造船企业跨车间集成作业计划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对若干造船企业的调研发现,其室内加工阶段多个车间之间存在密切的工艺联系。室内加工阶段的特点为工件流动,设备、人员不流动,造船企业的室内加工阶段主要包括钢板预处理中心、切割中心、平直分段生产中心(平直中心)、曲面分段生产中心(曲面中心)的加工车间。期间,工件在多个生产中心之间混杂流动,如钢板经预处理后,可能一部分流入切割中心,另一部分流入平直中心,还有一部分流入曲面中心。而进入曲面中心的工件可能一部分来自预处理中心,另一部分来自切割中心,还有一部分来自平直中心。又由于船舶制造为订单式单件生产,并且在船舶制造过程中存在工件紧急订单等动态作业的特性。由于船舶制造中工件流动的混杂性、生产批量的单件性、作业过程的动态性,各车间之间必须紧密合作,才能实施造船精细化管理。
     但我国传统的造船企业生产管理模式属于单个车间各自为政的经验式管理,每个车间制定作业计划的周期从十余天到数十天不等。后续车间对某个工件的加工必须等到前一车间在一个生产周期结束后将其送至后续车间才能开始。因此造成了我国企业造船周期远远高于韩国、日本等生产管理水平先进的国家,并进一步导致了我国造船企业中间产品库存量大、设备利用率低等问题。
     为了提高我国造船企业的生产管理水平,本文作业计划方面进行了一些理论与方法研究,主要包括:
     1)提出了跨车间集成作业计划的学术观点,并提出多层次作业分析法将造船企业的作业情况分解为单元作业层、车间作业层和跨车间作业层进行分析。单元作业层主要包括平行流水作业、含多功能机床的混杂流水作业这两种在造船企业比较常见的作业方式。而车间作业层中将包含多种单元作业层作业,本文分析了造船企业中常见的网状流水车间和多作业车间。跨车间作业层为对多个车间进行整体作业计划。通过国内某大型造船企业一批工件的工程应用发现,与传统方法相比,跨车间集成作业计划可缩短加工流程时间45%。
     2)采用网络理论对所研究问题构建多级非连接图模型进行表达。对于经过多层次作业分析的IS-ISP问题,很适合采用网络理论建立多级非连接图模型。模型各节点的连通关系可有效表达制造系统中设备、工件等要素的约束关系;各连通关系上的赋权值可以表达设备、工件的优先级,可用时间、完成时间等约束;利用网络理论中的最短路径问题等反映制造系统作业计划的优化指标。制定作业计划就是在满足约束的条件下寻找使某一项或几项指标最优化的工件排序,并确定每个工件在各加工阶段的开始加工时间、加工完成时间。对应制造系统跨车间集成作业的多层阶结构,可用多级非连接图模型表达。多级非连接图模型不仅可以表达数学规划所能表达的约束条件,而且非常适合于蚁群算法等基于路径搜索的优化方法。算法的分级寻优过程不仅可以大大减少搜索路径数量,降低计算复杂度,还可充分利用下一级路径的搜索方法、以及信息更新策略。因此,其有助于缩短这类路径搜索算法每次循环的时间,提高其寻优效率。本文以平行流水作业计划为例,证明了多级非连接图模型有利于显著降低问题的计算复杂度。
     3)将遗传算法中的交叉、变异算子引入蚁群算法中,构成混杂蚁群算法进行跨车间集成作业计划问题求解。对于建立了非连接图建模的组合优化问题,很适合采用蚁群算法等基于路径搜索的算法。但蚁群算法尚存在易于陷入局部收敛的风险,而遗传算法的交叉、变异算子可使运算过程跳出局部收敛,因此本文将其引入蚁群算法中,构成混杂蚁群算法。蚁群算法和遗传算法是两种近年发展起来的性能较好,且具有良好互补性的智能算法。混杂蚁群算法能充分利用遗传算法进化速度快和蚁群算法收敛性好的特点。将混杂蚁群算法通过多种规模的算例与其它算法进行性能对比,发现其应用于大规模问题时,寻优速度、收敛性方面都有一定优势。然后将该算法应用于造船企业生产实例。
     4)针对造船企业制造系统中经常出现紧急订单等扰动情况,研究跨车间动态集成作业计划问题。当紧急订单出现时,原有工件一般都有一部分已进入系统进行加工。需要在这种前提下,对加工工件重新制定作业计划,以使紧急订单得到尽快加工,而原有工件的加工速度尽量少受影响。工程研究表明,在一批原有工件中插入一个紧急订单工件后,原有工件平均流程时间延迟少于1%;而紧急订单平均流程时间与他们在设备上的加工时间和之比为1,即紧急订单已最快速度得到了加工。其它生产扰动情况也可建立相应的非连接图模型进行求解。
After the investigation on the manufacturing system in some typical shipyards, it is found that the manufacturing in the shops has the close procedure relationship. The feature of manufacturing in shops is that the jobs flow among fixed equipments. The manufacturing in shops for jobs of a shipyard mainly is taken in steel sheet pre-treating center, cutting center, flat subsection manufacturing center and curve subsection manufacturing center. During this period, jobs are processed in several shops hybridly. For example, after the steel sheets are pre-treated, some of them flow to the cutting center, some of them flow to the flat subsection manufacturing center, and the other flow to the curve subsection manufacturing center. On the other hand, the jobs flowing into the curve subsection manufacturing center may come from the pre-treating center, the cutting center, and the flat subsection manufacturing center. Besides, the batch size of shipmaking is usually one basing on order. And there is usually rush order jobs in the manufacturing. Because of these features in the shipmaking, the precision management may be achieved only with the tight cooperation among shops.
     But traditionally, the production management in a shipyard in our country is that each shop is managed by person’s experience separately. The period to make scheduling for each shop is changing from about two weeks to tens of days. The manufacturing of one job in the following shop can’t start until it is finished in the previous shop and sent to the following shop at the end of scheduling period in the previous shop. This is the reason that makes much longer lead time for ship building in our country than that in Korea or Japan where the production management is more advanced. It further results in the large in-process inventory and the low equipment utility.
     In order to improve the production management, some studies on theory and method about scheduling are conducted in this paper, which include following aspects.
     1) The academic idea of inter-shop integrated scheduling problem (IS-ISP) is proposed according to the production practice in the shipyard. And the inter-shop is discomposed into three layers, which are cell layer, shop layer and inter-shop layer, with hierarchy analysis method. The cell layer concerns identical parallel flow shop scheduling problem (IPFSP) and hybrid flow shop containing multi-functional machines (HFSP-MFM) that can be often found in the shipyard. In the shop layer, there often exists more than one cell layer shop. Crossed flow shop scheduling problem and multi-shop scheduling problems that are often seen in the shipyard are studied. Inter-shop layer refers to make schedule for several shops. By the industrial application in a domestic big shipyard, it was found that the makespan would be shortened by 45% with IS-ISP comparing the traditional scheduling method.
     2) The network theory is employed to establish multi-level disjunctive graph model for the IS-ISP. For the IS-ISP, which is analyzed by hierarchy analysis method, it is very suitable to establish a multi-level disjunctive graph model by employing the network theory. The link situation between nodes in the models will represent the constraints of the machines, jobs in the manufacturing system; The values related with the links will represent the constraints such as the precedence of jobs and machines, as well as the constraints such as ready time or due time of jobs and machines; The shortest path will represent the optimization criterion for the scheduling problem. The scheduling problem is to queue the jobs so that one or several objectives for the manufacturing system will be optimized under some constraints. Then the beginning time and completing time of each job on every processing stage will be determined. The hierarchy structure of the inter-shop scheduling problem will be described by multi-level disjunctive graph model. The multi-level disjunctive graph model not only can express all constraints that the mathematic programming is able to describe, but also is extremely suitable for the algorithms based on path searching such as ACO algorithm. The searching procedure level by level can not only reduce the number of path to be searched, but also make use of the searching methods and information renewing methods used at the lower levels. So the multi-level disjunctive graph model is helpful to shorten the time for each computation generation, and to improve the searching efficiency.
     3) A new hybrid ant colony optimization (HACO) algorithm is produced by introducing the crossover and mutation oparators in the genetic algorithm (GA) into the ACO algorithm. For the combined optimization problem that is described with disjunctive model, it is extremely suitable for apply ant colony optimizaiton (ACO) algorith, which is based on path searching. But the ACO has the shortage to fall in the local convergency, while the crossover, mutation operators in the GA is able to jump out of the local convergency during the optimizaiton. So crossover, mutation operators in the GA are introduced in the ACO. And the HACO is conducted. GA and ACO are both newly developped meta-heuristic algorithms that not only have good performance, but they can cooperate each other very well. The HACO algorithm makes use of the advantages of the GA which is rapid at evolution and the ACO which is good at convergency. The HACO is compared with other algorithms by applying to kinds of instances of different scales. It is found that the HACO has advantages on both optimizaiton speed and solution convengency especially for large scale instances. Then the algorithm with the best feature is apply to the real scheduling in the shop floor.
     4) The disturbance of rush order often occur in the real proction. When the rush order comes, some of the original jobs have already been processed in some stages. In such situation, the original schedule needs to be reworked so that the rush order would be processed as soon as possible, and the original jobs would not be delayed too much. Industrial application shows that after a rush order job is inserted into a batch of jobs, the postponed time for original jobs is less than 1%, but the ratio of makespan of the rush order job and the sum of the processing time on all stages is 1, which means it will be produced on time. Other production disturbance can also be solved by establishing the corresponding disjunctive model.
引文
[1]柳存根,高鹏.数字化造船与现代造船模式[J].微型机与应用, 2007, 9: 64-65.
    [2]陈强.船舶制造系统的复杂性及其控制[J].中国造船,2002,43(1): 1-7.
    [3]张英,郭劲添.造船生产中车间作业调度的优化与仿真[J].船海工程, 2007, 36(4): 19-22.
    [4] Johnson SM. Optimal two-and three-machine production schedules with setup times included [J]. Naval Research Logistics Quarterly, 1954, 1: 61-68.
    [5]金锋,宋士吉,吴澄.基于NDP的遗传算法及其在JSP中的应用[J].清华大学学报(自然科学版),2006, 46(4): 488-491.
    [6]吴怡,刘民,吴澄. JSSP基本约束特点分析及调度算法[J].清华大学学报(自然科学版),2004, 44(10): 1380-1383.
    [7]柳赛男,柯映林.一种解决有AGV小车约束的车间智能调度问题的算法[J].中国机械工程,2007, 18(15): 1810-1813.
    [8]李蓓智,杨建国,丁惠敏.基于生物免疫机理的智能调度系统建模与仿真[J].计算机集成制造系统,2002, 8(6): 446-450.
    [9]何彦,刘飞,曹华军等.面向绿色制造的机械加工系统任务优化调度模型[J].机械工程学报,2007, 43(4): 27-33.
    [10]冯辉宗,陈勇,刘飞.基于遗传算法的配送车辆优化调度[J].计算机集成制造系统,2004, 10(S1): 81-84.
    [11]沈益民,范玉顺.调度问题微结构及柔性优化方法[J].自动化学报,2006, 32(2): 263-270.
    [12]尚文利,范玉顺.成批生产计划调度的集成建模与优化[J].计算机集成制造系统,2005, 11(12): 1663-1667.
    [13]李秀,刘文煌,姜澄宇等.遗传算法在车间批量生产计划问题中的应用[J].南京航空航天大学学报,2001, 33(6):544-549.
    [14]吴锋,刘文煌.车间作业计划编制问题的统一描述与应用[J].系统工程理论与实践,1998, 12: 30-34.
    [15] Mattfeld DC, Bierwirth C. An efficient genetic algorithm for job-shop scheduling with tardiness objectives[J]. European Journal of Operational Research, 2004, 155(3): 616-630
    [16]闫利军,李宗斌,卫军胡等.一种新的混合优化算法及其在车间调度中的应用[J].自动化学报,2008, 34(5):604-608.
    [17]王书锋,邹益仁.车间作业调度(JSSP)技术问题简明综述[J].系统工程理论与实践, 2003,1: 49-55.
    [18] Liaw CF. An efficient tabu search approach for the two-machine preemptive open shop scheduling problem[J]. Computers and Operations Research, 2003, 30 (14): 2081-2095.
    [19] Aggoune R. Minimizing the makespan for the flow shop scheduling problem with availability constraints[J]. European Journal of Operational Research, 2004, 153(3): 534-543.
    [20]徐震浩,顾幸生.不确定条件下具有零等待的流水车间免疫调度算法[J].计算机集成制造系统,2004, 10(10): 1147-1151.
    [21]常剑峰,钟约先,韩赞东.虚拟环境下汽车冲压车间动态调度的研究[J].塑性工程学报,2004, 11(6): 84-88.
    [22]严洪森,夏琦峰,朱旻如等.汽车装配车间生产计划与调度的同时优化方法[J].自动化学报,2002, 28(6): 911-919.
    [23] Linn R, Zhang W. Hybrid flow shop scheduling: A survey [J]. Computers & Industrial Engineering, 1999, 37: 57-61.
    [24]郑忠,朱道飞,高小强.混合流程作业计划编制的时间并行倒推算法[J].计算机集成制造系统,2008, 14(4): 749-756.
    [25]卫忠,徐晓飞,邓胜春.多目标混合流水车间作业调度的演化算法[J].计算机集成制造系统,2006, 12(8): 1227-1234.
    [26]胡仕成,徐晓飞,战德臣.一种面向成本优化的生产计划调度算法[J].计算机集成制造系统,2003, 9(9): 735-739.
    [27] Liu SQ, Ong HL, Ng KM. A fast tabu search algorithm for the group shop scheduling problem [J]. Advances in Engineering Software, 2005, 36(8): 533-539.
    [28] Kis T. On the complexity of non-preemptive shop scheduling with two jobs [J]. Computing, 2002, 69(1): 37-49.
    [29] Shakhlevich NV, Sotskov YN, Werner F. Complexity of mixed shop scheduling problems: A survey [J]. European Journal of Operational Research, 2000, 120(2): 343-351.
    [30] Su LH, Chou FD, Ting WC. Minimizing makespan in a two-stage system with flowshop and open shop [J]. Computers & Industrial Engineering, 2005, 49 (4): 520-536.
    [31]胡燕海,马登哲,叶飞帆.制造系统通用作业计划与蚁群算法优化[J].计算机集成制造系统,2005, 11(1): 104-108.
    [32]于晓义,孙树栋,褚崴.基于并行协同进化遗传算法的多协作车间计划调度[J].计算机集成制造系统,2008, 14(5): 991-1000.
    [33] Baker K. Introduction to Sequencing and Scheduling [M]. New York, John Wiley & Sons, 1974.
    [34] Adams J, Balas E, Qawack D. The shifting bottleneck procedure for job-shop scheduling [J]. International Journal of Flexible Manufacturing Systems, 1987, 34(3): 391-401.
    [35] Balas E. Machine sequencing via disjunctive graphs: an implicit enumeration algorithm [J]. Operations Research, 1969, 17: 941-957.
    [36] Lee DY, Dicesare F. Scheduling flexible manufacturing systems using Petri nets and heuristic search [Z]. IEEE Trans on Robotics and Automation, 1994, 10(2): 123-132.
    [37] Dashora Y, Kumar S, Tiwari MK, et al. Deadlock-free scheduling of an automated manufacturing system using an enhanced colored time resource Petri-net model-based evolutionary endosymbiotic learning automata approach [J]. International Journal of Flexible Manufacturing Systems, 2007, 19( 4): 486-515.
    [38]曹杰,史金飞,戴敏.使用着色Petri网实现调度仿真系统中的启发式算法[J].中国机械工程,2006, 17(15): 1604-1608.
    [39]陶泽,隋天中,谢里阳等.基于Petri网和GASA的双资源JSP动态优化调度[J].东北大学学报(自然科学版),2007, 28(3): 405-409.
    [40]刘晓霞,谢里阳,陶泽等.基于生产费用的柔性作业车间调度优化[J].东北大学学报(自然科学版),2008, 29(4): 561-564.
    [41]林慧苹,范玉顺,吴澄,一种基于工作流技术的调度方法[J],清华大学学报(自然科学版),2003,43(3): 402-405.
    [42] Panwalkar SS, Iskander W. A survey of scheduling rules [J]. Operations Research, 1977, 25 (1): 45-61.
    [43] Montazeri M, Wassehove LN. Analysis of scheduling rules of an FMS [J]. International Journal of Production Research, 1990, 28(4): 785-802.
    [44] Adams J, Balas E, Zawack D. The shifting bottleneck procedure for Job-shop scheduling [J]. Management Science, 1988, 34(3): 391-401.
    [45] Yuehwern Y. Learning real-time scheduling rules from optimal policy of semi-Markov decision processes [J]. International Journal of Computer Integrated Manufacturing, 1992, 5: 171-181
    [46] Doublgeri Z, D’alessandro G. A hierarchical knowledge-based scheduling and control for FMSs [J]. International Journal of Computer Integrated Manufacturing, 1993, 6(3): 191-200
    [47] Kiran AS, Smith ML. Simulation studies in job-shop scheduling: a survey [J]. Computers and Industrial Engineering, 1984, 8 (2): 87-93.
    [48] Wu SYD, Wysk RA. An application of discrete event simulation to online control and scheduling in flexible manufacturing [J]. International Journal of Production Research, 1989, 27 (9): 1603-1623.
    [49] Jiang CQ, Singh MG, Hindi KS. Optimized routing in flexible manufacturing systems with blocking [Z]. IEEE Trans on Systems Man and Cybernetics, 1991, 21 (3): 5889-5595.
    [50]刘瑞华,涂奉生. Fork-Join排队网络的建模与稳定性[J].控制与决策, 1994, 9 (3): 131-135.
    [51] Anup KS, Amitava B. Searching graphs with A*: applications to job sequencing [Z]. IEEE Trans on Systems Man and Cybernetics, 1996, 26(1): 168-173.
    [52] Hisao I, Shinta M, Hideo T. Modified simulated annealing algorithms for the flow shop sequencing problem [J]. European Journal of Operation Research, 1995, 8: 388-398.
    [53] Glover F. Future paths for integer programming and links to artificial intelligence [J]. Computer & Operation Research, 1986, 13(5): 533-549.
    [54] Taillard E. Some efficient heuristic methods for the flow shop sequencing problem[J]. European Journal of Operation Research, 1990, 47(1): 65-74.
    [55] Manuel L, Barnes JW, Glover F. Intelligent scheduling with tabu search: An application to jobs with linear delay penalties and sequence dependent setup costs and times [J]. Applied Intelligence, 1993 (3): 159-172.
    [56] Rabelo L. Hybrid Artificial Neural Network s and Knowledge Based Expert Systems Approach to Flexible Manufacturing System Scheduling [D]. University of Missouri Rolla, 1990.
    [57] Hopfield J, Tank. D. Neural computation of decisions in optimization problems [J]. Biological Cybernetics, 1985, 52: 141-152.
    [58] Foo YS, Takefuji Y. Stochastic neural network s for solving job-shop scheduling: part 1, Problem representation [C]. Stochastic neural network s for solving job-shop scheduling: Part 2, Architecture and simulations[C]. IEEE International Conference on NNS, 1998.
    [59] Foo YS, Takefuji Y. Integer linear programming neural networks for job-shop scheduling [C]. IEEE International Conference on NNS, San Diego, 1988.
    [60] Holland JH. Adaptation in natural and artificial systems [M]. MIT Press, 1975.
    [61] Nakano R, Yamada T. Conventional genetic algorithm for job-shop problems [C]. Proceeding of the 4th international conference on genetic algorithm, 1991: 474 - 479.
    [62] Luh PB, Hoitomt FJ, Max E. Scheduling generation and reconfiguration for parallel machines [Z]. IEEE Trans Robotics and Automation, 1990, 6(6): 687-696.
    [63] Hoitomt DJ, Luh PB, Pattipati KR. Job shop scheduling [C]. Proceedings of the First International Conference on Automation Technology, Taipei, China, 1990: 565-574.
    [64] Chen HX, Cheng BC, Proth JM. A more efficient Lagrangian relaxation approach to job shop scheduling problems[C]. Proc of IEEE Int Conf on Robotics and Automation, Japan, 1995, 496-501.
    [65] Dorigo M, Bonabeau E, Theraulaz G. Ant Algorithms and Stigmergy. Future Generation Computer System, 2000, 16: 851-871.
    [66] Colorni A, Dorigo M, Maniezzo V. An investigation of some properties of an ant algorithm[C]. Proc of the Parallel Problem Solving from Nature Conference, Brussels, Belgium, 1992: 509-520.
    [67] Li YJ, Wu TJ. A Nested Hybrid Ant Colony Algorithm for Hybrid Production Scheduling Problems[J].自动化学报, 2003, 29(1): 95-101. (in English)
    [68]周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报,2006, 34(11): 2008-2011.
    [69]彭传勇,高亮,邵新宇等.求解作业车间调度问题的广义粒子群优化算法[J].计算机集成制造系统,2006, 12(6): 911-927, 923
    [70]叶建芳,王正肖,潘晓弘.免疫粒子群优化算法在车间作业调度中的应用[J].浙江大学学报(工学版),2008, 42(5): 863-868,879.
    [71]刘敏,严隽薇.基于自适应退火遗传算法的车间日作业计划调度方法[J].计算机学报,2007, 30(7): 1164-1172.
    [72]马玉敏,樊留群,张为民等.基于仿真的车间作业计划优化设计[J].系统仿真学报,2007, 19(19): 4548-4552.
    [73]朱海平,邵新宇,张国军.不确定信息条件下的车间调度策略研究[J].计算机集成制造系统,2006, 12(10): 1637-1642.
    [74]林楠,孟飙,范玉青.基于混合遗传算法车间多工艺路线批量调度[J].北京航空航天大学学报,2007, 33(12): 1471-1476.
    [75] Mittenthal J, Madabhushi R, Arif IR. A hybrid simulated annealing app roach of single machine scheduling problems with nonregular penalty functions [J]. Computers & Operation Research, 1993, 20(2): 103-111.
    [76] Holsapple CW, Varghese SJ, Ramakrishnan P, et al. A genetics-based hybrid scheduler for generating static schedules in flexible manufacturing contexts [Z]. IEEE Trans on Systems man and Cybernetics, 1993, 23(4): 953-972.
    [77] Solimanpur M, Vrat P, Shankar R. A neuro-tabu search heuristic for the flow shop scheduling problem [J]. Computers & Operations Research, 2004, 31(13): 2151-2164.
    [78]郜庆路,罗欣,杨叔子.基于蚂蚁算法的混流车间动态调度研究[J].计算机集成制造系统,2003, 9(6): 457-459, 475.
    [79] Jackson JR. Simulation research on job shop production [J], Naval Research Logistics Quarterly, 1957, 4(3): 287-295
    [80] Ramash R. Dynamic job shop scheduling-A review of simulation research [J]. OMEGA International Journal of Management Science, 1990, 18(1): 43-57.
    [81] Liu HJ, Dong J. Dispatching rule selection using artificial neural networks for dynamic planning and scheduling [J]. Journal of International Manufacturing, 1996, 7(2): 243-250.
    [82] Szelde EK, Roger M. Knowledge-based re-active scheduling [J]. Production Planning & Control, 1994, 5(5): 124-145.
    [83] Sim SK, Yeo KT, Lee WH. An expert neural net-work system for dynamic job shop scheduling [J]. International Journal of Production Research, 1994, 32(8): 1759-1773.
    [84] Chu H, Wysk RA. A robust adaptive scheduler for an intelligent work-station controller [J]. International Journal of Production Research, 1993, 31(4): 771-789.
    [85] Jones A, Rabelo KY, Yuehwern Y. A hybrid approach for real-time sequencing and scheduling [J]. International Journal of Computer Integrated Manufacturing, 1995, 8(2): 145-154.
    [86] Lee CY, Piramuthu S, Tsai YK. Job shop scheduling with a genetic algorithm and machine learning [J]. International Journal of Production Research, 1997, 35(4): 1171-1191.
    [87] Jian AK, Elmaraghy HA. Production scheduling/rescheduling in flexible manufacturing [J]. International Journal of Production Research, 1997, 35(1): 281-309.
    [88] Kouiss K, Pierreval H, Nasser M. Using multi-agent architecture in FMS for dynamic scheduling [J]. Journal of International Manufacturing, 1997, 8(1): 41-47.
    [89] Nof SY, Grant FH. Adaptive/predictive scheduling review and a general framework [J]. Production Planning & Control, 1991, 2(4): 298-312.
    [90]周华,杨建军,邓家褆.支持敏捷调度系统构建的多代理运行框架研究[J].计算机集成制造,系统,2002, 12(12): 970-973.
    [91]曾波,杨建军. Agent协同机制在基于MAS调度系统中的研究[J].北京航空航天大学学报,2002, 28(4): 405-408.
    [92]曹岩,郭颜军,赵汝嘉.基于MAS的动态生产调度与控制及系统开发[J].小型微型计算机系统,2006, 27(5): 924-929.
    [93]郭颜军,张旭宁,曹岩等.基于规则约束着色Petri网(RCPN)的车间调度及Internet/Intranet环境下的系统开发[J].小型微型计算机系统,2003, 24(7): 1685-1688.
    [94]王忠宾,王宁生,陈禹六.工艺规划和生产计划与控制集成过程中的资源决策[J].计算机集成制造系统,2004, 10(6): 646-650, 676.
    [95]王云莉,肖田元,段广洪等. CAPP与调度集成多代理系统的资源冲突消解[J].计算机集成制造系统,2002, 8(9): 742-746.
    [96]田颖,江平宇,周光辉等.基于遗传算法的工艺规划与调度集成方法[J].西安交通大学学报,2006, 40(9): 1041-1044.
    [97]王伟达,刘文剑.动态车间环境下的调度控制器设计[J].计算机集成制造系统,2007, 13(12): 2322-2330.
    [98]付宜利,代勇,马玉林.基于双单元制造模式的车间调度控制系统[J].计算机集成制造系统,2002, 8(9): 733-736.
    [99]谢君翌,汤文成,倪中华.基于多代理机制的车间制造资源调度管理系统的研究[J].计算机集成制造系统,2005, 11(6): 805-809.
    [100]钟宏才,蒋如宏,谭家华等.造船专业化生产单元模型及其作业安排优化[J].中国造船,2004, 45(2): 7-13.
    [101]李光达.基于合弄的船舶企业车间生产控制系统研究[D].大连理工大学,2004,6.
    [102]蒋如宏,董大栓,陈强,谭家华.基于任务包派工单的生产管理模式[J].造船技术, 2007, 1: 10-12.
    [103]雷林等.船舶设计基础[M].北京:人民交通出版社, 2007, 1.
    [104]金锋,吴澄.大规模生产调度问题的研究现状与展望[J].计算机集成制造系统,2006, 12(2): 161-168.
    [105]段海滨,王道波,于秀芬.蚁群算法的研究进展评述[J]. Chinese Journal of Nature, 2006, 28(2): 102-105.
    [106]王凌,吉利军,郑大钟.基于代理模型和遗传算法的仿真优化研究[J].控制与决策, 2004, 19(6): 626-630.
    [107]罗文坚,曹先彬,王煦法.关于一种免疫遗传算法的性能分析[J].系统仿真学报,2006, 18(4): 873-876.
    [108]肖柳青,周石鹏.实用最优化方法[M].上海:上海交通大学出版社,2000.
    [109]黄德才,郭海东.基于JIT的非等同并行多机调度问题的混合遗传算法[J].计算机集成制造系统, 2003(10), 3: 298-302.
    [110]李南,祝明光.用遗传算法优化双目标Job-shop作业计划问题[J].工业工程, 2002, 5 (1): 55-57, 64.
    [111]陈霁威.多目标遗传算法在甲醇合成优化中的应用,华东理工大学学报[J]. 2000,9(28): 1-5.
    [112]朱学军,攀登.混合变量多目标优化设计的Pareto遗传算法实现[J].上海交通大学学报,2000, 34(3): 411-414.
    [113] Coleman CM, Rothwell EJ, Ross JE. Investigation of simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antennas [J]. IEEE Transactions on Antennas and Propagation, 2004(52), 4: 1007-1014.
    [114] Rajendran C, Ziegler H. Two ant-colony algorithms for minimizing total flowtime in permutation flow shops [J]. Computers & Industrial Engineering, 2005, 48(4): 789-797.
    [115] Sumpter DJT, Blanchard GB, Broomhead DS. Ants and Agents: a Process Algebra Approach to Modelling Ant Colony Behavior [J]. Bulletin of Mathematical Biology, 2001, 63(5): 951-980.
    [116] Walter J. A Graph-based Ant System and its convergence [J]. Future Generation Computer Systems, 2000, 16(8): 873-888.
    [117] Bell JE, McMullen PR. Ant colony optimization techniques for the vehicle routing problem [J]. Advanced Engineering Informatics, 2004, 18(1): 41-48.
    [118] Shyu SJ, Lin BMT, Yin PY. Application of ant colony optimization for no-wait flowshop scheduling problem to minimize the total completion time [J]. Computers & Industrial Engineering, 2004, 47(2-3): 181-193.
    [119] Rajendran C, Ziegler H. Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs [J]. European Journal of Operational Research, 2004, 155(2): 426-438.
    [120] Ying KC, Liao CJ. An ant colony system for permutation flow-shop sequencing [J]. Computers & Operations Research, 2004, 31(5): 791-801.
    [121] Li Y, Yao D. Accelerating the Radiotherapy Planning with a Hybrid Method of Genetic Algorithm and Ant Colony System [J]. Lecture Notes in Computer Science, 2003, 4222: 340-349
    [122] Lee ZJ, Lee CY. A hybrid search algorithm with heuristics for resource allocation problem [J]. Information Sciences, 2005, 173(1-3): 155-167.
    [123]丁建立,陈增强,袁著祉.基于混合蚂蚁算法的网络资源均衡与优化[J].仪器仪表学报,2003,24(4): 592-594,598.
    [124]丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法的融合[J].计算机研究与发展,2003, 40(9): 1351-1356.
    [125] ElMekkawy TY, ElMaraghy HA. Real-time scheduling with deadlock avoidance in flexible manufacturing systems [J]. international Journal of Advanced Manufacturing Technology, 2003, 22: 259–270.
    [126]李进,楼佩煌.用遗传算法求解JSSP时的死锁对策研究[J].南京航空航天大学学报,2004, 36(3): 317-321.
    [127] Fahmy SA, ElMekkawy TY, Balakrishnan S. Analysis of reactive deadlock-free scheduling in flexible job shops [J]. International Journal of Flexible Manufacturing Systems, 2007, 19(3):264-285.
    [128] Kon’kova EY, Rudel’son LE, Chernikov PE. Operative flow regulation in an automated system of air traffic management [J].Journal of Computer and Systems Sciences International, 2006, 45(4):646-657.
    [129] Chen J, Pan J, Wu C. Minimizing makespan in reentrant flow-shops using hybrid tabu search [J]. International Journal of Advanced Manufacturing Technology, 2007, 34(3-4): 353-361.
    [130]谢政,李建平.网络算法与复杂性理论[M].国防科技大学出版社,1995,5.
    [131]胡燕海,严隽琪,马登哲,等.基于遗传算法的平行流水作业计划方法[J].工业工程与管理,2006, 11(1): 58-61.
    [132] Hu Y, Yan J, Ma D, et al. Identical Parallel Flow Shop Scheduling Based on Ant Colony Optimization [C]. Proceedings of the 35th International Conference on Computers & Industrial Engineering, 2005, pp. 911-916.
    [133] Beasley JE. Flowshop1 [EB/OL]. http://mscmga.ms.ic.ac.uk/info.html, 2003-09.
    [134]胡燕海,严隽琪,叶飞帆.基于遗传算法的混合流水车间构建方法[J].中国机械工程,2005, 16(10), 888-891.
    [135]叶飞帆,李国富.一种面向多功能机床的流水作业计划方法[J].中国机械工程,1999,10(12): 1370-1372.
    [136] Riima HK, Sannomiya N, Kobayashi Y. Autonomous decentralized scheduling algorithm for a job shop process with a multi-function machine in parallel [C]. Proceedings of the International Symposium on Autonomous Decentralized Systems. 1997, pp. 69-74.
    [137] Hu Y, Ma D, Ye F. Scheduling Hybrid Flow Shop Containing Multi-Functional [C]. Proceedings of the 2006 International Conference on Computational Intelligence and Security, 2006, pp. 425-428.
    [138]胡燕海,严隽琪,叶飞帆,等.基于蚁群算法的HFSP-MFM作业计划方法[J].中国机械工程,2008, (17),已录用.
    [139]胡燕海,严隽琪,叶飞帆.基于改进遗传算法的网状流水线作业计划[J].中国机械工程,2005,16(9),792-795.
    [140] Hu Y, Yan J, Ma D, et al. Multi-Shop Scheduling Problem [J]. Chinese Journal of Mechanical Engineering, 2007, 42(3): 109-112.
    [141] Hu Y, Ma D, Ye F. Multi-Shop Scheduling Problem Solved with Genetic Algorithm [C]. Proceedings of the 35th International Conference on Computers & Industrial Engineering, 2005, pp. 917-922.
    [142]胡燕海,马登哲,叶飞帆.制造系统通用作业计划与蚁群算法优化[J].计算机集成制造系统,2005,11(1):104-108.
    [143] Aydin ME, ?ztemel E. Dynamic job-shop scheduling using reinforcement learning agents. Robotics and Autonomous Systems, 2000, 33: 169-178.
    [144] Rangsaritratsamee R, Ferrell WGJ, Kurz MB. Dynamic rescheduling that simultaneously considers efficiency and stability [J]. Computers and Industrial Engineering, 2004, 46(1): 1-15.
    [145] Li H, Li Z, Li LX, et al. A production rescheduling expert simulation system [J]. European Journal of Operational Research Volume: 124, Issue: 2, July 16, 2000, pp. 283-293
    [146] Yang J, Tseng C, Cheng R. Dynamic scheduling framework on an RLC/MAC layer for general packet radio service [J]. IEEE Transactions on Wireless Communications, 2003, 2(5): 1008 - 1016
    [147] Zhuang X, Pan D. Compiler scheduling of mobile agents for minimizing overheads [J]. Proceedings of 23rd International Conference on Distributed Computing Systems, 2003, pp. 600–607.
    [148] Hu Y, Yan J, Ye F, et al. Flow Shop Rescheduling Problem under Rush Orders [J]. Journal of Zhejiang University SCIENCE, 2005 6A(10): 1040-1046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700