趋化素样细胞因子1(CKLF1)C端肽C19、C27干预对哮喘小鼠气道炎症、黏液分泌及气道反应性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景支气管哮喘(简称哮喘)是由多种细胞(如嗜酸性粒细胞、肥大细胞、T淋巴细胞、中性粒细胞、气道上皮细胞等)和细胞组分参与的气道慢性炎症性疾病。20世纪80年代后提出了哮喘的本质是气道慢性炎症和气道高反应性(airway hyperresponsiveness,AHR)。气道炎症是气道高反应性(AHR)的病理基础,黏液高分泌、气道高反应性、可逆性气流受限和气道重构是哮喘的重要特征,其中嗜酸性粒细胞(Eos)在哮喘的发病中起了重要的作用,嗜酸性粒细胞在气道局部的浸润是哮喘的最显著的特征之一,研究认为肺部EOS浸润是气道高反应性(AHR)发生的必要条件。
     趋化素样因子1(chemokine-like factor 1,CKLFI),为一新基因超家族的趋化因子,是北京大学医学部免疫学系马大龙教授领导的实验室在国际上首先发现并成功克隆的一个新的具有趋化活性的细胞因子,获中国及国际专利,并命名为趋化素样因子1。CKLF1是一种分泌性蛋白,对CKLF1的体内外功能研究发现,大鼠CKLF1和人CKLF1相似,对中性粒细胞、单核细胞、淋巴细胞等具有明显的趋化活性,并具有刺激骨骼肌增殖活性和刺激骨髓细胞增殖活性,并且能与人CCR4结合,证实CKLF1是CCR4又一新的功能配体。CKLF1在活化的CD4~+/CD8~+T细胞表达上调。在注射CKLF1真核表达质粒的小鼠肺部炎性病变明显,与哮喘发病的病理改变非常相似,且正常人气道上皮细胞可表达CKLF1mRNA,其可因TNF-a的刺激而加强,肺组织的Western blot及免疫组化结果显示CKLF1基因在肺内表达显著。对进一步利用化学合成的CKLF1 C端肽C19、C27的体外功能研究,发现其对CCR4、CCR5转染细胞具有趋化作用,C19趋化活性较弱。CKLF1具有的炎细胞趋化活性及独特的致肺部病理改变等特征,我们便想到,CKLF1是否参与哮喘气道炎症及气道高反应性(AHR)的发生发展?由此本研究选择CKLF1的C端肽C19、C27在哮喘小鼠模型进行体内功能的研究,观察其对哮喘小鼠气道EOS炎症、气道黏液分泌及对气道反应性的影响。
     研究目的在我们成熟的哮喘模型基础上,腹腔注射CKLF1的C端肽C19、C27,观察其对哮喘小鼠气道EOS炎症、气道黏液分泌及对气道反应性的影响。
     研究方法选择健康雄性的C57BL/6小鼠,6—8周龄,体重18—22g。以卵白蛋白(OVA)作为抗原进行两次腹腔注射致敏和三次雾化吸入激发,建立哮喘模型,同时设立阴性对照组(以生理盐水(NS)代替OVA)。分别于激发前30min腹腔注射C19、C27不同剂量干预,分为:阴性对照组(NS组)、致敏攻击组(OVA组)、C19、C27不同剂量干预组。于最后一次抗原激发后24h检测支气管肺泡灌洗液(BALF)中炎症细胞,组织病理观察肺组织炎症和气道黏液分泌,并检测各组小鼠的气道反应性水平。分别以杯状细胞化生指数——指每mm长气管上皮中杯状细胞数目;上皮黏液储备指数——上皮过碘酸-雪呋(PAS)阳性染色面积比气管上皮总面积,作为气道黏液的定量观察指标。行肺组织病理切片观察嗜酸性粒细胞和其它炎症细胞的浸润。
     研究结果
     1 C19、C27干预对哮喘小鼠BALF中Eos数的影响
     在OVA致敏攻击组,BALF中Eos数较阴性对照组明显增高(p<0.05)。C19、C27干预后,与OVA致敏攻击组比较,C19各剂量组Eos比例和Eos绝对数均有显著性差异(p<0.05),但C19各剂量组间无显著性差异;C27各剂量组Eos比例和Eos绝对数无显著性差异。
     2 C19、C27干预对哮喘小鼠肺组织炎症浸润的影响
     肺组织病理切片HE染色显示:阴性对照组小鼠气道及血管周围无Eos浸润,上皮完整;而OVA致敏攻击组小鼠气道及血管周围均可见大量炎症细胞和Eos浸润,并波及肺实质,上皮脱落不完整。C19干预显示各剂量组气道及血管周围仍可见一些炎症细胞,但Eos较OVA致敏攻击组明显降低,上皮基本完整。C27干预后较OVA致敏攻击组无明显改变。
     PAS染色显示:阴性对照组气道未见GC增生和肥大,末见气道上皮细胞黏液分泌;OVA致敏攻击组可见气道上皮杯状细胞增生肥大,并有大量黏液分泌;C19、C27干预后镜下各组较OVA致敏攻击组无明显差异改变。
     3 C19、C27干预对哮喘小鼠气道黏液的定量分析
     OVA致敏攻击组和C19、C27干预组气道黏液的储备指数和杯状细胞的化生指数均高于阴性对照组(p<0.05),C19、C27干预各剂量组与OVA致敏攻击组比较差异无统计学意义。
     4 C19、C27干预对哮喘小鼠气道反应性的影响
     C19各干预组胸腔压(pleural pressure,Ppl)与OVA致敏攻击组比较显著降低(p<0.05),但C19各剂量组之间胸腔压差异无显著性;C27各干预组Ppl与OVA致敏攻击组比较并无显著性差异。
     结论
     1.CKLF1 C端肽C19可抑制哮喘小鼠气道Eos炎症,并能降低气道高反应性;C27对哮喘小鼠气道Eos炎症及气道高反应性没有明显影响。
     2.CKLF1 C端肽C19、C27对哮喘小鼠的气道黏液高分泌无明显影响。
Background Asthma is a chronic airway inflammatory disorder in which many cells(eosinophil,mast,T lymphocyte,neutrophil and airway epithelium) and cytokines participate associated with variable airflow limitation, airway mucus hypersecretion and airway hyperresponsiveness(AHR).Increasing evidence suggests that eosinophils (Eos) play a central role in the pathogenesis of asthma. Eosinophils develop from CD34~+ hematopoietic progenitor cells. After exposure to allergen, actived TH2 lymphocytes in the airways secret sereval chemokines and chemoattractants. With the effect of IL-5 and eotaxin, CD34~+ progenitor cells multiply and differentiate to mature eosinophils which traffic from bone marrow (BM) into airway mucosa via the circulation.
    The chemokine-like factor 1 (CKLF1) is a novel human cytokine isolated from PHA-stimulated U937 cells, which is firstly discoveried and cloned from the labortory of peking university center for human disease genomics. The CKLF1, which belongs to a novel gene family, has chemotaxis effect on different leukocytes both in vitro and in vivo. It can also stimulate proliferation of skeletal muscle cells and bone marrow cells. CKLF1 has a CC motif and the key amino acids around the motif are identical with those of TARC/CCL17 (Thymus- and activation-regulated chemokine) and
    MDC/CCL22 (Macrophage Derived Chemokine), the cognate ligands for CCR4 which are up-regulated in the airways of atopic asthmatics. Thus, CKLF1 is a novel functional ligand for CCR4. CKLF1 is also found that it is up-regulated in activated CD4~+ and CD8~+ cells. A single intramuscular injection of CKLF1 plasmid DNA into BALB/c mice cause dramatic pathological changes in the lungs of treated mice. Those changes are similar to phenomena observed in asthma. C19 and C27 are C terminatio peptide of CKLF1, which are obtained by chemical synthesis. C19 and C27 are functional ligands for CCR4 and CCR5, they also exhibit chemotactic effect on leukocytes. Those data suggest that CKLF1 may play an important role in the pathogenesis of asthma. In this study we investigated the effects of intraperitoneal injection of C19 and C27 of C terminatio peptide of CKLF1 by different dosages on the airway inflammation and airway mucus secretion and airway hyperresponsiveness in a mouse model of asthma.
    Objective Based on a mouse model of asthma we created previously, intraperitoneal injection of C19 and C27 of C terminatio peptide of CKLF1 by different dosages , then we examined the effects on the airway inflammation and airway mucus secretion and hyperresponsiveness.
    Methods Male C57BL/6 mice, 6-8 week old, were sensitized two times and challenged three times by ovalbumin(OVA) as OVA/OVA group, and mice were treated by normal saline as control group. Before 30 minutes of every challenge, to intraperitoneal injection of C19 and C27 respectively by different dosages. So we assigned mice to four groups: Normal saline solution group(NS group), asthma model group(OVA group), C19 -treated groups, C27-treated groups. Then 24 hours after the last challenge, the bronchoalveolar lavage(BALF) inflammatory cell counts and the pathomorphological changes in the lung were analyzed; the goblet cell hyperplasia ratio(HR) and the epithelial cell mucus occupying ratio(MOR) were also measured; the level of airway responsiveness was detected.
    Results:
    1. The changes of Eos population in BALF after C19 and C27-treated.
    We found Eos increased obviously in BALF after OVA challenge compared with NS group, p<0.05. Compared with OVA group, Eos in BALF was reduced significantly in C19-treated groups, p<0.05; but Eos in BALF was not reduced significantly by C27.
    2. The change of pulmonary pathology after C19 and C27-treated.
    In NS group mice, there were no Eos accumulation around airways and vessels, and no mucus secretion in the epithelial cells. However, in OVA group, we observed a significant increase in Eos infiltration around airways and vessels, and mucus hypersecretion in the epithelial cells. In C19-treated mice, there were little inflammatory cells around airways and vessels, however mucus hypersecretion has no change compared with OVA group. In C27-treated mice, both inflammatory cells and mucus hypersecretion have no change compared with OVA group.
    3. Quantitative analysis of airways mucus after C19/C27-treated.
    HR and MOR of C19-treated groups, C27-treated groups and OVA group increased significantly compared with NS group, p<0.05; but HR and MOR of C19-treated groups and C27-treated groups were still not significant difference compared with OVA group.
    4. The change of airway responsiveness after C19 and C27-treated.
    Pleural pressure (Ppl) of C19-treated groups were reduced significantly compared with OVA group, p<0.05; but Ppl of C27-treated groups were not significant difference compared with OVA group.
    Conclusion
    1. Eos in BALF can be reduced in C19-treated groups, C19 peptide can inhibit the airway inflammation and hyperresponsiveness; but C27 peptide has no effect on the airway inflammation and hyperresponsiveness.
    2. Both C19 peptide and C27 peptide have no effect on the airway mucus hypersecretion.
引文
1. Lee JJ, Dimina D, Macias MP, et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science. 2004; 305(5691): 1773-1776.
    2. Han W, Lou Y, Tang J, et al. Molecular cloning and characterization of chemokine-like factor 1 (CKLF1) a novel human cytokine with unique structure and potential chemotactic activity. Biochem J, 2001, 357(Pt 1): 127-135.
    3. Wang Y, Zhang YM, Yang X, et al. Chemokine-like factor 1 is a functional ligand for CC chemokine receptor 4 (CCR4). Life Sci, 2006, 78(6): 614-621.
    4. Kurashima K, Fujimura M, Myou S, et al. Asthma severity is associated with an increase in both blood CXCR3+ and CCR4+ T cells. Respirology, 2006, 11(2): 152-157.
    5. Pilette C, Francis JN, Till SJ, et al. CCR4 ligands are up-regulated in the airways of atopic asthmatics after segmental allergen challenge. Eur Respir J, 2004, 23 (6): 876-884.
    6. Li T, Zhong J, Chen Y, et al. Expression of chemokine-like factor 1 is upregulated during T lymphocyte activation. Life Sci, 2006, 79(6): 519-524.
    7. Tan YX, Han WL, Chen YY, et al. Chemokine-like factor 1, a novel cytokine, contributes to airway damage, remodeling and pulmonary fibrosis. Chin Med J (Engl), 2004, 117(8): 1123-1129.
    8. Shen HH, Ochkur SI, McGarry MP, et al. A Causative relationship exists between eosinophils and the development of allergy pulmonary pathologies in the mouse.J Immunol.2003;170:3296-3305.
    
    9.Santing RE, Meurs H, Van der mark TW, et al. A novel method to assess airway function parameters in chronically instrumented, unrestrained guinea-pigs. Pulm Pharmacol, 1992,5(4):265-272.
    
    10.Schuiling M, Zuidhof AB, Zaagsma J, et al. Involvement of tachykinin NK1 receptor in the development of allergen-induced airway hyperreactivity and airway inflammation in conscious, unrestrained guinea pigs. Am J Respir Crit Care Med, 1999,159(2):423-430.
    
    11 .Lee KS, Lee HK, Hayflick JS, et al. Inhibition of phosphoinositide 3-kinase delta attenuates allergic airway inflammation and hyperresponsiveness in murine asthma model. FASEB J, 2006, 20(3):455-465.
    
    12.Shen H, O'Byrne PM, Ellis R, et al. The effects of intranasal budesonide on allergen-induced production of interleukin-5 and eotaxin, airways, blood and bone marrow eosinophilia, and eosinophil progenitor expansion in sensitized mice. Am J Respir Crit Care Med, 2002,166(2):146-153.
    
    13.Borchers MT, Ansay T, DeSalle R, et al. In vitro assessment of chemokine receptor-ligand interactions mediating mouse eosinophil migration.J Leukoc Biol, 2002, 71 (6): 1033-1041.
    14.Nouri-Aria KT, Wilson D, Francis JN, et al. CCR4 in human allergen-induced late responses in the skin and lung. Eur J Immunol, 2002, 32 (7) : 1933-1938.
    15.Gonzalo JA, Lloyed CM, Kremer L. Eosinophil recruitment to the lung in a murine model of allergic inflammation the role of T cells, chemokines, and adhesion receptors. J Clin Invest, 1996, 98(10):2332-2345.
    
    16.Gonzalo JA, Lloyd CM, Wen D.The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J Exp Med, 1998, 188(1): 157-167.
    
    17.Rothenberg ME, MacLean JA, Pearlman E, et al. Targeted disruption of the chemokine eotaxin partially reduces antigeninduced tissue eosinophilia.J Exp Med, 1997, 185(4): 785-790.
    18. Erb KJ. Atopic disorders: a default pathway in the absence of infection. Immunol Today, 1999, 20(7): 317-322.
    19. Panina-Bordignon P, Papi A, Mariani M, et al. The C-Cchemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest, 2001, 107(11): 1357-1364.
    20. Lloyd CM, Delanay T, Nguyen T, et al. CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocytederived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J Exp Med 2000, 191: 265-274.
    21. Han WL, Ding P, Xu M, et al. Identification of eight genes encoding chemokine-like factor superfamily members 1-8 (CKLFSF1-8) by in silico cloning and experimental validation. Genomics, 2003, 81(6): 609-617.
    22. Cohn L, Homer RJ, MacLeod H, et al. Th2-induced airway mucus production is dependent on IL-4R alpha, but not on eosinophils. J Immunol, 1999, 162(10): 6178-6183.
    23. Kibe A, Inoue H, Fukuyama S, et al. Differential Regulation by Glucocorticoid of Interleukin-13-induced Eosinophilia, Hyperresponsiveness, and Goblet Cell Hyperplasia in Mouse Airways. Am J Respir Crit Care Med, 2003, 167(1): 50-56.
    24. Cohn L, Tepper JS, Bottomly K, et al. IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1 cells. J Immunol, 1998, 161(8): 3813-3816.
    25. Grunig G, Warnock M, Wakil AE, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science, 1998, 282(5397): 2261-2263.
    1. Mantovani A. The chemokine system: redundancy for robust outputs. Immunol Today. 1999, 20(6): 254-257.
    2. Han W, Lou Y, Tang J, et al. Molecular cloning and characterization of chemokine-like factor 1 (CKLF1), a novel human cytokine with unique structure and potential chemotactic activity. Biochem J, 2001, 357(Pt 1): 127-135.
    3. Lou Y, Xia D, Han W, et al. Molecular cloning and characterization of rat chemokine-like factor 1 and 2. Gene, 2003, 307: 125-32.
    4. Tan YX, Han WL, Chen YY, et al. Chemokine-like factor 1, a novel cytokine, contributes to airway damage, remodeling and pulmonary fibrosis. Chin Med J (Engl), 2004, 117(8): 1123-1129.
    5.韩文玲,芮珉.陈英玉,等.趋化素样因子CKLF对骨髓细胞增殖活性的研究.中国医学科学院学报,2001,23(2):119~122.
    6. Broxmeyer HE, Sherry L, Lu L, et al. Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells. Blood. 1990, 76(6): 1110-1116.
    7.克晓燕,贾丽萍,景红梅,等.新的人趋化素样因子对骨髓造血干/祖细胞的体外刺激作用.中华血液学杂志,2002,23(6):301~303.
    8. Xia D, Li X, Lou Y, et al. Overexpression of chemokine-like factor 2 promotes the proliferation and survival of C2C 12 skeletal muscle cells. Biochim Biophys Acta, 2002, 1591(1-3): 163-173.
    9.夏东岚.娄雅欣.韩文玲.等.大鼠趋化素样因子对成肌细胞促增殖作用的研究.细胞与分子免疫学杂志,2002,18(4):313~315.
    10.夏东岚.陈英玉,韩文玲,等.人趋化素样因子2对小鼠成纤维细胞BALB/c3T3的促增殖和凋亡抑制作用.中华微生物学和免疫学杂志,2003.23(1):5-8.
    11. Humbles CM, Lloyd SJ. A critical role for eosinophils in allergic airways remodeling. Science. 2004; 305 (5691): 1776-1779.
    12.谭亚夏,马大龙,钟南山,等.新趋化素样因子1直接介导的小鼠肺纤维化样病变.全国弥漫性肺问质性疾病学术会议论文汇编,福州,2001,35-37.
    13. Wang Y, Zhang YM, Yang X, et al. Chemokine-like factor 1 is a functional ligand for CC chemokine receptor 4 (CCR4). Life Sci, 2006,78(6):614-621.
    
    14. Kurashima K, Fujimura M, Myou S, et al. Asthma severity is associated with an increase in both blood CXCR3+ and CCR4+ T cells. Respirology, 2006,11 (2): 152-157.
    
    15. Pilette C, Francis JN, Till SJ,et al. CCR4 ligands are up-regulated in the airways of atopic asthmatics after segmental allergen challenge. Eur Respir J, 2004 , 23 (6):876-884.
    
    16. Li T, Zhong J, Chen Y, et al. Expression of chemokine-like factor 1 is upregulated during T lymphocyte activation. Life Sci, 2006 , 79(6):519-524.
    1 Inohara N, Nunez G. NODs: intracellular proteins involved in inflammation and apoptosis[J]. Nature Rev Immunol, 2003, 3(5): 371-382.
    2 Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease[J]. Nature, 2001, 411 (6837): 603-606.
    3 Inohara N, Nunez G. The NOD: a signaling module that regulate apoptosis and host defedse against pathogens[J]. Oncogene, 2001, 20(2): 6473-6481.
    4 Hisamatsu T, Suzuki M, Podolsky DK. Interferon-γ augments CARD4/NOD1 gene and protein expression through interferon regulatoryfactor-1 in intestinal epithelial cells[J]. J Biol. Chem, 2003, 278(35): 32962-32968.
    5 Rosenstiel P, Fantini M, Brautigam K, et al. TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells[J]. Gastroenterology, 2003, 124(4): 1001-1009.
    6 Girardin SE, Boneca IG, Carneiro LA, et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan[J]. Science, 2003, 300(5625): 1584-1587.
    7 Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection[J]. J Biol Chem, 2003, 278(11): 8869-8872.
    8 Inohara N, Chamaillard M, McDonald C, et al. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease[J]. Annu. Rev Biochem, 2004, 74: 355-383.
    9 Chamaillard M, Hashimoto M, Horie Y, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid[J]. Nature Immunol, 2003, 4(7): 702-707.
    10 Pauleau AL, Murray PJ. Role of Nod2 in the response of macrophages to Toll-like receptor agonists[J]. Mol Cell Biol, 2003, 23(21): 7531-7539.
    11 Voss E, Wehkamp J, Wehkamp K, et al. NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2[J]. J Biol Che, 2006, 281(4): 2005-2011.
    12 Gutierrez O, Pipaon C, Inohara N, et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation[J]. J Biol Chem, 2002, 277(44): 41701-41705.
    13 Watanabe T, Kitani A, Murray PJ, et al. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses[J]. Nat Immunol, 2004, 5(8): 800-808
    14 Netea MG, Ferwerda G, de Jong DJ, et al. Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release[J]. J Immunol, 2005, 174(10): 6518-6523.
    15 Uehara A, Yang S, Fujimoto Y, et al. Muramyldipeptide and diaminopimelic acidcontaining desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture[J]. Cell Microbiol, 2005, 7(1): 53-61.
    16. Fritz JH, Girardin SE, Fitting C, et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists[J]. Eur J Immuno, 2005, 35(8): 2459-2470.
    17 Chamaillard M, Hashimoto M, Horie Y, et al. An essential role for NODI in host recognition of bacterial peptidoglycan containing diaminopimelic acid/77. Nat Immunol,2003. 4(7): 702-707.
    
    18 Viala J, Chaput C, Boneca 1G, et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island[J]. Nat Immunol,2004, 5(11): 1166-1174.
    
    19 Kobayashi K, Inohara N, Hernandez LD, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems[J]. Nature, 2002,416(6877): 194-199 .
    
    20 Abbott DW, Wilkins A, Asara JM, et al. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO[J] Curr Biol, 2004,14(24):2217-2227.
    
    21 Barnich N, Hisamatsu T, Aguirre JE, et al. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells[J] J Biol Chem, 2005,280(19): 19021-19026 .
    
    22 Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract[J]. Science,2005, 307(5710):731 -734 .
    
    23 Opitz B, Puschel A, Schmeck B, et al. Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae[J]. J Biol Chem,2004,279(35):36426-36432.
    
    24 Hisamatsu T,Suzuki M, Podolsky DK. Interferon-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae/77. 7 Biol Chem,2004,279(35):36426-36432.
    
    25 Hess DJ, Henry-Stanley MJ, Erickson EA,et al. Intracellular survival of Staphylococcus aureus within cultured enterocytes[J] J Surg Res,2003,114(1):42-49.
    
    26 Esen N, Tanga FY, DeLeo JA,et al. Toll-like receptor 2 (TLR2) mediates astrocyte activation in response to the Gram-positive bacterium Staphylococcus aureus[J]. J Neurochem, 2004, 88(3):746-758.
    
    27 Ogura YN, Inohara A,Benito FF,et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-KB[J] J Biol Chem,2001,276(7):4812-4818.
    
    28 Chen CM, Gong Y, Zhang M,et al. Reciprocal cross-talk between Nod2 and TAK1 signaling pathways[J]. J Biol Chem, 2004, 279(24): 25876-25882.
    29 Opitz B, Forster S, Hocke AC, et al. Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae[J]. Circ Res, 2005, 96(3): 319-326.
    30 Inohara, Chamaillard, McDonald C, et al. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease[J]. Annu Rev Biochem, 2005, 74: 355-383.
    31 Shirakawa T, Enomoto T, Shimazu S, et al. The inverse association between tuberculin responses and atopic disorder[J]. Science, 1997, 275(5296): 77-79
    32 Daniels SE, Bhattacharrya S, James A, et al. A genome-wide search for quantitative trait loci underlying asthma[J]. Nature, 1996, 383(6597): 247-250。
    33 Ogura Y, Bonen DK, Inohara N, et al. Aframeshift mutation in NOD2 associated with susceptibility to Crohn's disease[J]. Nature, 2001, 411(6837): 603-606.
    34 Weidinger S, Klopp N, Rummler L, Wagenpfeil S, et al. Association of NOD1 polymorphisms with atopic eczema and related phenotypes[J]. J Allergy Clin Immunol, 2005, 116(1): 177-184
    35 Hysi P, Kabesch M, Moffatt MF, et al. NOD1 variation, immunoglobulin E and asthma[J]. Hum Mol Gene, 2005, 14(7): 935-941.
    36 Damiano JS, Reed JC. CARD Proteins as Therapeutic Targets in Cancer[J]. Current Drug Target, 2004, 5(4): 367-374
    37 Hosomi Y, Gemma A, Hosoya Y, et al. Somatic mutation of the Caspase-5 gene in human lung cancer[J], Int J Mol Med, 2003, 12(4): 443-446.
    38 Faucheu C, Blanchet AM, Collard-Dutilleul V, et al. Identification of a cysteine protease closely related to interleukin-1 beta-converting enzyme[J]. Eur J Biochem, 1996, 236(1): 207-213.
    1. Martin FH, Suggs SV, Langley KE, et al. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell, 1990, 63(1): 203-11.
    2. Oliveira SH, Taub DD, Nagel J, et al. Stem cell factor induces eosinophilactivation and degranulation: mediator release and gene array analysis. Blood, 2002, 100(13): 4291-7. 3. Al-Muhsen SZ, Shablovsky G, Olivenstein R, et al. The expression of stem cell factor and c-kit receptor in human asthmatic airways. Clin Exp Allergy, 2004, 34(6): 911-6.
    4. Da Silva CA., Kassel O, Lebouquin R, et al. Paradoxical early glucocorticoid induction of stem cell factor (SCF) expression in inflammatory conditions. Br J Pharmacol, 2004, 141(1): 75-84.
    5. Da Silva CA, Frossard N. Potential role of stem cell factor in the asthma control by glucocorticoids. Chem Immunol Allergy. 2005, 87: 154-62.
    6. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002, 298(5600): 1911-1912.
    7. Song KS, Seong JK, Chung KC, et al. Induction of MUC8 gene expression by interleukin-1beta is mediated by a sequential ERK/MAPK/RSK1/CREB cascade pathway in human airway epithelial cells. J Biol Chem, 2003 278(37): 34890-6.
    8. Webster JC, Huber RM, Hanson RL, et al. Dexamethasone and tumor necrosis factor-alpha act together to induce the celluar inhibitor of apoptosis-2 gene and prevent apoptosis in a variety of cell types.Endocrinolog ,2002 ,143(10):3866-74.
    
    9. Austen KF, Boyce JA. Mast cell lineage development and phenotypic regulation. Leuk Res ,2001 ,25(7):511-8.
    
    10. Kiener HP,Hofbauer R,Tohidast-Akrad M ,et al.Tumor necrosis factor a promotes the expression of stem factor in synovial fibroblasts and their capacity to induce mast cell chemotaxis.Arthritis & Rheumatism, 2000,43(1): 164-174.
    
    11. Olsson N,Rak S, Nilsson G.Demonstration of mast cell chemotactic activity in bronchoalveolar lavage fluid collected from asthmatic patients before and during pollen season.J Allergy Clin Immunol,2000,105(3):455-461.
    
    12. Oliveira SH,Lukacs NW.Stem cell factor: a hemopoietic cytokine with important targets in asthma.Curr Drug Targets Inflamm Allergy,2003 ,2 (4):313-8.
    
    13. Lora JM, Al-Garawi A, Pickard MD, et al.FcepsilonRI-dependent gene expression in human mast cells is differentially controlled by T helper type 2 cytokines. J Allergy Clin Immunol, 2003 112(6):1119-26.
    
    14. Metcalf D, Mifsud S, Di Rago L. Stem cell factor can stimulate the formation of eosinophils by two types of murine eosinophil progenitor cells. Stem Cells, 2002,20(5):460-9.
    
    15. Oliveira SH, Hogaboam CM, Berlin A, et al. SCF-induced airway hyperreactivity is dependent on leukotriene production. Am J Physiol Lung Cell Mol Physiol, 2001,280(6):L1242-9.
    
    16. Orlofsky A, Wu Y, Prystowsky MB. Divergent regulation of the murine CC chemokine C10 by Th(1) and Th(2) cytokines. Cytokine, 2000,12(3):220-8.
    
    17. Galli G, Chantry D, Annunziato F, et al. Macrophage-derived chemokine production by activated human T cells in vitro and in vivo: preferential association with the production of type 2 cytokines. Eur J Immunol,2000,30(1):204-10.
    
    18. Holtzman MJ, Morton JD, Shornick LP, et al. Immunity, inflammation, and remodeling in the airway epithelial barrier: epithelial-viral-allergic paradigm. Physiol Rev ,2002 82(1):19-46.
    19. Berlin AA, Lincold P, Tomkinson A ,et al.Inhibition of stem cell factor reduces pulmonary cytokine levels during allergic airway responses.Clin Exp Immunol , 2004,136(1):15-20.
    
    20. Houwelingen AH, Kool M, de Jager SC, et al. Mast cell-derived TNF-alpha primes sensory nerve endings in a pulmonary hypersensitivity reaction. J Immunol,2002,168(10):5297-302.
    
    21. Thomas PS. Tumour necrosis factor-alpha: the role of this multifunctional cytokine in asthma. Immunol Cell Biol ,2001,79(2): 132-40.
    
    22. Hoshino M, Morita S, Iwashita H, et al. Increased expression of the human Ca2+-activated Cl- channel 1 (CaCCl) gene in the asthmatic airway. Am J Respir Crit Care Med,2002,165(8): 1132-6.
    
    23. Annette Robichaud, Stephanie A Tuck, Stacia Kargman, et al. Gob-5 is Not Essential for Mucus Overproduction in Preclinical Murine Models of Allergic Asthma .Am. J. Respir. Cell Mol. Biol, 2005 ,33(3):303-314.
    
    24. Toda M, Tulic MK, Levitt RC, et al. A calcium-activated chloride channel (HCLCAl) is strongly related to IL-9 expression and mucus production in bronchial epithelium of patients with asthma. J Allergy Clin Immunol,2002 ,109(2):246-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700