异构双腿行走机器人研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双腿行走机器人是一种可模拟人类双腿行走功能的高级智能机器人,容易适应人类生活环境,具有代替人类在危险环境下进行重复、高强度、高精度工作的潜力。目前研制的双腿行走机器人步态和人还存在明显差异。生物医学康复领域研究用微处理器控制的智能假肢来代偿残疾人残缺的肢体。装配智能下肢假肢的残疾人行走步态同正常人很相似。把高级智能假肢——智能仿生腿引入到双腿行走机器人研究中来,必将促进行走机器人的研究。人类正常行走情况下,双腿对称。但在特殊情况下,如下肢残疾、崴脚等情况下,双腿可在不对称情况下行走。不对称双腿行走也是人类智能的体现。研究不对称双腿行走可增强双腿行走机器人行走功能。
     本文将智能仿生腿和双腿行走机器人集成起来研究,提出一种新型机器人研究模式——异构双腿行走机器人(Biped Robot with Heterogeneous Legs, BRHL)。其中一条腿采用普通行走机器人模式,称为人工腿;另一条腿采用智能仿生腿。智能仿生腿的加入从关节机构上增强机器人的仿人特性。异构双腿行走机器人为智能仿生腿研究提供开发平台,同时可用于研究人体与智能肢体之间的协调和不对称双腿的行走等问题。
     在详细论述异构双腿行走机器人研究意义、内容和方法基础上,本文首先给出了异构双腿行走机器人总体组成。由智能阻尼器控制的4-bar封闭链仿生膝关节转动中心是变化的。通过对膝关节机构参数的多变量最优化设计,保证仿生腿各关节中心点跟踪给定轨迹,且阻尼器能耗小。
     采用分割建模方法,分别建立仿生腿和人工腿的运动学模型。采用多体系统动力学建模方法,分别建立双腿在支撑相和摆动相时,带约束和无约束的拉格朗日动力学模型。并从广义变量、广义力、约束之间的关系,分析了动力学模型的求解方法。建立了针对行走的双腿协调动力学模型,并简单分析了双腿之间的耦合。针对假脚弹性形变,给出了假脚建模方法。
     将双手协调控制思想引入异构双腿行走机器人中,为双腿协调控制设计了三层递阶控制系统总体结构。用主从式双腿协调控制实现机器人稳定行走的关键是步态规划和仿生腿对人工腿步态一定时差的跟随。由于仿生腿膝关节采用阻尼器控制,不能完全跟踪所有的人工腿步态,所以用多变量SUMT优化方法来求解最优跟踪轨迹。研究采用计算力矩加PD反馈控制方法,控制仿生腿跟踪人工腿摆动相时变步态轨迹。基于Lyapunov方程分析了控制方法收敛性,得出在模型存在误差情况下,理论上无法实现无偏跟踪。为此引入一阶P型开闭环迭代学习控制。开闭环学习控制是学习控制研究的前沿。在证明迭代学习控制收敛性基础上,给出学习增益选择方法。针对完整行走步态,讨论了重复控制的应用。为保证双腿运动协调,研究了基于编码器和6维力/力矩传感器信息的步态在线检测和调整方法。
     异构双腿行走机器人机构复杂,研究较困难。利用Pro/E,ADAMS和MATLAB Simulink建立联合仿真平台。在Pro/E中建立了异构双腿行走机器人的三维实体模型。通过Mech/Pro接口将模型导入ADAMS中形成虚拟样机,并在ADAMS中建立虚拟环境。在Simulink中建立各种控制算法的仿真模块。在联合仿真平台上,针对异构双腿行走机器人进行了运动学、动力学仿真。并对计算力矩加PD反馈控制和迭代学习控制进行了控制联合仿真。比较了开闭、环学习控制和单独开或闭环学习控制收敛速度。虚拟样机联合仿真验证,确保控制算法的有
Biped robot with two legs is a kind of advanced humanoid robots that can walk like human being and have ability of doing repetitive, hard and exact-need works instead of human being in his living environment. Now biped robot already can walk using two legs, but gait is not like human being's. In biomedicine rehabilitation field, the intelligent prosthesis controlled by micro-process unit is studied for amputee, and intelligent prosthetic above-knee limb can simulate human leg's moving and has humanoid knee joint. The gait of amputee with intelligent prosthetic limb is more like health people gait. It can improve biped robot to introduce the study methods and technologies of intelligent prosthesis into biped robot study. Human being's two legs and their gait are symmetrical in normal walking, but under lame or other knee trauma situation, two legs are heterogeneous. The walking with heterogeneous legs is advanced function of human being and should be studied.Integrating intelligent prosthesis and biped robot study, a new-style robot, biped robot with heterogeneous legs (BRHL) that is composed of a leg of normal biped robot, called artificial leg (AL), and an intelligent bionic leg (IBL), a kind of advanced intelligent prosthesis, is proposed. BRHL provide a good test-bed for study of intelligent bionic leg that has good bionic characteristics, and can be used to study the coordination between human being and intelligent limb, and the walking with heterogeneous legs.Following the meaning, contents and methods of BRHL study, the mechanism and form of BRHL is given. 4-bar closed-chain knee joint controlled by intelligent MR damper has polycentric characteristic of human knee joint. Optimization computation of 14 mechanism parameters of 4-bar knee joint is used to make it track human knee joint and damper cost minimum energy.Using division modeling method, the kinematics and Lagrangian dynamics models of artificial leg and intelligent bionic leg in stance phase and swing phase are built. Constraint conditions are different in stance and swing phase. According to the amount of general variables, general force and constraints, dynamics model's classification and solving methods are discussed. For sample waling, using crotch point motion as two legs' task object, the coordination dynamics model is established and coupling of two legs is analyzed. In order to walk like human being, the flexibility of prosthetic foot used for amputee must be considered and flexibility modeling method is studied.The master-slave dual-leg coordination control strategy is pointed, and is compared with dual-arm coordination control. For coordination control, three level hierarchial architecture control system is given. The key problem of master-slaver dual-leg coordination is the gait tracking of IBL to AL in reasonable phase difference. Considering the 4-bar knee joint is controlled by MR damper, IBL cannot follow arbitrary AL gait perfectly. So multi-variable optimization using SUMT algorithm is used to get optimal gait tracking which is a nonlinear, strong coupling, time-varying control problem. Computed torque with PD feedback control is studied and convergence is proved using
引文
1. Pratt J E. Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots[D], Massachusetts: Massachusetts Institute of Technology, 2000
    2. Takanishi A, Yarnaguchi J. Development of a leg part of a humunoid robot-development of a biped walking robot adapting to the humans'normal living floor[J], Autonomous Robots, 1997, 2(4): 369-385
    3. Figliolini G, Ceccarelli M. Climbing stairs with EP-WAR2 biped robotiC], Scout: Proceedings of the 2001 IEEE International Conference on Robotics & Automation, 2001: 4116-4221
    4. Figliolini G, Ceccareli M. Walking programming for an electropneumatie biped robot[J], Mechatronics, 1999, 2(9): 941-964
    5. Pratt J, Chew C C, Torres A, Dilworth P, Pratt G. Virtual model vontrol: An intuitive approach for bipedal locomotion[J], The International Journal of Robotics Research, 2001, 20(2): 129-143
    6. Chew C M, Pratt G A. Adaptation to load variations of a planar biped: Height control using robust adaptive control[J], Robotics and Autonomous Systems, 2001, 1(35): 1-22
    7. Zheng Y F. Acceleration Compensation for Biped Robots to Reject External Disturbances[J], IEEE Transactions on System, Man, and Cybemectics, 1989, 19(1): 74-84
    8. Zheng Y F, Shen J. Gait synthesis for the SD-2 biped robot to climb slopping surface[J], IEEE Transactions on Robotics and Automation, 1990, 6(1): 86-96
    9. S.Mocbon, T.A.McMahon. Ballistic walking[J], J Biomechanics, 1980, 13:49-57
    10. T. McGeer. Passive dynamic walking[J], Intern J Robot, 1990, 9(2): 62-82
    11. Suzuki S, Furuta K, Pan Y, Hatakeyama S. Biped walking robot control with passive walker[C], Arlington: Proceedings of the American Control Conference, 2001:25-27
    12. Suzuki S, Furuta K, Pan Y, Hatakeyama S. Lazy VS-control strategy for passive walking[C], Orlando: Proceedings of the 40th IEEE Conference on Decision and Control, 2001: 1392-1397
    13. Goswami A, Espiau B, Keramane A. Limit cycles and their stability in a passive bipedal gait[C], Minneapolis: Procceedings of the 1996 IEEE International Conference on Robotics and Automation, 1996:246-251
    14. Goswami A, Espiau B, Keramane A. Limit cycles in a passive compass gait biped and passivity-mimiching control laws[J], Autonomous Robots, 1997, 1(4): 273-286
    15. Goswami A, Thuilot B, Espiau B. A study of the passive gait of a compass-like biped robot: symmetry and chaos[J], The International Journal of Robotics Research, 1998, 17(12): 1282-1301
    16. Yamakita M, Asano F, Furuta K. Passive velocity field control of biped walking robot[C], San Francisco: Proceedings of the 2000 IEEE International Conference on Robotics & Automation, 2000: 3057-3062
    17. Asano F, Hashimoto M, Kamaichi N, Yamakita M. Extended virtual passive dynamic walking and virtual passivity-mimiching control laws[C], Seout: Proceedings of the 2001 IEEE International Conference on Robotics & Automation, 2001: 3084-3089
    18. Steven H C, Martijn W, Ruina A. A three-dimensional passive-dynamic walking robot with two legs and knees[J], The International Journal of Robotics Research, 2001, 20(7): 607-615
    19. Richard Quint van der Linde. Active leg compliance for passive walking[C], Belgium Leuven: Proceeding of the 1998 IEEE International Conference on Robotics & Automation, 1998: 2339-2344
    20. Sang-Ho Hyon, Takashi Emura. Running Control of Planar Biped Robot Based on Energy-Preserving Strategy[C], New Orleans, LA: Proceedings of the 2004 IEEE International Conference on Robotics & Automation, 2004: 3791-3796
    21.张永学,麻亮,强文艺,付佩琛.基于地面反力的双足机器人期望步态轨迹规划[J],哈尔滨工业大学学报,2001,33(1):4-7
    22.张永学,麻亮,强文义.基于多传感器信息的双足机器人步行系统的研究[J],高技术通讯,2001,6:66-92
    23.麻亮,纪军红,强文义,付佩琛.基于力矩传感器的双足机器人在线模糊步态调整设计[J],控制与决策,2000,15(6):734-736
    24.杨东超,汪劲松,刘莉,陈恳.基于ZMP的拟人机器人步态规划[J],机器人,2001,23(6):504-508
    25.刘莉,汪劲松,陈恳,杨东超,赵建东.基于六维力/力矩传感器的拟人机器人实际 ZMP检测[J],机器人,2001,23(5):459-466
    26. Huang Q, Nakamura Y, Inamura T. Humanoids walk with feedforward dynamic pattern and feedback sensory reflection[C], Scout: Proceedings of the 2001 IEEE International Conference on Robotics & Automation, 2001: 4220-4225
    27. Huang Q, Shuuji, Noriho, Kenji. A high stability, smooth walking pattern for a biped robot[C], Detrott: Proceedings of the 1999 IEEE International Conference on Robotics & Automation, 1999:65-71
    28. Huang Q, Yokoi K, Kajita S, Kaneko K, Arai H, Koyachi N, Tanie K. Planning walking patterns for a biped robot[J], IEEE Transactions on Robotics and Automation, 2001, 17(3): 280-289
    29. Huang Q, Kaneko K, Kazuhito. Balance control of a biped robot off-line pattern with real-time modification[C], San Francisco: Proceedings of the 2000 IEEE International Conference on Robotics & Automation, 2000:3346-3352
    30. Robert F, James J. Mechanical and metabolic work of persons with lower-extremity amputations walking with titanium and stainless steel prostheses: a preliminary study [J], Journal of prosthetics and orthotics, 1999, 11(2): 38-42.
    31.刘玉军,冯浩,刘国安.机器人骨关节的研究[J],控制工程,2002,9(5):49-50.75
    32.张瑞红,金德闻,张济川.六连杆假肢膝关节优化设计[J],中国康复医学杂志,1999,14(4):162-165
    33.张瑞红,金德闻,张济川.多杆机构瞬停节分析及应用[J],清华大学学报(自然科学版),2000,40(4):39-42
    34. Steven A, Dudley S, Jack E, Uellendahl. The Influence of Four-Bar Linkage Knees on Prosthetic Swing-Phase Floor Clearance[J], Journal of prosthetics and orthoties, 1996, 8(2): 34-40
    35. James W, Stuart H. Technical Note: Beyond the Four-Bar Knee[J], Journal of prosthetics and orthotics, 1998, 10(3): 77-80
    36.扬基厚.机构运动学与动力学[M],北京:机械工业出版社,1987:101
    37.刘惟信.机械最优化设计[M],北京:清华大学出版社,1994
    38.王人成,金德闻.步态分析在假肢设计中的应用[J],中国临床康复,2002,6(20):3000-3019
    39.张培玉,金德闻.膝上假肢稳定性与运动学功能的评价[J],清华大学学报(自然科学版),1998,38(8):1-4
    40.黄锦荣,陈乐生.采用磁流变阻尼器的车辆半主动悬架的一种建模方法依据[J],精密制造与自动化,2003年增刊:17-20
    41.廖昌荣,余淼,陈伟民,黄尚廉.磁流变材料与磁流变阻尼器的潜在工程应用[J],机械工程材料,2001,25(1):31-34
    42.徐赵东,沈亚鹏.磁流变阻尼器的计算模型及仿真分析[J],建筑结构,2003,33(1):68-70
    43.周强,翟伟廉.磁流变阻尼器的两种力学模型和试验验证[J],地震工程与工程振动,2002,22(4):144-150
    44.宁欣,阎石,王丰.磁流变阻尼器半主动控制算法的改进[J],沈阳建筑工程学院学报(自然科学版),2004,20(1):4-6
    45.瓮建生,胡海岩.磁流变阻尼器的实验建模[J],振动工程学报,2000,13(4):616-621
    46.纪军红.HIT-Ⅲ双足步行机器人步态规划研究[D],哈尔滨:哈尔滨工业大学,2000
    47.蔡自兴.机器人学[M],北京:清华大学出版社,2000
    48.袁士杰,吕哲勤.多刚体系统动力学[M],北京:北京理工大学出版社,1992
    49.覃正.多体系统动力学压缩建模[M],北京:科学出版社,2000
    50. A E Patla, D A Stacey. Artificial neural network model for the generation of muscle activation patterns for human locomotion [J], Journal of Electromyography and Kinesiology, 2001, 11: 19-30
    51. Stinus H. Biomechanik und beurteilung des mikroprozessorgesteuerten exoprothes enkniegelenkes C-Leg[J], J Z Orthop, 2000, 138:278-282
    52.林良明.仿生机械学[M],上海:上海交通大学出版社,1989
    53.章定国,李德昌.含闭合链的多刚体系统的动力学分析[J],南京理工大学学报,1994,73(11).7-11
    54.邱志成.基于特征模型的柔性关节机械臂的控制[J],系统仿真学报,2002,114(8):971-974
    55.张绪平,余跃庆.具有柔性关节和柔性杆的空间机器人频率特性[J],机器人,1998,20(5):342-345
    56.边宇枢,陆震.柔性机器人动力学建模的一种方法[J],北京航空航天大学学报,1999,25(4):486-490
    57.樊晓平,徐建闽,毛宗源.受限柔性机器人基于遗传算法的自适应模糊控制[J],自动化学报,2000,26(1):61-67
    58.顾新兴,孙燕朴.多机器人协调控制研究综述[J],系统工程与电子技术,1994,12:9-20
    59.李家炜,刘宏,蔡鹤皋.多指机器人手协调控制研究进展[J],机器人,2000,22(4):319-328
    60.陈建平,朱明,吴文龙.双臂机器人协调动力学及其优化[J],南京航空航天大学学报,1996,28(1):37-44
    61.赵京,白师贤.两冗余度机器人协调操作的研究[J],机器人,1998,20(4):258-265
    62.张辉,张彭,常文森,韦庆.双机械手对称式协调力控制稳定性分析[J],国防科技大学学报,1999,21(4):103-107
    63.陈国栋,常文森,张彭,陈璟.双机械手对称协调力/位混合控制——模型、控制算法与实现[J],自动化学报,1996,22(4):418-427
    64. Cecil O. Alford, Stanley M. Belyeu. Coordinated control of two robot arms[C], Adanta, GA: Proc IEEE Int. Conf. on Robotics, 1984: 468-473
    65.刘成良,张凯,Jay Lee.双机器人协调作业下碰撞算法及仿真研究[J],机器人,2003,25(2):167-171
    66.周远请,张再兴.智能机器人系统[M],北京:清华大学出版社,1989
    67.邢继祥,张春蕊.最优控制应用基础[M],北京:科学出版社,2003
    68. Khosta P K, Kanade T. Real-time implementation and evaluation of computed-torque scheme[J], IEEE Trans Robotics and Automation, 1989, RA-5: 245-253
    69.陈辉堂,蒋平,王月娟.直接驱动机器人控制算法的试验研究和比较[J],机器人,1995,17(2):113-120
    70.李世敬,王解法,冯祖仁.基于计算力矩结构的并联机器人层叠小脑模型补偿控制研究[J],西安交通大学学报,2003,37(6):569-572
    71.徐建闽,周其节,梁天培.不确定性机器人的神经网络补偿控制[J],控制理论与应用,1995,12(3):342-350
    72. Uchiyama M. Formulation of high-speed motion of a mechanical arm by trial[J], Society of Instrumentation and Control Engineers, 1978, 14(6): 706-712
    73. Arimoto S, Kawamura S, Miyazaki F. Bettering Operation of robotics by learning[J], J Robotic System, 1984, 1(2): 123-140
    74. Sun M X, Huang B, Zhang X. PD-type iterative learning ontrol for a class of uncertain time delay system with based initial state[J], Control Theory and Applications, 1998, 15(6): 853-858
    75.史忠科.连续非线性系统的迭代学习控制方法[J],控制理论与应用,1997,14(6):878-882
    76. Bien Z, Huh K.M. Higher-order iterative learning control algorithm[J], IEEE Pro.-D:Control Theory and Applications, 1989, 136(3): 105-112
    77. Chen Y, Sales D M, Sones T.M. A robust high-order P-type iterative learning controller using current iteration tracking error[J], Int. J Control, 1997, 68(2): 331-342
    78.孙明轩.非线性离散时间系统迭代学习控制的稳定性分析[J],自动化学报,1998,24(6):811-815
    79. Heinzinger G, Fenwick D, Paden B. Robust learning control[C], Tamps, Florida: Proc. of 28th IEEE Conf. on Decision and Control, 1989: 436-440
    80. Shao C, Gao F R, Yang Y. Robust stability of optimal iterative control and application to injection molding machine[J], Acta Automatic Sinica, 2003, 29(1): 72-79
    81. Burdet E, Rey L, Codourey A. A trivial and efficient learning method for motion and force control[J], Engineering Applications of Artificial Intelligence, 2001, 14(4): 487-496
    82. Criag J. Adaptive control of Manipulators through repeated trials[C], Ca: Proc of ACC, 1984
    83. Tso S K, May Y X. Cartesian-based learning control for robots in discrete time formulation[J], IEEE trans on sys man and Cybernetics, 1992, 22(5): 1198-1204
    84.徐进学,柴天佑,谈大龙.机器人的一种离散学习控制算法的研究[J],机器人,1998,20(2):116-122
    85.徐进学,吴海,柴天佑,谈大龙.基于内模的机器人迭代学习控制[J],机器人,1998,20(6):401-406
    86. Yang S Y, Luo A, Fan X P. Adaptive robust iterative learning control for uncertain robotic systems[J], Control Theory and Applications, 2003, 20(5): 691-694
    87. Mezghani M, Roux G, Cabassud M. Robust iterative learning control of an exothermic semi-batch chemical reactor[J], Mathematics and Computers in Simulation, 2001, 57(7): 367-385
    88. Huang H J, Yang S Y, Fan X P. On closed-loop fuzzy iterative learning controller design for nonlinear dynamic systems[J], Journal of Changsha Railway University, 2003, 21(2): 70-74
    89. Tian Y P, Yu X H. Robust learning control for a class of nonlinear systems with periodic and aperiodic uncertainties[J], Automatica, 2003, 39(11): 1957-1966
    90. Kwon S, Regan A, Wang Y M. SNS Superconducting RF cavity modeling-iterative learning control[J], Nuclear Instruments and Methods in Physics Research A, 2002, 48(1): 12-31
    91.皮道映,孙忧贤.开闭环迭代学习控制的研究进展与方向[J],机电工程,1999,5:165-166
    92. Peter B G. On the equivalence of causal LTI iterative learning control and feedback control[J], Automatica, 2002, 38(4): 703-708
    93. Mark H A, Verwoerd, Gjerrit Meinsma, Theo J.A. de Vries. On equivalence classes in iterative learning control[C], Denver, Colorado: Proceedings of the American control conference, 2003: 3632-3637
    94.孙明轩.迭代学习控制[M],北京:国防工业出版社,1999
    95.皮道映,孙忧贤.非线性系统开闭环PI型迭代学习控制的收敛性[J],自动化学报,1998,25(3):351-354
    96.皮道映,孙忧贤.离散非线性系统开闭环P型迭代学习控制律及其收敛性[J],控制理论和应用,1997,14(2):157-161
    97.孙明轩,万伯任.非线性系统高阶迭代学习算法[J],控制与决策1994,9(3):195-199
    98. Inoue T, Naicano M, Kubo T, Matsumoto S, Baba H. High accuracy control of a proton synchrotron magnet powel supply[C], Kyoto, Japan: 8th Triennial World congress, 1981: 3137-3142
    99. Hikita H, Kyotoku S. A repetitive control system of a model following type[C], Proc 28th Conf, Decision and Control, 1989:757-760
    100. Brian J. Transtibial amputee gait adaptation: correlating residual limb compliance to energy storing and return prosthetic foot compliance in bouncing gait[D], Washington: University of Washington, 2003
    101.李书臣.辅助反馈迭代学习控制算法的研究与应用[D],沈阳:东北大学,2004
    102.龚光红,王行仁,彭晓源,戴树岭.先进分布仿真技术的发展与应用[J],系统仿真学报,2002,16(2):222-230
    103.宋红芳,张绪树,史俊芬,陈维毅.人体上肢的ADAMS建模及仿真[J],医用生物力学,2002,17(4):240-243
    104.王沫楠,孟庆鑫,袁鹏.基于虚拟样机技术两栖仿生机械蟹的仿真研究[J],计算机工程与应用,2004,8:58-70
    105.蔡则苏,洪炳熔,刘玉强,魏振华.基于虚拟样机的月球探测机器人运动学建模[J],哈尔滨工业大学学报,2004,36(2):209-214
    106.郝云堂,金烨,季辉.虚拟样机技术及其在ADAMS中的实践[J],机械涉及与制造,2003,3:16-18
    107.郑建荣.ADAMS—虚拟样机技术入门与提高[M],北京:机械工业出版社,2002
    108.王国强,张进平.虚拟样机技术及其在ADAMS上的实践[M],西安:西北工业大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700