含隔振系统的带基座圆柱壳体的振动振动研究;钱振华
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜艇低速航行时,潜艇主辅机的振动是主要的噪声源,其振动通过隔振系统传递到艇体。由于包含隔振系统的实际潜艇结构的复杂性,常规的有限元分析和实验测试成本高、周期长,并且难以在初步设计阶段应用,因此希望建立一种简单有效的方法估算包含隔振系统的带基座圆柱壳体的振动特性。围绕这个目的,本文完成了以下几个方面的工作:
     1、推导了基于Rayleigh-Ritz原理的高阶平板壳单元和基于有限条法的平板壳单元,比较了高阶元和有限条元在平板、折叠板和带基座壳体的振动分析中的性能,数值算例表明高阶元和有限条元具有很高的精度和收敛速度。
     2、推导了基于解析试函数的广义协调四边形膜单元和板单元,并用上述两种单元组合成基于解析试函数的广义协调四边形平板壳单元,用双参数法证明了基于解析试函数的广义协调四边形板单元对于中厚板求解问题的解的唯一性和收敛性。数值算例表明基于解析试函数的广义协调四边形平板壳单元比其它同类单元具有更高的精度和计算效率。
     3、在BLZPACK、FEAST和PARDISO软件包的基础上,用Fortran语言,分别开发了利用分块Lanczos法和基于量子力学密度矩阵的围线积分方法计算特征值的并行程序。数值算例表明这两种方法具有准确和高效的特点。同时,对不同规模的数值算例的计算时间进行比较,初步验证了并行程序的计算效率。
     4、利用频响函数综合法对内部带有典型浮筏隔振系统的带基座圆柱壳体结构进行建模,并对一个双机组的浮筏隔振系统进行计算,对圆柱壳体结构的基座连接点处的位移和输入到基座上的力进行比较,结果表明频响函数综合具有很好的精度。这为带有复杂内部结构的圆柱壳体结构的振动分析提供了一套思路。
     5、为了验证频响函数综合法采用实验频响函数数据进行综合的合理性,对一含有内部单层隔振系统的带基座圆柱壳体结构进行了实验研究,其中内部单层隔振系统的振源为加筋板结构,其频响函数由实验测得,带基座的圆柱壳结构采用在前述章节中的有限元单元进行建模得到,结果表明利用含有噪声污染的实验数据进行综合时,频响函数综合法仍然具有一定的精度。这表明频响函数综合法可以方便地处理实验频响函数数据和理论频响函数数据的综合,具有广泛的工程应用前景。
Low-speed submarine voyage, the submarine noise generated by the machine running, about the overall sound level of 70% of the radiation。These noise which is made by vibration from raft isolation system to pass through to the cylinder. As the real raft isolation system in the submarine is complexed, testing is difficult. We need a convenient estimate method which included with the base isolation system, including the vibration characteristics of cylindrical shell . Around this purpose, this completed the following tasks:
     1、derived based on the high-order Rayleigh-Ritz principle of shell element and finite strip shell element , compared these elements with the flat, folded plates and shells by the vibration analysis of the performance of numerical examples, and it shows that higher-order element and finite strip element with high accuracy and convergence speed.
     2、obtained analytic trial function based on the generalized conforming quadrilateral membrane element and plate element, and use the above-mentioned two element based on the assembled of analytical trial function of the generalized conforming quadrilateral flat-type shell element, with the two-parameter method to prove analytic trial function based on the generalized quadrilateral plate element for coordination of the fourth-order plate solution for solving the problem of uniqueness and convergence. The numerical example shows that the present quadrilateral shell element is better than other similar shell elements with higher accuracy and computational efficiency.
     3、BLZPACK, FEAST, and PARDISO packages, based on the Fortran language, each has developed block-Lanczos method and the use of quantum mechanics, density matrix based on the tube line integral method of calculating the finite element eigenvalue parallel programs. The numerical examples show that these two methods with the accurate and efficient characteristics. At the same time, the finite element program for parallel programs to compare the calculation time of the initial validation of the computational efficiency of parallel programs.
     4、the use of frequency response function synthesis method with a typical internal floating raft isolation system with a base of cylindrical shell structure of the model, and a two-unit floating raft isolation system calculated on the cylindrical shell structure of base connection points of the displacement and entered into force on the base of comparison, results showed that the frequency response function is integrated with good accuracy.
     5、in order to verify frequency response function synthesis method for the experimental frequency response function of the correctness of data integration on a single-layer vibration isolation system with internal cylindrical shell structure with a base of experimental study, in which the internal single-layer vibration isolation system the source for the stiffened plate structure, and its frequency response function is measured by the experiment, with the base of the cylindrical structure used in the preceding chapters of the finite element model unit available, experimental results show that the use of experimental data containing noise pollution in a comprehensive, the frequency response function synthesis still has a certain degree of accuracy. This shows that the frequency response function synthesis method can easily deal with experimental data and theoretical frequency response function, frequency response function data, integrated with a wide range of engineering application prospects.
引文
[1].郭素兰,杨士莪.我国声隐身技术的发展现状及其几点建议[J].隐身技术, 1998, (2): 7-9.
    [2].沈顺根,吴文伟.潜艇结构噪声预报及控制技术[J].隐身技术, 1999, (2): 8-13.
    [3].沈顺根,吴文伟.结构振动引起水下噪声物理模型及工程近似估算公式[R].中国船舶科学研究中心报告, 1996.
    [4]. Graham, W. The influence of curvature on the sound radiated by vibrating panels[J]. The Journal of the Acoustical Society of America, 1995, 98 1581.
    [5]. Metsaveer, J.,Klauson, A. Influence of the curvature on the dispersion curves of a submerged cylindrical shell[J]. The Journal of the Acoustical Society of America, 1996, 100 1551.
    [6]. MIGUEL, C.,CAMBRIDGE, M. Dynamic Behavior of Reinforced Cylindrical Shells in a Vacuum and in a Fluid[J]. Journal of Applied Mechanics, 1954, (3): 35-41.
    [7]. Berglund, J.,Klosner, J. Interaction of a ring-reinforced shell and a fluid medium[J]. J.App.Mech, 1967, 35 (1): 139-147.
    [8]. Burroughs, C. Acoustic radiation from fluid?\loaded infinite circular cylinders with doubly periodic ring supports[J]. The Journal of the Acoustical Society of America, 1984, 75 715.
    [9]. Harari, A.,Sandman, B. Radiation and vibrational properties of submerged stiffened cylindrical shells[J]. The Journal of the Acoustical Society of America, 1990, 88 1817.
    [10]. Bleich, H.,Baron, M. Free and forced vibrations of an infinitely long cylindrical shell in an infinite acoustic medium. In Storming Media: 1952.
    [11].曾革委,黄玉盈,谢官模.外壳板采用纵骨加强的双层加肋圆柱壳水下声辐射分析[J].中国造船, 2003, 44 (2): 45-52.
    [12].刘涛,范军.水中弹性圆柱壳的共振声辐射[J].声学学报, 2002, 27 (1): 62-66.
    [13].谢官模,李军向,罗斌.环肋,舱壁和纵骨加强的无限长圆柱壳在水下的声辐射特性[J].船舶力学, 2004, 8 (2): 101-108.
    [14].殷学文.敷设消声瓦的双层加肋圆柱壳的振动和声辐射研究[D].无锡:中国船舶科学研究中心2001.
    [15].殷学文.多层复合圆柱壳体的振动和声辐射研究[D].上海:上海交通大学2008.
    [16]. Hrennikoff, A.,Tezcan, S. Analysis of cylindrical shells by the finite element method[A]. In Symposium of problems of interdependence of design and construction of large span shells for industrial and civic buildings[C], Leningrad, 1966.
    [17]. Zienkiewics, O.,Cheung, Y. The finite element method in structural and continuum mechanics[M]. New Yorker: 1967.
    [18]. Henshell, R. D.,Neale, B. K.,Warburton, G. B. The natural frequencies of a complex cylindrical shell structure[J]. Applications of Experimental and Theoretical Structural Dynamics, 1972, (1): 21.
    [19]. Ciarlet, P. Conforming finite element method for the shell problems[A]. In Whiteman, J., The Mathematics of Finite Elements and Applications [C], London, 1976; 105-123.
    [20]. Fulton, R.,Epink, R.,Walz, J. The accuracy of finite element method in continuum problems[A]. In Proceedings of the 5th US National Congress of Applied Mechanics[C], New York, 1966; 272.
    [21].陈万吉.高性能有限元研究的新进展[A].袁明武,中国计算力学学会2001年会议论文集[C],广州, 2001; 136-151.
    [22]. Cheung, Y.,Tham, L. Finite strip method[M]. London: CRC, 1997.
    [23].陈文,任文敏.环加肋圆柱壳屈曲分析的有限条法[J].工程力学, 1994, 11 (3): 12-17.
    [24].陈文,杨慧珠.环加肋圆柱壳振动分析的复合有限条法[J].振动工程学报, 1994, 7 (2): 180-184.
    [25]. Hinton, E.,Sienz, J.,zak a, M. Analysis and optimization of prismatic and axisymmetric shell structures: theory, practice, and software[M]. London: Springer Verlag, 2003.
    [26].魏发远,李世其.浸水圆柱壳振动特性的有限条―边界元分析[J].应用力学学报, 2001, 18 (2): 1-6.
    [27]. Babuska, I.,Szabo, B. On the rates of convergence of the finite element method[J]. International Journal for Numerical Methods in Engineering, 1982, 18 (3): 323-341.
    [28]. Babuska, I.,Suri, M. The p and hp versions of the finite element method, basic principles and properties[J]. SIAM review, 1994, 36 (4): 578-632.
    [29]. Holzer, S.,WERNER, H.,RANK, E. An implementation of the hp-version of the finite element method for Reissner-Mindlin plate problems[J]. International Journal for Numerical Methods in Engineering, 1990, 30 459-471.
    [30]. Scapolla, T. Avoiding locking in Reissner-Mindlin plates with high-order hierarchic bubble plus finite elements[J]. Journal of computational and applied mathematics, 1995, 63 (1-3): 291-299.
    [31]. Babuska, I.,Griebel, M.,Pitkaranta, J. The problem of selecting the shape functions for a p-type finite element[J]. Int. J. Numer. Meth. Eng, 1989, 28 (7-9): 1891-1908.
    [32]. Cote, A.,Charron, F. On the selection of p-version shape functions for plate vibration problems[J]. Computers and Structures, 2001, 79 (1): 119-130.
    [33]. Szabo, B.,Babuska, I. Finite element analysis[M]. New Yorker: Wiley-Interscience, 1991.
    [34]. Solin, P.,Segeth, K.,Dole el, I. Higher-order finite element methods[M]. Boca Raton: CRC Press, 2003.
    [35].龙驭球,辛克贵.广义协调元[J].土木工程学报, 1987, 20 (1): 1-14.
    [36].龙驭球,龙志飞,岑松.新型有限元论[M].北京:清华大学出版社, 2004.
    [37].胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社, 1981.
    [38].钱伟长.变分法及有限元[M].北京:科学出版社, 1980.
    [39].傅向荣,龙驭球.基于解析试函数的广义协调四边形膜元[J].工程力学, 2002, 19 (4): 12-16.
    [40].龙驭球,傅向荣.基于解析试函数的广义协调四边形厚板元[J].工程力学, 2002, 19 (3): 10-15.
    [41].傅向荣,龙驭球,袁明武.基于解析试函数的广义协调超基膜元[J].工程力学, 2005, 22 (3): 1-4.
    [42].傅向荣,龙驭球,袁明武, etc.基于解析试函数的内参型广义协调膜元[J].工程力学, 2006, 23 (1): 1-5.
    [43].赵俊卿.广义协调元的构造理论和收敛性问题[J].土木工程学报, 1988, 21 (4): 35-37.
    [44].石钟慈,陈绍春.九参数广义协调元的收敛性[J].计算数学, 1991, 13 (2): 193-203.
    [45].陈万吉,杨晓林.广义协调元的变分基础及几何不变性[J].计算结构力学及其应用, 1992, 9 (3): 245-252.
    [46].李聚轩,龙驭球.广义协调元方法的收敛性[J].工程力学, 1996, 13 (001): 75-80.
    [47]. Wilson, E.,Taylor, R.,Doherty, W., etc. Incompatible displacement models[A]. In SJ, F., Numerical and Computer Methods in Structural Mechanics[C], New York: , 1973; 43.
    [48]. Irons, B.,Razzaque, A. Experience with patch tests for convergence of finite elements[M]. University College, 1972.
    [49]. Stummel, F. The limitations of the patch test[J]. International Journal for Numerical Methods inEngineering, 1980, 15 (2): 177-185.
    [50]. Stummel, F. The generalized patch test[J]. SIAM Journal on Numerical Analysis, 1979, 16 (3): 449-471.
    [51]. Shi, Z. The FEM-Test for convergence of nonconforming finite elements[J]. Mathematics of Computation, 1987, 49 (180): 391-405.
    [52].陈绍春,石钟慈.构造单元刚度矩阵的双参数法[J].计算数学, 1991, 13 (3): 286-296.
    [53].陈绍春,石钟慈.关于构造单元刚度矩阵的“自由列式”方法[J].计算数学, 1991, 13 (4): 417-424.
    [54].孙会霞,陈绍春. 12参双参数矩形板元的误差估计[J].高校应用数学学报: A辑, 2005, 20 (2): 177-184.
    [55].石东洋,彭玉成.关于对称双参数12参三角形元的分析[J].数学的实践与认识, 2007, 37 (22): 88-92.
    [56].石钟慈,陈千勇.一个高精度矩形板元[J].中国科学: A辑, 2000, 30 (6): 504-515.
    [57]. Antes, H. Bicubic fundamental splines in plate bending[J]. International Journal for Numerical Methods in Engineering, 1974, 8 (3): 503-511.
    [58].石钟慈.样条有限元[J].计算数学, 1979, 1 (1): 50-72.
    [59].何广乾,周润珍,林春哲.样条函数法在解板壳问题中的应用[J].建筑结构学报, 1981, 2 (2): 1-9.
    [60].龙述尧.用样条有限点法解薄板动力问题[J].湖南大学学报(自然科学版), 1981, 3 23-29.
    [61]. SHEN, P. Static, vibration and stability analysis of stiffened plates using B spline functions[J]. Computers and Structures, 1987, 27 (1): 73-78.
    [62].范重,龙驭球.样条中厚壳单元[J].特种结构, 1990, 7 (002): 3-9.
    [63].刘效尧.样条函数与结构力学[M].北京:人民交通出版社, 1990.
    [64].沈鹏程.多变量样条有限元法[M].北京:科学出版社, 1997.
    [65].秦荣.计算结构力学[M].北京:科学出版社, 2001.
    [66].蒋炜.有限单元-放松边界条件法解弹性理论平面问题[J].力学学报, 1981, 13 (3): 236-247.
    [67].钟万勰,纪峥.理性有限元[J].计算结构力学及其应用, 1996, 13 (1): 1-8.
    [68].纪峥,钟万勰.平面理性四节点及五节点四边形有限元[J].计算力学学报, 1997, 14 (1): 19-27.
    [69].王永富.理性有限元[D].大连:大连理工大学1997.
    [70].孙卫明,杨光松. Reissner厚板弹性弯曲的理性有限元法[J].应用数学和力学, 1999, 20 (2): 181-186.
    [71].朱炳麒,陈学宏.理性Timoshenko梁单元及其应用[J].力学与实践, 2008, 30 (1): 31-34.
    [72].吴广明.舰船复杂隔振系统建模及其功率流研究[D].上海:上海交通大学2004.
    [73]. Giagopulos, D.,Natsiavas, S. Hybrid (numerical-experimental) modeling of complex structures with linear and nonlinear components[J]. Nonlinear Dynamics, 2007, 47 (1): 193-217.
    [74]. Liu, W.,Ewins, D. Substructure synthesis via elastic media[J]. Journal of Sound and Vibration, 2002, 257 (2): 361-379.
    [75].吴振东.基于频响函数合成的浮筏隔振系统分析方法研究[D].上海:上海交通大学2007.
    [76].左鹤声.机械阻抗方法与应用[M].北京:机械工业出版社, 1987.
    [77]. Pinnington, R. J. Approximate mobilities of built up structures[R]. ISVR Technical Report, 1988.
    [78].熊冶平.柔性隔振系统中驻波效应的研究[J].山东工业大学学报, 1995, 25 (2): 108-113.
    [79].熊冶平.复杂柔性耦合系统的功率流传递谱[J].声学学报, 1996, 26 (4): 368-374.
    [80]. Xiong, Y. P.,Xing, J. T.,Price, W. G. Power flow analysis of complex coupled systems by progressive approaches[J]. Journal of Sound and Vibration, 2001, 239 (2): 275-295.
    [81].周保国.复杂隔振系统的功率流研究[D].上海:上海交通大学1994.
    [82].张效慈,李国华.船机共筏隔振系统传递功率流计算[J].船舶力学, 2001, 5 (003): 89-94.
    [83]. LAPACK. http://www.netlib.org/lapack/.
    [84]. IMSL. http://www.vni.com/products/imsl/.
    [85]. GSL. http://www.gnu.org/software/gsl/.
    [86]. Bathe, K. J.,Wilson, E. L. Numerical methods in finite element analysis[M]. New Yorker: Prentice-Hall, 1976.
    [87]. Golub, G.,Van Loan, C. Matrix computations[M]. New York: Johns Hopkins University Press, 1996.
    [88]. ARPACK. http://www.caam.rice.edu/software/ARPACK/
    [89]. BLZPACK. http://crd.lbl.gov/~osni/.
    [90]. Merbergen, A.,Scott, A. The design of a block rational Lanczos code with partial reorthogonalization and implicit restarting[R]. Rutherford Technical Report RAL-TR-2000-011, 2000.
    [91]. Polizzi, E. Density-matrix-based algorithm for solving eigenvalue problems[J]. Physical Review B, 2009, 79 (11): 115112.
    [92]. OpenMP. http://www.openmp.org/.
    [93]. Chapman, B.,Jost, G.,Pas, R. v. d. Using OpenMP portable shared memory parallel programming[M]. London: MIT Press, 2007.
    [94]. Group, W.,Lusk, E.,Skjellum, A. Using MPI portable parallel programming with the message-passing interface[M]. Cambrdge: MIT Press, 1999.
    [95]. PARDISO. http://www.pardiso-project.org/.
    [96].于超.大规模稀疏矩阵PARDISO求解方法介绍[J].高性能计算, 2006, 17 (4): 13-15.
    [97].曹志远,张佑启.半解析数值方法[M].北京:国防工业出版社, 1992.
    [98]. Bathe, K. Finite element procedures[M]. New York: Prenctice Hall, 1996.
    [99].王勖成.有限单元法[M].北京:清华大学出版社, 2003.
    [100].诸德超.升阶谱有限元法[M].北京:国防工业出版社, 1993.
    [101].Zienkiewicz, O.,GAJO, J.,Kelly, D. The hierchical concept in finite element analysis[J]. Computers and Structures, 1983, 16 (1): 53-65.
    [102].Fish, J.,Guttal, R. Recent advances in the p-version of the finite element method for shells[J]. Computing Systems in Engineering, 1995, 6 (3): 195-211.
    [103].曹志远.板壳振动理论[M].北京:中国铁道出版社, 1989.
    [104].李庆扬,王能超,易大义.数值分析[M].武汉:华中理工大学出版社, 1986.
    [105].龙志飞,岑松.有限元法新论[M].北京:水利水电出版社, 2001.
    [106].陈永亮.广义协调平板壳元研究及其非线性分析[D].北京:清华大学2003.
    [107].杜庆华.弹性力学[M].北京:科学出版社, 1986.
    [108].陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社, 2001.
    [109].孙卫明,杨光松. Reissner厚板弹性弯曲的一般解析解[J].应用数学和力学, 1998, 19 (1): 79-87.
    [110].黄克智.板壳理论[M].北京:清华大学出版社, 1987.
    [111].钱源耀.中厚板特征值问题的杂交/混合有限元分析[J].应用数学和力学, 1987, 8 (8): 735-742.
    [112].楼梦麟,王文剑.弹性中厚板模态特性的近似计算方法[J].工程力学, 1999, 16 (5): 138-144.
    [113].Rock, T.,Hinton, E. Free vibration and transient response of thick and thin plates using the finite element method[J]. Earthquake Engineering and Structural Dynamics, 1974, 3 51-63.
    [114].Geuzaine, C.,Remacle, J. Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79 (11): 1309-1331.
    [115].柳小勤. ModeVibra manual. 2007.
    [116].Djoudi, M.,Bahai, H. A cylindrical strain-based shell element for vibration analysis of shell structures[J]. Finite Elements in Analysis & Design, 2004, 40 (13-14): 1947-1961.
    [117].Soedel, W. Vibration of shells and plates[M]. New York: Marcel Dekker, 1981.
    [118].Williams, F.,Kennedy, D.,Anderson, M., etc. VICONOPT- Program for exact vibration and buckling analysis or design of prismatic plate assemblies[J]. AIAA journal, 1991, 29 (11): 1927-1928.
    [119].Chung, H. Free vibration analysis of circular cylindrical shells[J]. Journal of Sound and Vibration, 1981, 74 (3): 331-350.
    [120].陈璞,孙树立.有限元分析快速解法[J].力学学报, 2002, 34 (002): 216-222.
    [121].姚松,田红旗.有限元刚度矩阵的压缩存贮及组集[J].中南大学学报:自然科学版, 2006, 37 (004): 826-830.
    [122].徐稼轩,郑铁生.结构动力分析的数值方法[M].西安:西安交通大学出版社, 1993.
    [123].刘永仁.结构分析中的程序设计[M].上海:同济大学出版社, 1992.
    [124].Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators[J]. J. Res. Nat. Bur. Standards, 1950, 45 (4): 255-282.
    [125].Golub, G.,Underwood, R. The block Lanczos method for computing eigenvalues[J]. Mathematical software, 1977, 3 361-377.
    [126].谷尧颖.基于弹性基础的隔振系统设计方法研究[D].上海:上海交通大学2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700