):53-57.
    [55]张金屯,孟东平.芦芽山华北落叶松林不同龄级立木的点格局分析[J].生态学报.2004,24(1):35-40.
    [56]张金屯.植物种群空间分布的点格局分析[J].植物生态学报.1998,22(4):344-349.
    [57]章明奎.污染土壤中重金属的优势流迁移[J].环境科学学报.2005,25(2):192-197.
    [58]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [59]中国科学院南京土壤研究所土壤系统分类课题组,中国土壤系统分类课题研究协作组.中国土壤系统分类检索(第3版)[M].合肥:中国科学技术大学出版社,2001,1-275.
    [60]中国土壤学会土壤分类委员会(龚子同等执笔).中国土壤分类暂行草案(1978)[A].见:土壤分类及土壤地理论文集[C].杭州:浙江人民出版社,1979,265-266.
    [61]Abou Najm M R, Jabro J D, Iversen W M, et al. New method for the characterization of three dimensional preferential flow paths in the field [J]. Water Resources Research.2010,46, W02503, doi:10.1029/2009WR008594.
    [62]Aeby P, Forrer J, Steinmeier C, et al. Image analysis for determination of dye tracer concentrations in sand columns [J]. Soil Science Society of America Journal.1997,61:33-35.
    [63]Allaire S E, Roulier S, Cessna A J. Quantifying preferential flow in soils:A review of different techniques [J]. Journal of Hydrology.2009,378:179-204.
    [64]Allaire-Leung S E, Gupta S C, Moncrief J F. Interaction of KBr, FD&C Blue # 1, and Rhodamine WT on dye adsorption in a loam soil [J]. Journal of Environmental Quality.1999,28:1831-1837.
    [65]Andreassian V. Waters and forests:from historical controversy to scientific debate [J]. Journal of Hydrology.2004,291:1-27.
    [66]Bachmair S, Weiler M, Nutzmann G. Controls of land use and soil structure on water movement: Lessons for pollutant transfer through the unsaturated zone [J]. Journal of Hydrology.2009,369: 241-252.
    [67]Baker R S, Hillel D. Laboratory tests of a theory of fingering during infiltration into layered soils [J]. Soil Science Society of America Journal.1990,54:20-30.
    [68]Barley K P. Effects of root growth and decay on the permeability of a synthetic sandy loam [J]. Soil Science.1954,78:205-210.
    [69]Baveye P, Boast C H, Ogawa S, et al. Influence of image resolution and thresholding on the apparent mass fractal characteristics of preferential flow patterns in field soils [J]. Water Resources Research.1998,34(11):2783-2796.
    [70]Beven K, Clarke R T. On the variation of infiltration into a homogeneous soil matrix containing a population of macropores [J]. Water Resources Research.1986,22(3):383-388.
    [71]Beven K, Germann P. Macropores and water flow in soils [J]. Water Resources Research.1982, 18(5):1311-1325.
    [72]Blake G, Schlicht E, Zimmerman U. Water recharge in a soil with shrinkage cracks [J]. Soil Science Society of America Journal.1973.37:669-672.
    [73]Bodhinayake W, Si B C, Noborio K. Determination of hydraulic properties in sloping landscapes from tension and double-ring infiltrometers [J]. Vadose Zone Journal.2004,3:964-970.
    [74]Booltink H W G. Field-scale distributed modeling of bypass flow in heavily textured clay soil [J]. Journal of Hydrology.1994,163:65-84.
    [75]Bouma J, Belmans C F M, Dekker L W. Water infiltration and redistribution in a silt loam subsoil with vertical worm channels [J]. Soil Science Society of America Journal.1982,46:917-921.
    [76]Bouma J, De Laat P J M. Estimation of the moisture supply capacity of some swelling clay soils in the Netherlands [J]. Journal of Hydrology.1981,49:247-259.
    [77]Bouma J, Dekker L W.A case study on infiltration into dry clay soil. I:Morphological observations [J]. Geoderma.1978,20(1):27-40.
    [78]Bouma J, Wosten J H M. Characterizing ponded infiltration in a dry cracked clay soil [J]. Journal of Hydrology.1984.69:297-304.
    [79]Bouma J, Wosten J.H.M. Flow patterns during extended saturated flow in two undisturbed swelling clay soils with contrasting macrostructures [J]. Soil Science Society of America Journal. 1979,43:16-22.
    [80]Bouma J. Hydropedology as a powerful tool for environmental policy research [J]. Geoderma. 2006,131:275-286.
    [81]Bouma J. Soil morphology and preferential flow along macropores [J]. Agricultural Water Management,1981,3:235-250.
    [82]Brakensiek D L, Rawls W J, Longsdon S D. Fractal Description of Macroporosity [J]. Soil Science Society of America Journal.1992,56:1712-1723.
    [83]Carillo M L K, Letey J, Yates S R. Unstable water flow in a layered soil profile [J]. Soil Science Society of America Journal.2000,64:450-455.
    [84]Chao W C, Wu S H, Fan S W, et al. Distribution patterns of tree species in a lowland rainforest at Nanjen Lake, Southern Taiwan [J]. TAIWANIA.2008,53(2):124-133.
    [85]Curtis J T and Mcintosh R P. An upland forest continuum in the prairie-forest border region of WisconsinfJ]. Ecology.1951,32:476-496.
    [86]de Rooij G H. Modeling fingered flow of water in soils owing to wetting front instability:A review [J]. Journal of Hydrology.2000,231-232(5):277-294.
    [87]Dekker L W, Doerr S H, Oostindie K, et al. Water repellency and critical soil water content in a dune sand [J]. Soil Science Society of America Journal.2001,65:1667-1674.
    [88]Dekker L W, Ritsema C J. Fingered flow:the creator of sand columns in dune and beach sands [J]. Earth Surface Processes.1994b,19:153-164.
    [89]Dekker L W, Ritsema C J. How water moves in a water repellent sandy soil.1. Potential and actual water repellency [J]. Water Resources Research.1994a,30:2507-2517.
    [90]Diggle P J. Statistical analysis of spatial point patterns[M]. London:Academic Press.1983,15.
    [91]Diment G A, Watson K K. Stability analysis of water movement in unsaturated porous media.3. Experimental studies [J]. Water Resources Research.1985,21:979-984.
    [92]Douglas J T, Jarvis M G, et al. Structure of a silty soil in relation to management [J]. Journal of Soil Science.1986,37:137-151.
    [93]Droogers P, Stein A, Bouma J, et al. Parameters for describing soil macroporosity derived from staining patterns [J]. Geoderma.1998,83:293-308.
    [94]Duwing C, Delmas P, Miiller K, et al. Quantifying fluorescent tracer distribution in allophonic soils to image solute transport [J]. European Journal of Soil Science.2008,59:94-102.
    [95]Edwards W M, Shipitalo M J, Owens L B et al. Factors affecting preferential flow of water and atrazine through earthworm burrows under continuous no-till corn [J]. Journal of Environmental Quality.1993,22,453-457.
    [96]Ehlers W. Observation on earthworm channels and infiltration on tilled and untilled loess soil [J]. Soil Science.1975,119:242-249.
    [97]Essington M E, Tyler D D, Wiltson G V. Fluometuron behavior in long term tillage plots [J]. Soil Science.1995,160(6):405-414.
    [98]Ewel J J, Mazzarino M J, Berish C W. Tropical soil fertility changes under monocultures and successional communities of different strucrure[J]. Ecological Applications.1991,1:289-302.
    [99]FAO/UNESCO. Soil Map of the World, Revised Legend[M]. Rome:FAO/UNESCO,1988.
    [100]Feyen J, Jacques D, Timmerman A, et al. Modeling water flow and solute transport in heterogeneous soils:a review of recent approaches [J]. Journal of Agricultural Engineering Research.1998,70:231-256.
    [101]Fliihler H, Durner W, Flury M. Lateral solute mixing processes-a key for understanding field-scale transport of water and solutes [J]. Geoderma.1996,70,165-183.
    [102]Flury M, Fliihler H, Jury W A, et al. Susceptibility of soils to preferential flow of water:A field study [J]. Water Resources Research.1994,30(7):1945-1954.
    [103]Flury M, Fluhler H. Brilliant Blue FCF as a dye tracer for solute transport studies. A toxicological review [J]. Journal of Environmental Quality.1994,23:1108-1112.
    [104]Flury M, Fliihler H. Modeling solute leaching in soils by diffusion limited aggregation:Basic concepts and applications to conservative solutes [J]. Water Resources Research.1995.31(10): 2443-2452
    [105]Flury M, Fliihler H. Tracer characteristics of Brilliant Blue FCF [J]. Soil Science Society of America Journal.1995,59:22-27.
    [106]Flury M, Wai N N. Dyes as tracers for vadose zone hydrology [J]. Reviews of Geophysics.2003, 41(1). Article number 1002, doi:10.1029/2001RG000109.
    [107]Forrer I, Kasteel R, Flury M, et al. Longitudinal and lateral dispersion in an unsaturated field soil [J]. Water Resources Research.1999,35:3049-3060.
    [108]Forrer I, Papritz A, Kasteel R, et al. Quantifying dye tracers in soil profiles by image processing [J]. European Journal of Soil Science.2000,51:313-322.
    [109]Franklin D H, West L T, Radcliffe D E, et al. Characteristics and genesis of preferential flow paths in a piedmont ultisol [J]. Soil Science Society of America Journal.2007,71(3):752-758.
    [110]Frederick K D, Major D C, Stakhiv E Z. Introduction [J]. Climatic Change.1997,37:1-5.
    [111]Frederick K D, Major D C. Climate change and water resources [J]. Climatic Change.1997,37: 7-23.
    [112]German-Heins J, Flury M. Sorption of Brilliant Blue FCF in soils as affected by pH and ionic strength [J]. Geoderma.2000,97:87-101.
    [113]Ghodrati M, Jury W A. A field study using dyes to characterize preferential flow of water [J]. Soil Science Society of America Journal.1990,54:1558-1563.
    [114]Gish T J, Gimenez D, Rawls W J. Impact of roots on ground water quality [J]. Plant and Soil.1998, 200,47-54.
    [115]Gish T J, Helling C S, Mojasevic M. Preferential movement of atrazine and cyanazine under field conditions [J]. Transactions of the American Society of Agricultural Engineers.1991,34: 1699-1705.
    [116]Gish T J, Jury W A. Effect of plant roots and root channels on solute transport [J]. Transactions of the American Society of Agricultural Engineers.1983,26,440-444.
    [117]Gish T J, Shirmohammadi A. Preferential Flow [A]. Proceedings of National Symposium on the American Society of Agricultural Engineers[C]. St Joseph, MI:1991.
    [118]Glass R J, Steenhuis T S, Parlarge J Y. Wetting front instability as a rapid and far-reaching hydrologic process in the vadose zone [J]. Journal of Contaminant Hydrology,1988,3(2-4): 207-226.
    [119]Glass RJ, Nicholl M J. Physics of gravity fingering of immiscible fluids within porous media:an overview of current understanding and selected complicating factors [J]. Geoderma.1996,10: 133-163.
    [120]Goreaud F, Pelissier R. On explicit formulas of edge effect correction for Ripley's K-function [J]. Journal of Vegetable Science.1999,10:433-438.
    [121]Hagedorn F, Bundt M. The age of preferential flow paths [J]. Geoderma.2002,108:119-132.
    [122]Hatano R, Booltink H W G. Using fractal dimensions of stained flow patterns in a clay soil to predict bypass flow [J]. Journal of Hydrology.1992,135(1-4):121-131.
    [123]Hatano R, Booltink H W G. Using fractal dimensions of stained flow patterns in a clay soil to predict bypass flow [C]. In:Baveye P, Parlange J Y, Stewart B A (Eds.), Fractals in Soil Science [A]. CRC Press, Boca Raton,1998:261-291.
    [124]Hatano R, Kawamura N, Ikeda J, et al. Evaluation of the effect of morphological features of flow paths on solute transport by using fractal dimensions of methylene blue staining pattern [J]. Geoderma.1992,53:31-44.
    [125]Haws N, Das B S, Rao P S C. Dual-domain solute transfer and transport processes:evaluation in batch and transport experiments [J]. Journal of Contaminant Hydrology.2004,75:257-280.
    [126]Helling C S, Gish T J. Physical and chemical processes affecting preferential flow [J]. American Society of Agricultural Engineering.1991,77:50-63.
    [127]Hendrickx J M H, Flury M. Uniform and preferential flow mechanisms in the vadose zone. In: National Committee for Rock Mechanics [A] (Eds.), Conceptual Models of Flow and Transport in the Fractured Vadose Zone [C]. National Academic Press, Washington DC,2001:149-187.
    [128]Hillel D. Unstable flow in layered soils:A review [J]. Hydrology Process.1987,1(2):143-147.
    [129]Jarvis N J, Larsbo M., Roulier S, et al. The role of soil properties in regulating non-equilibrium macropore flow and solute transport in agricultural topsoils [J]. European Journal of Soil Science. 2007a.58:282-292.
    [130]Jarvis N J, Leeds-Harrison P B, Dosser J M. The use of tension infiltrometers to assess routes and rates of infiltration in a clay soil [J]. Journal of Soil Science.1987,38:633-640.
    [131]Jarvis N J, Zavattaro L, Rajkai K, et al. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information [J]. Geoderma.2002,108:1-17.
    [132]Jarvis N J. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality [J]. European Journal of Soil Science.2007b,58(3):523-546.
    [133]Kramers G, Richards K G, Holden N M. Assessing the potential for the occurrence and character of preferential flow in three Irish grassland soils using image analysis [J]. Geoderma.2009,153: 362-371.
    [134]Kulli B, Stamm C, Papritz A, et al. Discrimination of flow regions on the basis of stained infiltration patterns in soil profiles [J]. Vadose Zone Journal.2003,2:338-348.
    [135]Kung K J S, Donohue S V. Improved solute-sampling protocol in a sandy vadose zone using ground-penetrating radar [J]. Soil Science Society of America Journal.1991,55:1543-1545.
    [136]Kung K J S. Laboratory observation of funnel flow mechanism sand its influence on solute transport [J]. Journal of Environmental Quality.1993,22(1):91-102.
    [137]Kung K J S. Preferential flow in a sandy vadose zone soil 1:Field observation [J]. Geoderma. 1990a,46:51-58.
    [138]Kung K J S. Preferential flow in a sandy vadose zone soil 2:Mechanism and implications [J]. Geoderma.1990b,46:59-71.
    [139]Lamande M, Hallaire V, Curmi P, et al. Changes of pore morphology, infiltration and earthworm community in a loamy soil under different agricultural managements [J]. Catena.2003,54: 637-649.
    [140]Lang P. Application of Artificial Tracers in Hydrology [J]. Guideline. Bulletind hydrogeologie. 2004, Special Issue:20.
    [141]Lange B, Luescher P, Germann P F. Significance of tree roots for preferential infiltration in stagnic soils [J]. Hydrology and Earth System Sciences.2009,13,1809-1821.
    [142]Lesturgez G, Poss R, Hartmann C, et al. Roots of Stylosanthes hamata create macropores in the compact layer of a sandy soil [J]. Plant and Soil.2004,260:101-109.
    [143]Lin H S, Bouma J, Pachepsky Y. Revitalizing pedology through hydrology and connecting hydrology to pedology [J]. Geoderma.2006,131:255-256.
    [144]Lin H S, Bouma J, Wilding L P, et al. Advances in hydropedology [J]. Advances in Agronomy. 2005,85:1-89.
    [145]Lin H S, Mclnnes K J, Wilding L P et al. Effects of soil morphology on hydraulic properties:I. Quantification of soil morphology [J]. Soil Science Society of America Journal.1999,63:948-954.
    [146]Lipsius K, Mooney S J. Using image analysis of tracer staining to examine the infiltration patterns in a water repellent contaminated sandy soil [J]. Geoderma.2006,136:865-875.
    [147]Liu H H, Zhang R D. Macroscopic relationship for preferential flow in the vadose zone:Theory and validation [J]. Science in China Series E:Technological Sciences.2009,52(11):3264-3269.
    [148]Liu J G, Diamond J. Science and government-Revolutionizing China's environmental protection [J]. Science.2008,319:37-38.
    [149]Logsdon S D. Transient variation in the infiltration rate during measurement with tension infiltrometers [J]. Soil Science.1997,162:233-241.
    [150]Lu J, Wu L. Visualizing bromide and iodide water tracer in soil profiles by spray methods. Journal of Environmental Quality.2003,32:363-367.
    [151]Luxmoore R J, Ferrand L A. Towards pore-scale analysis of preferential flow and chemical transport [M]. In:Russo D and Dagan G eds. Water flow and solute transport in soils:development and applications. Berlin:Springer-Verlag,1993.
    [152]Luxmoore R J, Jardine P M, Wilson G V, et al. Physical and chemical controls of preferred path flow through a forested hillslope [J]. Geoderma.1990,46:139-154.
    [153]Luxmoore R J. Micro-, meso-and macroporosity of soil [J]. Soil Science Society of America Journal.1981,45:671-672.
    [154]Magurran A E. Ecological diversity and it measurement[M] New Jersy:Princeton University Press, 1988,154-183.
    [155]Malone R W, Logsdon S, Shipitalo M J, et al. Tillage effect on macroporosity and herbicide transport in percolate [J]. Geoderma.2003,116:191-215.
    [156]McBratney A B, Moran CJ, Stewart J B, et al. Modifications to a method of rapid assessment of soil macropore structure by image analysis [J]. Geoderma.1992,53:255-274.
    [157]McDonnell J J. The influence of macropores on debris flow initiation [J]. Quarterly Journal of Engineering Geology and Hydrogeology.1990,23:325-331.
    [158]Mitchell A R, Ellsworth T R, Meek B D. Effect of root systems on preferential flow in swelling soil [J]. Communications in Soil Science and Plant Analysis.1995,26:15,2655-2666.
    [159]Murphy C P, Banfield C F. Pore space variability in a subsurface horizon of tow soils [J]. Journal of Soil Science.1978,29:156-166.
    [160]Nieber J L. Modeling finger development and persistence in initially dry porous media [J]. Geoderma.1996,70:207-229.
    [161]Niu J Z, Yu X X, Zhang Z Q, et al. Classification and types of preferential flow for a dark coniferous forest ecosystem in the upper reach area of the Yangtze River [J]. International Journal of Sediment Research.2007,22(4):292-303.
    [162]Noguchi S, Rahim N A, Baharuddin K, et al. Soil physical properties and preferential flow pathways in tropical rain forest, Bubit Tarek, Peniusular, Malaysia [J]. Journal of Forestry Resources,1997,2:115-120.
    [163]Noguchi S, Tsuboyama Y, Sidle R C, et al. Morphological characteristics of macropores and the distribution of preferential flow pathways in a forested slope segment [J]. Soil Science Society of America Journal.1999,63:1413-1423.
    [164]Ohrstrom P, Persson M, Albergel J, et al. Field-scale variation of preferential flow as indicated from dye coverage [J]. Journal of Hydrology.2002,257(1-4):164-173.
    [165]Omoti U, Wild A. Use of fluorescent dyes to mark the pathways of solute movement through soils under leaching condition:2. Filed experiment [J]. Soil Science.1979,128:98-104.
    [166]Perillo C A, Gupta S C, Nater E A, et al. Prevalence and initiation of preferential flow paths in a sandy loam with argillic horizon [J]. Geoderma.1999,89:307-331.
    [167]Petersen C T, Hansen S, Jensen H E. Depth distribution of preferential flow patterns in a sandy loam soil as affected by tillage [J]. Hydrology and Earth System Sciences.1997,4,769-776.
    [168]Petersen C T, Jensen H.E, Hansen S, et al. Susceptibility of a sandy loam soil to preferential flow as affected by tillage [J]. Soil and Tillage Research.2001,58:81-89.
    [169]Peyton R L, Andersons H, Gantzer C J. Applying X-ray CT to measure macropore diameters in undisturbed soil cores [J]. Geoderma.1992,53:329-340.
    [170]Peyton R L, Gantzer C J, Anmderson S H, et al. Fractal dimension to describe soil macropore structure using X-ray computed tomography [J]. Water Resources Research.1994,30:691-700.
    [171]Qii Z Q, Jia L Q, Jin H Y. Formation of soil macropores and preferential migration of linear alkylbenzene sulfonate (LAS) in soils [J]. Chemosphere.1999,38(9):1985-1996.
    [172]Radulovich R, Solorzano E, Sollins P. Soil macropore size distribution from water breakthrough curves [J]. Soil Science Society of America Journal.1989,53:556-559.
    [173]Rasiah V, Aylmore A G. Characterizing the changes in soil porosity by computed tomography and fractal dimension [J]. Soil Science.1998,163(3):203-211.
    [174]Rawls W J, Brakensiek D L, Longsdon S D. Estimation of macropore properties for no-till soils [J]. Transactions of the American Society of Agricultural Engineers.1995,39(1):91-95.
    [175]Rawls W J, Brakensiek D L, Longsdon S D. Predicting Saturated Hydraulic Conductivity Utilizing Fractal Principles [J]. Soil Science Society of America Journal.1993,57:1193-1197.
    [176]Reynolds H L, Hungate B A, Chapin F S, et al. Soil heterogeneity and plant competition in an annual grassland[J]. Ecology.1997,78:2076-2090.
    [177]Reynolds W D, Elrick D E. Measurement and characterization of soil hydraulic properties [A]. In: Alvarez-Benedi J, Munz-Carpena R.(Eds.). Soil-Water-Solute Process Characterization, An Integrated Approach [C]. CRC Press, Boca Raton, FL, USA,2005:197-252.
    [178]Rezanezhad F, Vogel H J, Roth K. Experimental study of fingered flow through initially dry sand [J]. Hydrology and Earth System Science Discussions.2006,3:2595-2620.
    [179]Ringrose-Voase A J. One dimensional image analysis of soil structure:I. Principles [J]. Journal, of Soil Science.1990,41:499-512.
    [180]Ripley B D. Spatial statistics [M]. New York:Wiley.1981,252.
    [181]Ritsema C J, Dekker L W, Heijs A W J. Three-dimensional fingered flow patterns in a water repellent sandy field soil [J]. Soil Science.1997,162:79-90.
    [182]Ritsema C J, Dekker L W. Distribution flow-a general process in the top layer of water repellent soils [J]. Water Resources Research.1995,31,1187-1200.
    [183]Roulier S, Jarvis N. Modeling macropore flow effects on pesticide leaching:inverse parameter estimation using microlysimeters [J]. Journal of Environmental Quality.2003a,32(6):2341-2353.
    [184]Sander T and Gerke H H. Preferential flow patterns in paddy fields using a dye tracer[J]. Vadose Zone Journal.2007,6(1):105-115.
    [185]Sheng F, Wang K, Zhang R, et al. Characterizing soil preferential flow using iodine-starch staining experiments and the active region model [J]. Journal of Hydrology.2009,367:115-124.
    [186]Singh P, Rameshwar K S, Thompson M L. Measurement and characterization of macropores by using AUTOCAD and automatic image analysis[J]. Journal of Environmental Quality.1991,20: 289-294.
    [187]Skopp J, Gardner W R, Tyler E J. Solute movement in saturated soils:two region model with small interaction [J]. Soil Science Society of America Journal.1981,45:837-842.
    [188]Smart P L, Laidlaw I MS. An evaluation of some fluorescent dyes used for water tracing [J]. Water Resources Research.1977,13:15-33.
    [189]Smart P L. A review of toxicology of twelve fluorescent dyes used for water tracing [J]. National Speleological Society Bulletin.1984,46:21-33.
    [190]Smettern K R J, Collis-George N. Statistical characterization of soil biopores using a soil peel method [J]. Geoderma.1985,36:27-36.
    [191]Soil Survey Staff. Keys to Soil Taxonomy (9th Ed.)[M]. USA:USDA/NRCS,2003.
    [192]Starr J L, Deroo H C, Frink C R, et al. Leaching characteristics of a layered field soil [J]. Soil Science Society of America Journal.1978,42:386-391.
    [193]Strudley M W, Green T R, Ascough Ⅱ J C. Tillage effects on soil hydraulic properties in space and time:State of the science [J]. Soil and Tillage Research.2008,99:4-48.
    [194]Tyler S W, Wheatcraft S W. Fractal processes in soil water retention [J]. Water Resources Research.1990,26(5):1047-1054.
    [195]van Ommen H C, Dijksma R, Hendrickx J M H, et al. Experimental assessment of preferential flow paths in a field soil [J]. Journal of Hydrology.1989,105:253-262.
    [196]Vanderborght J, Gahwiller P, Fluhler H. Identification of transport processes in soil cores using fluorescent tracers [J]. Soil Science Society of America Journal.2002,66(3):774-787.
    [197]Vermeul V R, Istok J D, Flint A L, et al. An improved method for quantifying soil macroporosity [J]. Soil Science Society of America Journal.1993,57:809-816.
    [198]Vervoort R W, Cattle S R, Minasny B. The hydrology of vertosols used for cotton production:I. Hydraulic, structural and fundamental soil properties [J]. Australian Journal of Soil Research.2003, 41:1255-1272.
    [199]Villholth K G. Field and numerical investigation of macropore flow and transport processes [D]. PhD thesis, Technical University of Denmark. Lyngby, Denmark.1994.
    [200]Vincent L, Soille P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations [J]. IEEE transactions on pattern analysis and machine intelligence.1991,13(6): 583-598.
    [201]Vogel T, Gerke H H, Zhang R, et al. Modeling flow and transport in a two-dimensional dual-permeability system with spatially variable hydraulic properties [J]. Journal of Hydrology, 2000,238(1-2):78-89.
    [202]Wang W, Zhang H J, Li M, et al. Infiltration characteristics of water in forest soils in the Simian mountains, Chongqing City, southwestern China [J]. Frontiers of Forestry in China.2009,4(3): 338-343.
    [203]Wang W, Zhang H J, Wang H Y, et al. Morphological and distribution variability of preferential flow in plantation soils on the purple sandstone hillslopes using image analysis [A]. In:Luo Q (Eds.). Proceedings of IITA-GRS 2010 Volume I [C] Piscataway:IEEE Press,2010:125-128.
    [204]Wang Z, Feyen J, Ritsema C J. Susceptibility and predictability of conditions for preferential flow [J]. Water Resources Research.1998,34:2169-2182.
    [205]Wang Z, Wu L, Harter T, et al. A field study of unsatuable preferential flow during soil water redistribution [J]. Water Resources Research.2003,39(4):1075.
    [206]Ward J S, Parker G R, Ferrandino F J. Long-term spatial dynamics in an old growth deciduous forest[J]. Forest Ecology and Management.1996,83:189-202.
    [207]Warner G S, Nieber J L, Moore I D, et al. Characterizing macropores in soil by computed tomography [J]. Soil Science Society of America Journal.1989,53:653-660.
    [208]Watson K W, Luxmoore R J. Estimating macroporosity in a forest watershed by use of a tension infiltrometer [J]. Soil Science Society of America Journal.1986,50,578-582.
    [209]Weibel E R. Stereological methods [A]. Practical methods for biological morphometry, vol.1 [C]. Academic Press:London,] 979.
    [210]Weiler M, Fliihler H. Inferring flow types from dye patterns in macroporous soils [J]. Geoderma. 2004.120,137-153.
    [211]Weiler M, McDonnell J J. Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes [J]. Water Resources Research.2007,43. Article number W03403. doi:10.1029/2006WR004867.
    [212]Weiler M, Naef F. An experimental tracer study of the role of macropores in infiltration in grassland soils [J]. Hydrological Process.2003a,17 (2):477-493.
    [213]Weiler M, Naef F. Simulating surface and subsurface initiation of macropore flow [J]. Journal of Hydrology.2003b,273:139-154.
    [214]Williams A G, Dowd J F, Scholefield D. Preferential flow variability in a well-structured soil [J]. Soil Science Society of America Journal.2003,67:1272-1281.
    [215]Williams A G, Scholefield D, Dowd J F, et al. Investigating preferential flow in a large intact soil block under pasture [J]. Soil Use and Management.2000,16:264-269.
    [216]Wilson G V, Luxmoore R J. Infiltration macroporosity distribution on two watersheds [J]. Soil Science Society of America Journal.1988,52:329-335.
    [217]Wuest S B. Comparison of preferen al flow paths to bulk soil in a weakly aggregated silt loam soil [J]. Vadose Zone Journal.2009,8(3):623-627.
    [218]Yao T, Hendrickx J M H. Stability of wetting fronts in dry homogeneous soils under low infiltration rates [J]. Soil Science Society of America Journal.1996,60:20-28.
    [219]Zehe E, Fluhler H. Preferential transport of isoproturon at a plot scale and a field scale tile-drained site [J]. Journal of Hydrology.2001a,247:100-115.
    [220]Zehe E, Fliihler H. Slope scale variation of flow patterns in soil profiles [J]. Journal of Hydrology. 2001b,247:116-132.
    [221]Zeng Y, Gantzer C J, Payton R L, et al. Fractal dimension and lacunarity of bulk density determined with X-ray computed tomography [J]. Soil Science Society of America Journal.1996, 60:1718-1724.
    [222]Zhang H J, Cheng J H, Shi Y H, et al. The distribution of preferential paths and its relation to the soil characteristics in the three gorges area, China [J]. International Journal of Sediment Research. 2007,22(1),39-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700