柔性关节机械臂控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,构建和维护空间在轨部件主要是通过宇航员冒着一定的风险进行舱外作业完成。在这些任务中,空间机器人的使用将会提供很多的便利,既能增加宇航员的安全性又能节省地面费用。由于空间机器人具有操作空间大和质量轻的特点,使得在轨机器人不可避免的具有柔性,这不仅限制了其操作灵巧性和末端速度,而且给控制带来更大的复杂度。由于空间机器人多层次的任务需求,对其进行精确的位置控制和具有柔顺性的阻抗控制将是两种比较引人注目的控制策略。本文在“卫星在轨自维护及遥操作关键技术的研究”项目的支持下,研究了对具有柔性关节的机器人如何进行位置控制和笛卡尔阻抗控制及其相关问题。
     本文首先基于拉格朗日能量法建立了柔性关节机器人的动力学模型,并基于柔性关节机器人的简化模型,研究了柔性关节机器人的位置控制、笛卡尔阻抗控制以及具有时延影响的机器人系统控制。
     从理论研究上看,对柔性关节机器人的控制主要有级联系统法、反馈线性化法和奇异摄动法等。传统的奇异摄动控制方法仅适用于关节柔性较小的机器人。针对这一问题,设计了关节柔性补偿器,提高了关节的等效刚度,消除了关节柔性对该方法的限制,将奇异摄动方法推广应用于具有一般关节柔性的机器人系统中。此外,设计了自适应控制规律完成对慢子系统的控制,保证了轨迹误差的渐近跟踪。该控制策略不限制关节柔性大小,并且不需要连杆加速度及其微分信号,便于工程应用。实验研究表明,不论慢子系统采用PD、计算力矩还是自适应控制方法,文中的控制策略都比传统的奇异摄动方案更有效。
     与传统的基于机器人末端六维力/力矩信息的笛卡尔阻抗控制方案不同,针对只具有关节力矩传感器的机器人,文中分别研究了笛卡尔空间/关节空间基于力、笛卡尔空间/关节空间基于位置和刚度控制五种不同的笛卡尔阻抗控制策略。其中,利用无源性理论,重点分析了关节空间基于力的阻抗控制策略。在这种方法中,内部的力矩反馈环被视作对电机惯量的整形。基于这种对力矩反馈的物理解释,闭环系统动力学可以表示为两个无源子系统的反馈联接形式,保证了系统对参数不确定性的鲁棒性。此外,针对实际系统中的传感器信号,分析了延时和滤波环节对系统无源性的影响。对于由于算法和低通滤波引起的延时,引入了基于观测器(卡尔曼滤波或H∞滤波)的控制策略加以解决。而对于阻抗控制的一大应用领域,即具有本质延时的系统——机器人双向力反馈遥操作系统,基于鲁棒控制理论,利用线性矩阵不等式(LMI)处理方法给出了该问题的一般解法,解法的推导过程保证了系统的渐近稳定和相应的性能指标。
     最后,通过相关实验和应用对所研究的控制算法及理论进行验证。正如理论分析所期望的那样,关节空间基于力的阻抗控制策略对模型参数的不确定性具有很好的鲁棒性;而基于观测器的控制策略能很好的克服速度计算中的延时,大大提高系统带宽及控制性能。
Construction and maintenance of on-orbit components is currently done primarily by extra-vehicular astronauts at great risk. Use of space robotics for these tasks provides the opportunity for both increased safety for the astronauts and major ground-crew cost savings. Owing to the characteristics such as large workspace and light weight, space robot will necessarily be quite flexible, which not only limits the dexterity and speed of the end-point, but also brings more complexity for the robot control. Due to the space robot’s multilayer-task demands, precise position control and impedance control with much compliance are the promising control schemes. The dissertation is under supporting of the project“Study on the key technologies of satellite on-orbit self-servicing and its tele-operation”, which aims to develop the research on how to perform the position control and the Cartesian impedance control and some associate issues for the robot with flexible joint.
     In this thesis the dynamical model of the flexible joint robot is built firstly which is based on the Lagrange energy method. The position control, Cartesian impedance control and some control issues with time-delay influence are investigated in detail based on the reduced model of the flexible joint robot.
     In view of the theoretical meaning, control methods for the flexible joint robot mainly consist of the cascaded system method, feedback linearization and singular perturbation technique, etc. The traditional singular perturbation approach can only be used in the robot system with weak joint flexibility. In order to solve this problem, a joint flexibility compensator is designed, which can increase the equivalent joint stiffness. So the limitation for the singular perturbation approach is removed and it can be extended to the robot system with normal joint flexibility. Besides these, an adaptive control law is designed for the slow subsystem, which can guarantee the trajectory error asymptotical tracking. The proposed control strategy can be applied to the engineering systems conveniently without any joint flexibility limitation and does not need the link acceleration or jerk information. The experimental results verify that whatever the PD, computed torque or adaptive control is used in the slow subsystem, the proposed singular perturbation strategy is more valid than the traditional one.
     Different from the traditional Cartesian impedance control schemes which are mostly based on the robot end’s force/torque information, five Cartesian impedance control schemes including the force-based in Cartesian/joint space schemes, the position-based in Cartesian/joint space ones and the stiffness control scheme are considered, aiming at the robot with joint torque sensors in each joint. Among these, the force-based in joint space control scheme is analyzed in detail by using the passivity theory. In this approach an inner torque feedback loop is interpreted as a scaling of the motor inertia. Based on this physical interpretation of the joint torque feedback, the closed loop system can be regarded as a feedback interconnection of two passive subsystems, which guarantees the robustness against uncertainties in the model parameters. Besides these, aiming at the sensor signals in the practical system, the effect on the system’s passivity owing to time delay is analyzed. Observer(Kalman filter or H∞filter) based control schemes are introduced in order to deal with the time delay influence caused by algorithms and low filter. But to other system, that is to say, an extensive application of the impedance control, such as the bilateral teleoperation system, the LMI based approach gives the problem a general solution, which assures the closed loop system’s asymptotical stability and corresponding performance indexes during the derivation of the solution.
     Finally, corresponding experiments and applications are presented for evaluating the control method and theory. As expected from the analysis, the force-based in joint space control scheme turns out to be very robust against uncertainties in the model parameters and the observer based control scheme can overcome the time delay in the velocity computation, which enlarges the system’s bandwidth and improves the control performance.
引文
1 NASA http://spaceflight.nasa.gov/station/eva.
    2王景,王昊瀛,刘良栋,自由飞行空间机器人的运动学建模研究,航天科技[J],1999,8(1):7~10.
    3 P.Th.L.M.van Woerkom, A.K.Misra. Robotics Manipulators in Space: a Dynamics and Control Perspective. Acta Astronautical[J]. 1996,38(4-8):411~421.
    4 R.Ravindran, K.H.Doetsch. Design Aspects of the Shuttle Remote Manipulator Control. American Institute of Aeronautics and Astronautics[J]. 1982,10(3):409~415.
    5 C.S.Bonaventura, K.W.Lilly. A Constrained Motion Algorithm for the Shuttle Remote Manipulator System. IEEE Control Systems[J]. 1995, 51(5):613~ 620.
    6 Christian Sallaberger. Canadian Space Robotic Activities. Acta Astronautica [J]. 1997,41(4-10): 239~246.
    7 G.Gibbs, S.Sachdev. Canada and the International Space Station Program: Overview and Status. Acta Astronautica[J]. 2002, 51(1-9): 591-600.
    8 J.C.Piedboeuf, E.Dupuis. Recent Canadian Activities in Space Automation & Robotics - an Overview[C]//7th ESA Workshop on Advanced Space Technologies for Robotics and Automation‘ASTRA 2002’. Santa Barbara, CA, 2002:19~21.
    9 B.Bon, H.Seraji. Real-time Model-based Obstacle Detection for the NASA Ranger Telerobot[C]//Proceedings of the IEEE International Conference on Robotics and Automation. San Frocisco, USA. 1997: 1124~1131.
    10 S.Roderick, B.Roberts, E.Atkins, D.Akin. The Ranger Robotic Satellite Servicer and its Autonomous Software-based Safety System. IEEE Intelligent Systems[J]. 2004, 21(5): 345~351.
    11 M.A.Diftler, E.L.Huber, C.J.Culbert, et al. Human Robot Control Strategies for the NASADARPA Robonaut[C]//Proceedings of the IEEE International Conference on Automatic Control. Woods Hole, USA, 1996: 3939~3947.
    12 M.A.Diftler, R.O.Ambrose, S.M.Goza, et al. Robonaut Mobile Autonomy: Initial Experiments[C]//Proceedings of the IEEE International Conference onRobotics and Automation. Detroid, Michigan, USA. 2005: 1390~1395.
    13 R.A.PetersII, R.E.Bodenheimer, O.C.Jenkins. Sensory-Motor Manifold Structure Induced by Task Outcome Experiments with Robonaut. Humanoids[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Detroid, Michigan, USA. 2006: 1124~1130.
    14 T.Matsueda, K.Kuraoka, K.Goma, et al. JEMRMS System Design and Development Status[C]//Proceedings of the IEEE International Conference on Robotics and Automation. San Francisco, USA. 1991: 500~506.
    15 F.Kuwao, M.Nishio, A.Otsuka, et al. Ground Validation of JEMRMS[C]// Proceeding of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Tokyo, Japan, 2003: 19~23.
    16 S.Abiko, K.Yoshida. An Effective Control Strategy of Japanese Experimental Module Remote Manipulator System(JEMRMS) Using Coupled and Un-coupled Dynamics[C]//Proceeding of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Tokyo, Japan. 2003: 24~28.
    17 F.Kuwao, A.Otsuka, M.Hayashi, et al. Operation Concept on JEMRMS[C]// Proceeding of the International Symposium on Artificial Intelligence, Robotics and Automation in Space: Tokyo, Japan. 2003:49-53.
    18 M.Oda, K.Kibe, F.Yamagata. ETS-VII, Space Robot In-orbit Experiment Satellite[C]//Proceedings of the IEEE International Conference on Robotics and Automation. San Frocisco, USA. 1996:1224~1230.
    19 M.Oda, I.Kawano, K.Kibe, et al. ETS-7, a Rendezvous Docking and Space Robot Technology Experiment Satellite Result of the Engineering Model Development Work[C]//SICE’95, Paris, French. 1995:26~28.
    20 M.Oda. Experiences and Lessons Learned From the ETS-VII Robot Satellite [C]//Proceedings of the IEEE International Conference on Robotics and Automation. San Francisco, CA. 2000: 914~919.
    21 M.Oda. On the Dynamics and Control of ETS-7 Satellite and its Robot Arm [C]//Proceedings of the IEEE International Conference on Robotics and Automation. San Francisco, CA.1995:1586~1593.
    22 M.Oda. Space Robot Experiments on NASDA's ETS-VII Satellite-Preliminary Overview of the Experiment Results[C]//Proceedings of the IEEE InternationalConference on Robotics&Automation. Detroit, Michigan. 1999:1390~1395.
    23 M.Oda. System Engineering Approach in Designing the Teleoperation System of the ETS-VII Robot Experiment Satellite[C]//Proceedings of the IEEE International Conference on Robotics&Automation. Albuquerque, New Mexico. 1997: 3054~3061.
    24 P.Putz. Space Robotics in Europe: a Survey. Robotics and Autonomous Systems[J]. 1998, 23(1):3~16.
    25 G.Hirzinger, B.Brunner, J.Dietrich, et al. Sensor-based Space Robotics-ROTEX and its Telerobotic Features. IEEE Transactions on Robotics and Automation[J]. 1993, 9(5):649~663.
    26 R.Neumann, W.Moritz. Observer-based Joint Controller Design of a Robot for Space Operation[R]. Paderborn, Germanny, 1996: 5~11.
    27 R.Boumans, C.Heemskerk. The European Robotic Arm for the International Space Station[J]. Robotics and Autonomous Systems. 1998, 23(1):17~27.
    28 P.Verzijden, H.Petersen, M.Visser. ERA Performance Measurements Test Results[C]// 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation‘ASTRA 2002’. Noordwijk, The Netherlands, 2002: 19~21.
    29 F.Doctor, A.Glas, Z.Pronk. Mission Preparation Support of the European Robotic Arm(ERA)[C]//7th ESA Workshop on Advanced Space Technologies for Robotics and Automation‘ASTRA 2002’. Noordwijk, The Netherlands, 2002:1~8.
    30 P.G.Beerthuizen, W.Kruidhof. System and Software Safety Analysis for the ERA Control Computer[J]. Reliability Engineering and System Safety. 2001, 71(1):285~297.
    31 R.Mugnuolo, S.Di Pippo, P.G.Magnani, et al. The SPIDER Manipulation System (SMS): the Italian Approach to Space Automation[J]. Robotics and Autonomous Systems. 1998, 23(2):79~88.
    32 F.Didot, J.Dettmann, S.Losito, et al. JERICO: a Demonstration of Autonomous Robotic Servicing on the Mir Space Station[J]. Robotics and Autonomous Systems. 1998, 23(1):29~36.
    33 G.Hirzinger, K.Landzettel, D.Reintsema, et al. ROKVISS: Robotics Component Verification on ISS[C]// IRAS. Taibei, China. 2005:1122~1132 .
    34 K.Landzettel, C.Preusche, A.Albu-Schaffer, et al. Robotic On-orbit Servicing -DLR’s Experience and Perspective[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and systems. Beijing, China. 2006: 4587~4594.
    35 C.Preusche, D.Reintsema, K.Landzettel, et al. Robotics Component Verification on ISS ROKVISS- Preliminary Results for Telepresence[C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China. 2006: 4595~4601.
    36 J.K.S.Lus. Conventional Controller Design for Industrial Robot- a Tutorial[J]. IEEE Transactions on System, Man, Cybernetics. 1983, 10(3): 312~320.
    37 S.Kawamura, F.Miyazaki, S.Arimoto. Is a Local Linear PD Feedback Control Law Effective for Trajectory Tracking of Robot Motion?[C]//Proceedings of the IEEE International Conference on Robotics and Automation. San Francisco. 1988 :1335~1340.
    38 M.B.Leahy Jr., G.N.Saridis. Compensation of Industrial Manipulator Dynamics[J]. International Journal of the Robot Research. 1989,8(4):73~84.
    39 M.W.Spong, M.Vidyasagar. Robot Dynamics and Control[M]. The Press of John Wiley&Sons, 1989.
    40 P.K.Khosla, T.Kanade. Real-time Implementation and Evaluation of Computed Torque Scheme[J]. IEEE Transactions on Robot and Automation. 1989, 5(2):245~253.
    41 C.H.An, C.G.Atkeson, J.D.Griffiths, et al. Experimental Evaluation of Feedforward and Computed Torque Control[J]. IEEE Transactions on Robot and Automation. 1989, 5(3): 368~373.
    42 J.J.Craig. Adaptive Control of Mechanical Manipulators[C]//Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, CA. 1986: 1135~1142.
    43 M.W.Spong, R.Ortega. On Adaptive Inverse Dynamics Control of Rigid Robots[J]. IEEE Journal of Robotics and Automation. 1988, 7(2): 110~117.
    44 J.J.E.Slotine, W.Li. Adaptive Robot Control: a New Perspective[C]// Proceedings of the 26th IEEE Conference on Decision and Control. LA. 1987: 192~198.
    45 J.J.E.Slotine, W.Li. Adaptive Manipulator Control: a Case Study[J]. IEEE Transactions on Automation and Control. 1988, 33(11): 995~1003.
    46 K.Youcef-Toumi, O.Ito. Controller Design for Systems with Unknown Dynamics[C]//Proceedings of the American Control Conference. Minneapolis. 1987: 836~844.
    47 S.Arimoto, F.Miyazaki. Can Mechanical Robots Learn by Themselves?[C]// Proceedings of the 2nd International Symposium on Robotics Research. Kyoto, Japan. 1984: 570~577.
    48 O.Khatib. A Unified Approach for Motion and Force Control of Robotic Manipulators: the Operational Space Formulation[J]. IEEE Journal of Robotics and Automation. 1987,3(1):43~53.
    49 F.Miyazaki, Y.Masutani, S.Arimoto. Sensor Feedback Using Approximate Jacobian[C]//Proceedings of the USA-Japan Symposium on Flexible Automation– Crossing Bridges, Advances in Flexible Automation and Robotics. Tokyo, Japan. 1988: 2103~2110.
    50 S.Chiaverini, L.Sciavicco, B.Siciliano. Control of Robotic Systems Through Singularities[C]//Proceedings of the International Workshop on Nonlinear and Adaptive Control: Issues in Robotics. New Mexico, USA. 1990:23~29.
    51 Y.Asari, H.Sato, T.Yoshimi, et al. Development of a Model-based Remote Maintenance Robot System(IV)- a Practical Stiffness Control Method for Redundant Robot Arm[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo,Japan. 1993: 110~116.
    52 N.A.M.Hootsmans, S.Dubowsky. Large Motion Control of Mobile Manipulators Including Vehicle Suspension Characteristics[C]//Proceedings of the IEEE International Conference on Robotics and Automation, CA,USA. 1991: 324~329.
    53 E.Papadopoulos, S.Dubowsky. Coordinated Manipulator/Spacecraft Motion Control for Space Robotic Systems[C]//Proceedings of the IEEE International Conference on Robotics and Automation. San Diego, CA, USA. 1991:1696~1701.
    54 M.Vukobratovic, A.Tuneski. Contact Control Concepts in Manipulation Robotics- an Overview[J]. IEEE Transactions on Industrial Electronics. 1994, 41(2):12~24.
    55 M.T.Mason. Compliance and Force Control for Computer Controlled Manipulators[J]. IEEE Transactions on System, Man, Cybernetics. 1981,21(2):418~432.
    56 M.H.Raibert, J.J.Craig. Hybrid Position/Force Control of Manipulators[J]. ASME Journal of Dynamics, System Measurement and Control. 1981, 10(3):126~133.
    57 S. Chiaverini and L. Sciavicco. The Parallel Approach to Force/Position Control of Robotic Manipulators[J]. IEEE Transactions on Robotics and Automation. 1993, 9(2):361~373.
    58 S. Chiaverini , B. Siciliano and L. Villani. A Survey of Robot Interaction Control Schemes with Experimental Comparison[J]. IEEE/ASME Transactions on Mechatronics. 1999, 4(1):273~285.
    59 R. Volpe and P. Khosla. A Theoretical and Experimental Investigation of Explicit Force Control Strategies for Manipulators[J]. IEEE Transactions on Automatic Control. 1993, 38(11):1634~1650.
    60 S.Hayati. Hybrid Position/Force Control of Multi-arm Cooperating Robots[C] //Proceedings of the IEEE International Conference on Robotics and Automation. California, USA. 1986:82~89.
    61 H.West, H.Asada. A Method for the Design of Hybrid Position/Force Controllers for Manipulators Constrained by Contact with the Environment [C]//Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, USA. 1985:251~259.
    62 N. Hogan. Impedance Control: an Approach to Manipulation: PartsI-III[J]. ASME Journal of Dynamic System, Measurement and Control. 1985, 107(11):1~24.
    63 R.V.Dubey, T.F.Chan, S.E.Everett. Variable Damping Impedance Control of a Bilateral Telerobotic System[J]. IEEE Control System Magazine. 1997, 17(3):37~44.
    64 H.Seraji. R.Colbaugh. Adaptive Force-based Impedance Control[C]// Proceedings of IEEE International Conference on Robotics and Automation. Wessling, Germany. 1993:1537~1544.
    65 F.Caccavale, L.Villani. An Impedance Control Strategy for Cooperative Manipulation[C]//Proceedings of IEEE International Conference on Advanced Intelligent Mechanics. Rome, Italy. 2001:343~348.
    66 S.Jung, S.B.Yim, T.C.Hisa. Experimental Studies of Neural Network ImpedanceForce Control for Robot Manipulators[C]//Proceedings of IEEE International Conference on Robotics and Automation. Korea. 2001: 3453~3458.
    67 Somsawas Tungpataratanawong, Kiyoshi Ohishi and Toshimasa Miyazaki. Force Sensor-less Workspace Impedance Control Considering Resonant Vibration of Industrial Robot[C]//Proceedings of IEEE Annual Conference on Industrial Electronics Society. Raleigh, NC. 2005:1878~1883.
    68 R. G. Bonitz and T. C. Hisa. Internal Force-based Impedance Control for Cooperating Manipulators[J]. IEEE Transactions on Robotics and Automatation. 1996,12(4):78~89.
    69 S. A. Schneider and R. H. Cannon, Jr. Object Impedance Control for Cooperative Manipulation: Theory and Experimental Results[J]. IEEE Transactions on Robotics and Automation. 1992, 8(1): 383~394.
    70 J. J. Gonzalez and G. R. Widmann. A Force Commanded Impedance Control Scheme for Robots with Hard Nonlinearities[J]. IEEE Transactions on Control System Technology. 1995, 3(4):398~408.
    71 F.Caccavale, C.Natale, B.Siciliano, et al. Six-DOF Impedance Control Based on Angle/Axis Representations[J]. IEEE Transactions on Robotics and Automation. 1999, 15(2):289~300.
    72 F.Caccavale, B.Siciliano, L.Villani. Robot Impedance Control with Nondiagonal Stiffness[J]. IEEE Transactions on Automatic Control. 1999,44(11):1943~1946.
    73 T.Tsuji, M.Terauchi, Y.Tanaka. Online Learning of Virtual Impedance Parameters in Non-contact Impedance Control Using Neural Networks[J]. IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics. 2004, 34(7):2112~2118.
    74 T.Tsuji, A.Jazidie, M.Kaneko. Multi-point Impedance Control for Redundant Manipulators[J]. IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics. 1996, 26(4):707~718.
    75 W.S.Lu, Q.H.Meng. Impedance Control with Adaptation for Robotic Manipulators[J]. IEEE Transactions on Robotics and Automation. 1991, 7(2): 408~415.
    76 D.Lawrence. Impedance Control Stability Properties in Common Implementations[C]//Proceedings of the IEEE International Conference onRobotics and Automation. Los Angeles, USA. 1988:1185~1192.
    77 G.Ferretti, G.Magnani, P.Rocco, et al. Impedance Control for Industrial Robots[C]//Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, USA. 2000: 4027~4032.
    78 R.Johansson, M.W.Spong. Quadratic Optimization of Impedance Control[C]// Proceedings of IEEE International Conference on Robotics and Automation. Long Beach, CA. 1994:8~13.
    79 L.Sweet, M.Good. Redefinition of the Robot Motion Control Problem[J]. IEEE Control Systems Magazine. 1996, 5(3):18~25.
    80 M.Good, L.Sweet, K.Strobel. Dynamic Models for Control System Design of Integrated Robot and Drive Systems[J]. Journal of Dynamic Systems, Measurement, and Control. 1987, 107(1):53~59.
    81 M. W. Spong. Modeling and Control of Elastic Joint Robots[J]. Journal of Dynamics Systems, Measurement, and Control, 1987, 109(1):310~319.
    82 H. K. Khalil著,朱义胜,董辉,李作洲等译.非线性系统(第三版)[M].北京:电子工业出版社. 2005:312~339.
    83 M.W.Spong, K.Khorasani, P.V.Kokotovic. An Integral Manifold Approach to the Feedback Control of Flexible Joint Robots[J]. IEEE Journal of Robotics and Automation. 1987, 3(4):291~300.
    84 S.S.Ge. Adaptive Controller Design for Flexible Joint Manipulators[J]. Automatica. 1996, 32(2):273~278.
    85 K.Khorasani. Adaptive Control of Flexible-joint Robots[J]. IEEE Transactions on Robotics and Automation. 1992,8(2):250~267.
    86 H.D.Taghirad, M.A.Khosravi. A Robust Linear Controller for Flexible Joint Manipulators[C]//Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendal,Japan. 2004:2936~2941.
    87 F.Amjadi, S.Khadem, H.Khaloozadeh. Position and Velocity Control of a Flexible Joint Robot Manipulator via a Fuzzy Controller Based on Singular Perturbation Analysis[C]//Proceedings of 10th Annual IEEE Conference on Fuzzy Systems. Australia. 2001: 348~351.
    88 F.Ghorbel, J.Y.Hung, M.W.Spong. Adaptive Control of Flexible-joint Manipulators[J]. IEEE Control Systems Magazine. 1989, 4(3): 9~13.
    89 F.Ghorbel, M.W.Spong. Stability Analysis of Adaptively Controlled FlexibleJoint Manipulators[C]//Proceedings of the 29th IEEE Conference on Decision and Control. Honolulu, Hawall. 1990:2538~2544.
    90 F.Ghorbel, M.W.Spong. Adaptive Integral Manifold Control of Flexible Joint Robot Manipulators[C]//Proceedings of the IEEE Conference on Robotics and Automation. Kope, Japan. 1992:707~714.
    91 K.Khorasani. Robust Adaptive Stabilization of Flexible Joint Manipulators[C] //Proceedings of IEEE International Conference on Robotics and Automation. Scottsdale. 1989:1194~1199.
    92 R.A.Al-Ashoor, R.V.Patel, K.Khorasani. Robust Adaptive Controller Design and Stability Analysis for Flexible-joint Manipulators[J]. IEEE Transactions on Systems, Man, and Cybernetics. 1993, 23(2): 589~602.
    93 Al-Ashoor, K.Khorasani. A Decentralized Indirect Adaptive Control for a Class of Two-time-scale Nonlinear Systems with Application to Flexible-joint Manipulators[J]. IEEE Transactions on Industrial Electronics. 1999, 46(5):1019~1029.
    94 W.M.Grimm. Robustness Analysis of Nonlinear Decoupling for Elastic-joint Robots[J]. IEEE Transactions on Robotics and Automation. 1990, 6(3): 373~377.
    95 H.Sira-Ramirez, M.W.Spong. Variable Structure Control of Flexible Joint Manipulators[J]. International Journal of Robotics and Automation. 1988, 3(2):57~64.
    96 V.Zeman, R.Patel, K.Khorasani. Control of a Flexible-joint Robot Using Neural Networks[J]. IEEE Transactions on Control Systems Technology. 1997, 5(4):453~462.
    97 S.S.Ge, T.Lee, E.Tan. Adaptive Neural Network Control of Flexible Joint Robots Based on Feedback Linearization[J]. International Journal of System Science. 1998, 29(6):623~635.
    98 S.Ider, M.Ozgoren. Trajectory Tracking Control of Flexible-joint Robots[J]. Computers and Structures. 2000, 76(6):757~763.
    99 A.De Luca, L.Lanari. Robots with Elastic Joints are Linearizable via Dynamic Feedback[C]//Proceedings of 34th IEEE Conference on Decision and Control. New Orleans. 1995:3895~3897.
    100 A.De Luca, P. Lucibello. General Algorithm for Dynamic FeedbackLinearization of Robots with Elastic Joints[C]//Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Piscataway. 1998:504~510.
    101 P.Tomei. An Observer for Flexible Joint Robots[J]. IEEE Transactions on Automatic Control. 1990, 35(6):739~743.
    102 F.Abdollahi, H.A.Talebi, R.V.Patel. A Stable Neural Network-based Observer with Application to Flexible-joint Manipulators[J]. IEEE Transactions on Neural Networks. 2006, 7(1):118~129.
    103 T.Lahdhiri, H.Elmaraghy. Design of an Optimal Feedback Linearizing-based Controller for an Experimental Flexible-joint Robot Manipulator[J]. Optimal Control Applications and Methods. 1999, 20(4):165~182.
    104 J.Yaun, Y.Stepanenko. Composite Adaptive Control of Flexible Joints[J]. Automatica. 1993, 29(3):609~619.
    105 R.Colbaugh, K.Glass. Adaptive Task-space Control of Flexible-joint Manipulators[J]. Journal of Intelligent and Robotic Systems. 1997, 20(2-4): 225~249.
    106 K.Chen, L.Fu. Nonlinear Adaptive Motion Control for a Manipulator with Flexible Joints[C]//Proceedings of IEEE International Conference on Robotics and Automation. 1989:1201~1206.
    107 A.Beneallegue, N.Sirdi. Passive Control for Robot Manipulators with Elastic Joints[C]//Proceedings of IMACS MCTS 91 Modeling and Control of Technological Systems. 1991:481~487.
    108 D.Dawson, Z.Qu, M.Bridges, et al. Robust Tracking of Rigid-link Flexible-joint Electrically-driven Robots[C]//Proceedings of the 30th IEEE Conference on Decision and Control. Los Angeles, USA. 1991:1409~1412.
    109 R.Lozano, B.Brogliato. Adaptive Control of Robot Manipulators with Flexible Joints[J]. IEEE Transactions on Automatic Control. 1992, 37(2): 174~181.
    110 C.Kwan, F.Lewis. Robust Backstepping Control of Nonlinear Systems Using Neural Networks[J]. IEEE Transactions on Systems, Man, and Cybernetics Part I: Systems and Humans. 2000, 30(6):753~766.
    111 C.Macnab, G.D’Eleuterio. Neuroadaptive Control of Elastic-joint Robots Using Robust Performance Enhancement[J]. Robotica, 2001, 19(6):619~629.
    112 P.Tomei. A Simple PD Controller for Robots with Elastic Joints[J]. IEEETransactions on Automatic Control, 1991, 36(10):1208~1213.
    113 H.A.Malki, D.Misir, D.Feigenspan, et al. Fuzzy PID Control of a Flexible-joint Robot Arm with Uncertainties from Time-varying Loads[J]. IEEE Transactions on Control Systems Technology. 1997, 5(3):371~378.
    114 A.Albu-Schaffer, G.Hirzinger. A Globally Stable State Feedback Controller for Flexible Joint Robots[J]. Advanced Robotics. 2001, 15(8):799~814.
    115 G.Ferretti, G.A.Magnani, P.Rocco. Impedance Control for Elastic Joints Industrial Manipulators[J]. IEEE Transactions on Robots and Automation. 2004, 20(3):488~498.
    116 A.Albu-Schaffer, C.Ott, U.Freses, et al, Cartesian Impedance Control of Redundant Robots: Recent Results with the DLR-Light-Weight-Arms[C]// Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan, China. 2003:14~19.
    117 A.Albu-Sch?ffer, C.Ott, G.Hirzinger, Passivity Based Cartesian Impedance Control for Flexible Joint Manipulators[C]//Symposium on Nonlinear Control Systems (NOLCOS). Stuttgart. 2004:451~457.
    118 C.Ott, A.Albu-Schaeffer, A.Kugiy, et al, A Passivity Based Cartesian Impedance Controller for Flexible Joint Robots-Part I: Torque Feedback and Gravity Compensation[C]//Proceedings of the 2004 IEEE International Conference on Robotics & Automation. New Orleans, LA. 2004:2659~2665.
    119 A.Albu-Schaeffer, C.Ott, G.Hirzinger. A Passivity Based Cartesian Impedance Controller for Flexible Joint Robots-Part II: Full State Feedback, Impedance Design and Experiments[C]//Proceedings of the 2004 IEEE International Conference on Robotics & Automation. New Orleans, LA. 2004:2666~2672..
    120 A.Albu-Sch?ffer, C.Ott. G.Hirzinger. A Unified Passivity Based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots[C]//International Symposium on Robotics Research. San Francisco. 2005:1560~1569.
    121 W.J.Book. Recursive Lagrangian Dynamics of Flexible Manipulator Arms[J]. International Journal of Robotics Research. 1984, 3(3):87~101.
    122 A.De Luca, B.Siciliano. Closed-form Dynamic Model of Planar Multilink Lightweight Robots[J]. IEEE Transactions on Systems, Man, Cybernetics. 1991, 21(4):826~839.
    123 S.S.Ge, T.H.Lee, G.Zhu. A Nonlinear Feedback Controller for a Single-link Flexible Manipulator Based on a Finite Element Model[J]. Journal of Robotic Systems. 1997, 14(3):165~178.
    124 M.C.Readman, P.R.Belanger. Analysis and Control of a Flexible Joint Robot [C]//Proceedings of the 29th Conference on Decision and Control. Munich, Germany. 1990:2551~2559.
    125 P.S.Gandhi, F.H.Ghorbel, J.Dabney. Modeling, Identification, and Compensation of Friction in Harmonic Drives[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, USA. 2002:160~166.
    126 T.D.Tuttle, W.P.Seering. A Nonlinear Model of a Harmonic Drive Gear Transmission[J]. IEEE Transactions on Robot and Automation.1996, 12(3): 368~374.
    127 N.M. Kircanski, A.A.Goldenberg. An Experimental Study of Nonlinear Stiffness, Hysteresis, and Friction Effects in Robot Joints with Harmonic Drives and Torque Sensors[J]. International Journal of Robotics Research. 1997, 16(2): 214~239.
    128 C.W.Kennedy, J.P.Desai. Modeling and Control of the Mitsubishi PA-10 Robot Arm Harmonic Drive System[J]. IEEE/ASME Transactions on Mechatronics. 2005, 10(1):263~274.
    129 J.J.Slotine, W.Li著,程代展等译.应用非线性控制[M].机械工业出版社. 2006:82~83.
    130 B.Yao, M.Al-Majed, and M. Tomizuka, High Performance Robust Motion Control of Machine Tools: An Adaptive Robust Control Approach and Comparative Experiments[J]. IEEE/ASME Transactions on Mechatronics. 1997, 2(1): 63~76.
    131姜力.具有力感知功能的机器人灵巧手手指及控制的研究[D].哈尔滨工业大学博士学位论文. 2001:76~78.
    132 G.Ferretti, G.A.Magnani, P.Rocco. Impedance Control for Elastic Joints Industrial Manipulators[J]. IEEE Transactions on Robotics and Automation. 2004, 20(3):488~498.
    133 A.Albu-Schaffer, G.Hirzinger. Cartesian Impedance Control Techniques for Torque Controlled Light-Weight-Robots[C]//Proceedings of International Conference on Robotics and Automation. Washington DC. 2002:657~663.
    134 J.K.Salisbury. Active Stiffness Control of a Manipulator in Cartesian Coordinates[C]//Proceedings of the 19th IEEE Conference on Decision and Control. Alburquerque, NM. 1980:83~88.
    135梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社. 2003: 120~126.
    136 B.Brogliato, R.Lozano, B.Maschke etc. Dissipative Systems Analysis and Control: Theory and Applications[M]. Springer.com. 2007: 30~52.
    137 M.S.Grewal, A.P.Andrews. Kalman Filtering: Theory and Practice Using MATLAB[M]. New York: A Wiley-Interscience Publication. 2001: 30~41.
    138蔡宣三.最优化与最优控制[M].北京:清华大学出版社. 2002: 55~58.
    139周克敏, J.C.Doyle, K.Glover.鲁棒与最优控制[M].北京:国防工业出版社. 2006: 506~523.
    140 M.S.Sadeghi, H.R.Momeni, R.Amirifar. H∞and L1 Control of a Teleoperation System via LMIs[J]. Applied Mathematics and Computation. 2008: 1~9.
    141 E.Fridman, U.Shaked. H∞Control of Linear State-Delay Descriptor Systems: an LMI approach[J]. Linear Algebra and its Applications. 2002: 271~302.
    142 R.Kelly, V.Santibanez. Global Regulation of Elastic Joint Robots Based on Energy Shapping[J]. IEEE Transactions on Automatic Control. 1998, 43(10): 1451~1456.
    143 G.F.Franklin, J.D.Powell, A.E.-Naeini著,朱齐丹等译.动态系统的反馈控制[M].北京:电子工业出版社. 2004: 372~386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700