X65管线钢显微组织与力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着国民经济的高速发展,对石油、天然气的需求急剧增加,对管线钢的需求也相应地急剧增加。在激烈的市场竞争下,世界上各油气公司普遍接受采用更高强度级别的管线钢,以便可以采用高压输送油气而降低成本。因此,近年来高压输送和厚壁、高强度的管线已经成为管线建设的一个新的发展趋势。在管线建设的这种新的发展趋势中,针状铁素体管线钢由于具有优良的强韧性能、焊接性能、抗硫化氢开裂性能而具有广阔的应用前景。
     本文以鞍钢的产品微合金管线钢X65为研究对象,通过进行实验室模拟轧制实验,将控制轧制与控制冷却技术应用于微合金管线钢的生产过程中,探讨了微合金管线钢热变形过程中组织细化与性能变化的规律,同时研究了X65的显微组织与力学性能之间的关系以及针状铁素体管线钢的强化机制。从而,为实际工业大生产中通过TMCP工艺来改善管线钢的针状铁素体组织和提升管线钢的综合力学性能,提供了重要的理论基础和工艺依据。主要研究内容和研究方法如下:
     1.按照自行设定的工艺制度,利用实验室轧机进行实际控制轧制和控制冷却实验,在热轧实验中对X65管线钢采用两阶段多道次控轧和适当冷却速度控冷的TMCP工艺;
     2.对TMCP工艺后的X65管线钢进行金相试样的制备,并使用光学显微镜对试样进行显微组织观察和分析,研究不同的控轧控冷工艺参数对X65管线钢显微组织结构的影响规律;
     3.对TMCP工艺后的X65管线钢进行金属薄膜试样的制备,在透射电镜下对试样进行显微组织观察和分析,研究针状铁素体管线钢的强化机制;
     4.对TMCP工艺后的X65管线钢进行力学性能检测,探讨不同的控轧控冷工艺参数对X65管线钢力学性能的影响规律;
     5.综合分析各种实验结果,总结控轧控冷工艺参数对X65管线钢显微组织和力学性能的影响规律,揭示X65管线钢显微组织与力学性能之间的关系。从而在不改变现有管线钢化学成分的情况下,仅仅通过优化的TMCP工艺,进行管线钢的柔性化轧制,最终实现管线钢组织结构的优化和力学性能的提升。
The demands for pipeline steels are being increased dramatically with the national economy development. In the fierce market competition, driven by the cost considerations, gas&oil transportation companies have readily adopted higher strength pipeline steels with thicker gauges to permit gas&oil transportation at higher pressures. As a result, recent construction of pipelines has shown a trend towards higher operation pressure with greater wall thickness and higher strength pipe. At the same time, acicular ferrite pipeline steels are becoming accepted as the prevalence for the new construction because of their high strength, excellent toughness, good weldability and satisfied hydrogen sulfide resistance.
     This thesis, applied controlled rolling and controlled cooling technology on the production of micro-alloyed pipeline steel X65 which was provided by Anshan Iron and Steel Group Corporation, by means of laboratory simulation test. Then we did research on the characteristics of the change of microstructures and properties at various deformation conditions, and clarified the relations between microstructures and mechanical properties of X65 and the strengthening mechanisms of acicular ferrite pipeline steels. The experimental aim was to offer the important theoretical foundation and technological basis for the improvement on microstructures and the enhancement on mechanical properties of acicular ferrite pipeline steels, which would be brought into effect through the technology of TMCP in the industrial manufacture. The main contents are given as follows:
     1. According to the process system designed by ourselves, the practical controlled-rolling and controlled-cooling tests were performed by using the rolling mill in the laboratory. And the improved TMCP schedules containing a two-stage multi-pass controlled rolling coupled with moderate cooling rates were applied to the hot rolling experiments.
     2. The metallographic specimens of X65 pipeline steel were prepared after the process of TMCP. The microstructures of the specimens were examined using optical microscope (OM). And the effects of different technological parameters of controlled rolling and controlled cooling on the microstructures of X65 pipeline steel were completely studied.
     3. The metallic film specimens of X65 pipeline steel were prepared after the process of TMCP. The microstructures of the specimens were analyzed using transmission electron microscope (TEM). And the strengthening mechanisms of acicular ferrite pipeline steels were investigated comprehensively.
     4. The mechanical properties of X65 pipeline steel were tested after the process of TMCP. And the actions of different technological parameters of controlled rolling and controlled cooling on the mechanical properties of X65 pipeline steel were researched on exhaustively.
     5. Comprehensive analyzing all the experimental results, the effects of technological parameters of controlled rolling and controlled cooling on the microstructures and mechanical properties of X65 pipeline steel were generalized, and the relations between microstructures and mechanical properties of X65 pipeline steel were clarified thoroughly. Thus, the flexible rolling of pipeline steels would be obtained only by optimizing the process of TMCP, so as to achieve the improvement on microstructures and the enhancement on mechanical properties of pipeline steels, without changing their existing chemical compositions.
引文
[1]潘继平.对中国油气资源可持续供应战略的思考[J].资源战略,2002:27-30.
    [2]杨本安.我国原油天然气输送用管发展展望[J].焊管,1998,21(4):31-34.
    [3]中国石油工业“十五”规划[J].国际石油经济,2001,8(7):5-10.
    [4]高惠临.管线钢-组织、性能、焊接行为[M].西安:陕西科学技术出版社,1995:1.
    [5]钟勇,王忠军,单以银,等.热变形对超纯净管线钢组织的影响[J].材料研究学报,2003,17(3):304-309.
    [6]Davis J R.ASM Specialty Handbook-Carbon and Alloy Steel[M].ASM,International,U.S.A,1996,644-653.
    [7]Ouchi C.Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes[J].ISIJ International,2001(6):542-553.
    [8]Takeuchil,Fujino J,Yamamoto A,Okaguchi S.The Prospects for High-grade Steel Pipes for Gas Pipelines[J].Pipes and Pipelines International,2003,48(1):33-43.
    [9]Huo C,Li H,Ma W,etal.Development of large diameter X70 high toughness HSAW linepipe for gas transmission.Proceedings of the international pipeline conference,IP C,2002,A:403-407.
    [10]Mendoza R,Huante J,Camacho V,etal.Development of an API 5L X-70 grade steel for sour gas resistance pipeline application[J].Journal of Materials Engineering and Performance,1999,8(5):549-555.
    [11]Kawabata F,Amano K,Tanigawa O,etal.High strength X80 grade pipe with super weldability and improved resistance to unstable ductile fracture.Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium,Pipeline Technology,1992,v5,nptB:597-603.
    [12]翁宇庆.超细晶钢-钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003:333.
    [13]M.Graef,J.Schroeder,V.Schwinn and K.Hulka..Production of large Diameter Pipes Grade X70 with High Toughness Using Acicular Ferrite Microstructures,Proceeding of the International Pipe Dreamer's Conference,7-8 November,2002,Yokohama,Japan,2002:323-338.
    [14]唐继权.管线钢组织性能的研究[D].鞍山:辽宁科技大学,2003.
    [15]Mao,Scott X,Li M.Mechanics and thermodynamics on the stress and hydrogen interaction in crack tip stress corrosion:experiment and theory[J].Journal of mechanics andphysics of solids,1998(6):1125-1137.
    [16]王青江等.控制轧制钢中的断面分离现象[J].兵器材料学与工程,1992:15(9).
    [17]何建中.采用CSP技术生产X60管线钢的工艺研究[D].北京:北京科技大学,2005.
    [18]API SPEC 5L.管线钢管[M].美国石油协会标准,1995.
    [19]霍春勇.国外油气藏书馆现有焊管技术标准分析[J].石油专用管,1998(2):19-26.
    [20]E.Sugie等.输气管线中延性裂纹扩展的研究[J].石油专用管,1991(4):162-173.
    [21]高惠临,董玉华,周好斌.管线钢的发展趋势与展望[J].焊管,1999,22(3):4-8.
    [22]张庆国.管线钢的发展趋势及生产工艺评述[J].河北冶金,2003(5):12-17.
    [23]高惠临,石凯.管线钢控制轧制与控制冷却技术的应用和进展[J].焊管,1995,18(3):7-11.
    [24]王春怀.微合金化中厚钢板组织、性能及缺陷研究[D].沈阳:东北大学,2003.
    [25]A.C.de koning.Developments in materials and welding Technology for Offshore Structures[J].Metal Construction,1985,17(11).
    [26]谷庆.中厚管线钢板生产工艺研究[D].北京:钢铁研究总院,2001.
    [27]小指军夫.控制轧制控制冷却-改善材质的轧制技术发展[M].北京:冶金工业出版社,2002:8-9.
    [28]李曼云,孙本荣.钢的控制和控制冷却技术手册[M].北京:冶金工业出版社,1990.
    [29]周成等.管线钢控制冷却的实验室研究[J].武钢技术,1996:12-15.
    [30]叶舜发.管线用铌微合金化钢板的生产技术[J].上海金属,1998,20(6):10-15.
    [31]曲锦波,单以银,赵明纯,等.加速冷却对控轧管线钢组织和性能的影响[J].钢铁,2001,36(9):46-49.
    [32]率民,孙本荣,陈钰珊,等.高韧性管线钢工艺优化研究[J].钢铁,1997,32(9): 30-32.
    [33]王劲.微合金低碳管线钢组织和性能的研究[D].沈阳:沈阳工艺学院,2004.
    [34]孔萃敏.轧制工艺对X70钢二相粒子析出及其组织性能影响研究[D].北京:北京科技大学,2004.
    [35]蔡庆伍,唐获,李成果,等.中厚板在线控冷高密度管层流水冷装置的开发[J].钢铁,2001,36(4):66-69.
    [36]L Barsanti,H G Hillenbrand.Possible use of new materials for high pressure linepipe construction:an opening on X100 Grade steel.4th international pipeline conference,2002.
    [37]A.J.DeArdo.Accelerated Cooling:A Physical Metallurgy Perspective.Canadian Metallurgical Quarterly,1988,27(2):141-152.
    [38]单以银.针状铁素体管线钢的组织控制与细化工艺研究[D].秦皇岛:燕山大学,2003.
    [39]张贺咏.微合金管线钢X70控制轧制与控制冷却工艺研究[D].鞍山:辽宁科技大学,2004.
    [40]赵明纯.新一代针状铁素体管线钢的组织与性能研究[D].沈阳:中国科学院金属研究所,2003.
    [41]Pickering F B.微合金化低碳高强度钢(姚泽雄等译)[M].北京:冶金工业出版社,1982:2.
    [42]高惠临,辛希贤.论管线钢韧性的控制因素[J].焊管,1995,18(5):7-11.
    [43]钟勇.超细针状铁素体管线钢的疲劳行为与组织控制[D].沈阳:中国科学院金属研究所,2005.
    [44]王青江,王仪康.微合金控制轧制钢[J].焊管,1994,17(4):14-20.
    [45]魏文光.金属的力学性能测试[M].北京:科学出版社,1980.3-5.
    [46]戴雅康.金属力学性能实验[M].北京:机械工业出版社,1991.8-12.
    [47]孟延军.轧钢基础知识[M].北京:冶金工业出版社,2005:4.
    [48]黄明志.金属力学性能[M].西安:西安交通大学出版社,1986:99-103.
    [49]Coldren A.P,Mhelich J.L.Acicular Ferrite HSLA Steels for Line Pipe Molybdenum-Containing Steels for Gas and Oil Industry Application,a State of the Art Review.In:Climax Molybdenum Company,1976:14.
    [50]冯耀荣,柴慧芬,郭生武,等.低碳超低碳微合金化管线钢显微组织的研究进展[J].材料导报,2002(6):9-12.
    [51]肖福仁.针状铁素体管线钢的组织控制与细化工艺研究[D].秦皇岛:燕山大学,2003.
    [52]A.Halder,S.K.Tiwary,R.N.Chattopahyay and Amit Chatterjee.Deleopment of Microstructure in Low Carbon Microslloyed Steel under Simulated Hot Strip Rolling Conditions.Liu Guoxun.HSLA Steels'95,Oct.25-29,1995,Beijing,China,China Science and Technology Press,1995:113-1.
    [53]J.Malcolm Gray & W.J.Fazackerley.Technical Challenges and Metallurgical Aspects of High Strength Line Pipe.37th Annual Conference of Metallurgists,1998:125-131.
    [54]王占学.控制轧制与控制冷却[M].北京:冶金工业出版社,1988:62-63.
    [55]王占学.控制轧制与控制冷却[M].北京:冶金工业出版社,1988:65-66.
    [56]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1999:5-8.
    [57]徐勇,凌平,邓澄,等.管线钢品种开发与生产技术.钢铁钒钛,1992(4):55-64.
    [58]赵明纯,肖福仁,单以银,等.超低碳针状铁素体管线钢的显微特征及强韧性行为[J].金属学报,2002,38(3):283-287.
    [59]赵明纯,单以银,肖福仁,等.管线钢中针状铁素体的形成及其强韧性的分析[J].材料科学与工艺,2001,9(4):356-358..
    [60]Phillips R,Chapman J A.ISIJ,1996,204:615.
    [61]陆匠心,王国栋.一种Nb-Ti微合金钢微合金碳氮化物析出行为的研究[J].钢铁,2005,40(9):69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700