面向冷轧机的板形预测模型与广义预测控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板带材在国民经济各部门中具有广泛而重要的应用。板带材的质量指标之一是板形。由于板带材使用部门对板形精度的要求越来越高,使板形控制成为现代高精度板带轧机的重要的技术发展方向,其中板形在线预测与板形先进控制方法与策略的研究则是现代板带轧制中的关键技术和国际前沿研究课题。本文以广义预测与人工智能理论为基础,选择具有理论和工程实际意义的冷轧机板形在线智能预测与液压弯辊广义预测控制为研究课题,进行了深入的理论研究与工业应用研究,主要工作如下:
     板形预测模型是板形控制系统设计的重要基础,无论是板形控制系统中的调节机构控制特性分析,还是在线实时控制,都需要精确的板形预报模型。针对目前基于机理模型的板形预测模型在板形预测中效果不好的现状,为提升板形预测模型的快速性和准确性,本文以生产实测数据为基础,建立了基于模糊分类的分布式神经网络板形在线预测模型。将对角递归神经网络及模糊分类技术引入到了板形预测中,并给出一种用于板形在线预测模型的校正算法,使预测模型可以适应变化的过程特性以获得较好地预报结果,提高了板形预测的准确性和系统的实时性。该预测模型克服了机理模型中的反复迭代、计算时间长以及多层前馈神经网络易将动态建模变成静态建模问题的缺点,探索了一种非解析原理的板形建模方法。
     针对液压弯辊控制具有非线性、时变性及不确定性等特性,及其对抗干扰性的要求,在分析其控制机理的基础上,提出了一种基于直接广义预测控制的液压弯辊控制方案并将其应用于带钢板形控制中,以提高带钢的成才率,充分发挥液压弯辊力对板形的调整作用,改善轧机系统的动态特性。
     针对传统广义预测控制算法由于存在反复求逆而导致计算量过大的问题,提出了一种新的简化迭代优化算法,利用共轭梯度法对滚动优化性能指标求解极值来计算最优控制律,省去了广义预测控制求逆计算过程,以解决广义预测控制算法计算量大而影响实时性的问题。
     研究了广义预测控制的模型反馈校正方法,将递推极大似然法和遗忘因子递推最小二乘法结合起来,给出了一种改进的递推极大似然参数估计算法。该算法可及时修正模型误差、提高控制精度并保证控制效果。解决了控制参数与噪声干扰紧耦合时参数估计变慢的问题,可有效地抑制系统时滞、设备性能时变对系统稳定性的影响。
     论文最后对板形在线预测模型和广义预测控制在板形测控系统中的应用进行了进一步的讨论和设想,预示了其广阔的发展空间和应用前景。
In every department of national economy, plate and strip has extensive and important application. One of the quality indexes is flatness. The precision of plate and strip acquired by department is becoming more and higher. As a result, flatness control becomes the key technique and important develop direction for modern times high precise rolling mill. As far as the technique is concerned, theoretical basis and key scientific problem is the online flatness forecasting and advanced control method. In this study, author chooses flatness intelligent forecast and hydraulic roll-bending control as research object. The system of flatness measurement and control has been researched based on Generalized Predictive Control (GPC) and Artificial Neural Network (ANN). Main works are as follows:
     Flatness forecasting model is important to design flatness control system and precise flatness forecasting model is needed either in analyzing the control characteristic of the machines adjusted or in controlling online. In order to build a more fast and precise model of flatness forecast, an online distributed neural network flatness forecasting model is built based on product data. Diagonal recurrent neural network and fuzzy classification technique are introduced in the flatness forecasting model. A Correction Algorithm that used to forecasting model was set up, which cause model can adapt process changes and can obtain better forecasting result. The forecasting model overcomes a lot of defects, such as iterative operation, time-consuming operation, easily making dynamic model static model in many lay ahead feedback network, exploring a new non-parse method of building flatness model and resolving many problems in building complex system model.
     Due to non-linearity, time-variation and non-determinacy of hydraulic roll-bending control, as well the anti-interference request, a hydraulic roll-bending control scheme has been put forward based on direct GPC after analysis of system mathematical models, which is used to raise product ratio, make full use of hydraulic force and improve the dynamic performance of rolling mill system.
     GPC has been studied. According to the problem of big calculation amount caused by heavy and complicated matrix inversion, a new simplified iterative optimization algorithm has been presented to solve the GPC real-time problems caused by the amount calculation, which eliminate the matrix inversion of traditional GPC.
     Model feedback correction algorithm of GPC has Benn studied. Combining the RML and forgetting factor RLS, An improved RML parameter estimation method has been given. This method can modify model error in time to improve control precision and guarantee control effect. It can solve the problem that parameters estimation will become slow when the process parameters and noise signal are tightly coupled. The effect of time varying of systematic time lag and equipments capability for systematic stability and robustness has been effectively restrained.
     At last ,the paper further we discusses and assumes the application foreground of flatness online forecasting and GPC in flatness measure and control system, and shows their board development space and apllication foreground.
引文
1 J. D. Mason. The Measurement and Control of Flatness. In: Proc of 5th Int Rolling Conf, 1990: 205-209
    2 G. Anders, O. Keijser. Modern Approach to Flatness Measurement and Control in Cold Rolling. Iron andSteel Engineer, 1991, 68(1): 34-37
    3 I. Hoshino, M. Kawai and Mi. Kekubo. Observer-based Multivariable Flatness Control of the Cold RollingMill. 12th World International Federation of Automatic Control, 1993, (6): 149-156
    4乔俊飞.板形控制现状及未来发展.冶金自动化, 1997(1): 12-14
    5 Chen S.,Billings S .A.Neural networks for nonlinear dynamic system modeling and identification. Int. Control,1992,56(2):319-346
    6小西正躬.塑性加工の知能化技术.塑性と加工,1993,34(387):337-341
    7小园东雄.人工智能の压延工程へ适用例.塑性と加工,1991,32(363):441-444
    8 L.Yao,I.Postlenthwite,W.Browne,et al.Design,implementation and Testing of an Intelligent Knowledge-Based System for the Supervisory Control of a Hot Rolling Mill. Journal of Process Control,2005,15(6):615-628
    9 M.Konishi,T.Takahashi,K.Omura,et al.Expert System with Simulator for Selecting Routes on Billet Condition Line.Kobel Technology Review,1992,(13):1-4
    10 H.Viale, O. Martin, et al. Interactive Real Time Expert System Applied to Hot Rolling Mill.Proceedings of 4th Symposium on Intelligent Component sand Instruments for Control Application(SICICA2000), Buenos Aires, Argentina. Kidlington,UK, Elsevier Science, 2001:17-22
    11服部哲,中岛正明.ほかニェーロ.フアツィ应用压延机形状制御システム.日立评论,1991, 73(8):21-27
    12片山恭纪,中岛正明.ほかニェーロ.フアツィ应用センミァミルの形状制御,塑性と加工,1993, 34(387):411-418
    13片山恭纪,中岛正明.ほか新しぃ制御手法と压延への适用.铁と钢,1993,79(3):56-62
    14中岛正明,服部哲.ほかニェーロ.フアツィ应用バタン计测.制御技法の压延机形状制御への适用.日立评论,1993,75(2):9-15
    15长谷川明彦,泷文男.冷间压延形状ファヅー制御システムの开发.制铁研究,1990,339:53-57
    16 A .Hasegawa, F. T aki. Development of Fuzzy Set Theory-Based Shape Control System for Cold Strip Mill. Nippon, Steel Technical Report,1991,(49):59-63
    17 J.Y. Jung.Fuzzy-Control simulation of cross-sectional shape in sis-high cold-rolling mills.Journal of Materials Processing Technolgy,1996,61(1-3):61-69
    18 J.Y. Jung,Y.T.Im. Simulation of fuzzy shape control for cold-rolled strip with randomly irregular strip shape. JMPT,1997,(63):248-253
    19 YoneGi Hur, Daekeun Rhee.Application of Fuzzy Logic for Automatic Shape Control in Stainless Steel Rolling. Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver,BC, Canada.Piscataway,NJ,USA,IEEE,2001,1:251-256
    20 E.E. El-kholy, S.S. Shokralla, A.H. Morsi, et al. Improved Performance of Rolling-Mill Drives Using Hybrid Fuzzy-PI Controller.Electromotion, 2004,11(4):213-224
    21 S.Thangavel,V.Palanisamy, K.Duraiswamy.Genetic Based Sensorless Hybrid Intelligent Controller for Strip Loop Formation Control Between Inter-stands in Hot Steel Rolling Mills.ISA Transactions,2008,47(2):179-188
    22 M.G.Mendez, A.Cavazos, R.Soto,et al.Entry temperature prediction of a hot strip mill by a hybrid learning type-2 FLS. Journal of Intelligent and Fuzzy Systems, 2006, 17(6): 583-596
    23 R. Bambang, S. Fata Mahbub, T. Abas. Application of Fuzzy Logic Control to Tea Rolling Process. Proceedings of 2ndWorkshop on Intelligent Control for Agricultural Applications, Bali, Indonesia. Kidlington, UK, Elsevier Sci,2002:233-238
    24 H.T. Zhu, Z.Y. Jiang, A.K.Tieu. A Fuzzy Algorithm for Flatness Control in Hot Strip Mill. Journal of Materials Processing Technology,2003,140:123-128
    25 G.Li,F.Janabi-Sharifi.Fuzzy Looperless Tension Control for Hot Strip Rolling.Fuzzy Sets and Systems, 2009, 160(4):521-536
    26 N .F.Portmann, D. Lindhoff, et al. Application of neural networks in rolling mill automation. Iron and Steel Engineer,1995(2):33-37
    27 H.J.Kim,M.Mahfouf,Y.Y.Yang. Modelling of hot strip rolling process using a hybrid neural network approach. Journal of Materials Processing Technology,2008,201(13):101-105
    28 RPichler,M. Pfaffermayr. On-line optimization of the rolling process-a case of neural networks. Steeltimes,1996,(9):31-36
    29后藤俊二,水岛成人,花田真一郎.タンテムコルドミルにぉける形状制御へのファジィぉょびニテルネツトワークの适用.川崎制铁技报,1996,28(2):95-102
    30 Zhe Wang, Hongshuang Di, et al. Applications of self-adaptive strip shape control for UC mill based on neural network prediction model. Proc.of 7th Int. Steel Rolling Conf, Chiba, Japan, 1998:60-64
    31 Zhe Wang, Hongshuang Di. Generalized Predictive Control of Flatness Using B P Neural Network. IFA Cl 4th World Congress, Beying,1999,(11):469-474
    32 Y.Katayama,M.Nakajima,H.Koyama.A neural fuzzy control system for rolling mills.Steel Technology International,1992,(5):189-196
    33 Dukman Lee,Yongsug Lee. Application of neural network for improving accuracy of roll-force model in hot-rolling mill. Control Engineering Practice,2002,10(4):473-478
    34 D.V.Raju,A.Iqbal,A.K.Trivedi,et al. Prediction of Shape Defects Over Length of Cold Rolled Sheet Using Artificial Neural Networks. Ironmaking and Steelmaking,2007,34(2):166-176
    35 J.Y. Jung, Y.T. Im, et al. Development of fuzzy control algorithm for shape control in cold rolling. J. MPT,1995,(48):187-182
    36 L.E.Zarate,F.R.Bittencoout. Representation and control of the cold rolling process through artificial neural networks via sensitivity factors. Journal of Materials Processing Technology,2008,197(1):344-362
    37 M.D.Sergio, L.E.Zarate. An Approach to Knowledge Representation from ANN through FCA -Effects of Synthetic Database and Discretization Process, Application in the Cold Rolling Process.Proceedings of the IEEE International Conference on Industrial Technology, 2006:2013-2018
    38 W.M.Geerdes, M.A. Alvarado. An Application of Physics-based and Artificial Neural Networks-based Hybrid Temperature Prediction Schemes in a Hot Strip Mill. Journal of Manufacturing Science and Engineering, 2008, 130(1):5011-501
    39 F. Janabi-Sharifi. A Neural-Net Based Self-Tuning Fuzzy Looper Control for Rolling Mills.2001 IEEE International Conference on Systems, Man and Cybernetics, Tucson, AZ. Institute of Electrical and Electronics Engineers Inc,2001,(1):87-92
    40 L. E.Zarate, F.R. Bitencout. Neural Networks and Fuzzy Rules Based Control for Cold Rolling Process via Sensitivity Factors. IECON'01.270th Annual Conference of the IEEE IndustrialElectronics Society, Denver, CO,USA.Piscataway, NJ, USA, IEEE, 2001(1):64-69
    41 U.S.Dixit, S. Chandra. A Neural Network Based Methodology for the Prediction of Roll Force and Roll Torque in Fuzzy Form for Cold Flat Rolling Process. International Journal of Advanced Manufacturing Technology,2003,22(11-12):883-889
    42 L. Wang,Y. Frayman. A Dynamically Generated Fuzzy Neural Network and Its Application to Torsional Vibration Control of Tandem Cold Rolling Mill Spindles. Engineering Applications of Artificial Intelligence, 2002,15(6):541-550
    43 S.John, S.Sikdar,P.K.Swamy,et al.Hybrid Neural–GA Model to Predict and Minimise Flatness Value of Hot Rolled Strips.Journal of Materials Processing Technology, 2008,195(3):314-320
    44 N.Chakraborti,B.S.Kumar,V.S.Babu,et al.A New Multi-objective Genetic Algorithm Applied to Hot-Rolling Process.Applied Mathematical Modelling,2008,32(9):1781-1789
    45 He Anrui, Yang Quan,Xu Jinwu,et al. Backup Roll Contour in Finishing Trains of Hot Rolling Based on Hybrid Genetic Algorithm. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials,2002,9(3):223-236
    46 N.Chakraborti, B.S.Kumar,V.S.Babu,et al.Optimizing Surface Profiles During Hot Rolling: A Genetic Algorithms Based Multi-objective Optimization.Computational Materials Science, 2006,37(12):159-165
    47 WangD D, Kiet Tieu. Evolutionary Optimization of Rolling Schedule for the Setup of a Tandem Cold Rolling Mill. In :Proc.of 7th int .Conf On Steel Rolling:Chiba,Japan,1998:139-143
    48赵启林,吕程,王国栋.人工神经网络在轧钢中的应用.钢铁研究,1999,(1):44-48
    49张俊明,刘军,康永林等.应用RBF神经网络预测冷连轧机轧制力.2007,钢铁,42(8):46-48
    50张洪星,宋海军,李洪燕.一种改进的神经网络板形模式识别方法.微计算机信息,2007,23(2-1):273-274
    51黄敏,崔宝同,顾树生.基于小波神经网络的板形板厚综合系统逆控制.控制与决策,2007,22(5):593-599
    52王成明,颜云辉,李骏等.模糊神经网络法及其在缺陷模式识别中的应用.计算机集成制造系统,2007,13(9):1774-1779
    53孙克,王长松,罗永军.基于小脑模型神经网络的轧制力预报模型.钢铁研究学报, 2004,32(1): 55-57
    54曹光明,吴迪,张殿华.基于模糊自适应PID的铸轧机结晶器液位控制系统.控制与决策,2007,22(4):399-402
    55周旭东,王国栋,王金章等.极大极小最优控制算法.控制与决策,1997,12(3):277-279
    56邓天勇,吴迪,许云波.低碳钢组织性能的柔性化轧制研究.钢铁,2008,43(1):58-63
    57王洪元,史国栋.人工神经网络技术及其应用.北京:中国石化出版社.2002:1-3
    58胡仁安.钢铁工业自动化的新技术.冶金自动化,2001,(1):1-4
    59 N.F.Portmann, D. Lindhoff. Application of Neutral Network in Rolling Mill.Iron & Steel Engineering, 1995, 2: 33-36
    60 A.R. Shahani, S.Setayeshi, S.A.Nodamaie,et al. Prediction of Influence Parameters on the Hot Rolling Process Using Finite Element Method and Neural Network.Journal of Materials Processing Technology, 2009, 209(4): 1920-1935
    61 P.P.Gudur, U.S.Dixit. A Neural Network-assisted Finite Element Analysis of Cold Flat Rolling. Engineering Applications of Artificial Intelligence, 2008 , 21(1): 43-52
    62 L.E.Zarate. A Method to Determinate the Thickness Control Parameter sin Cold Rolling Process through Predictive Model via Neural Networks. Jounral of the Brazilian Society of Mechanical Sciences and Engineering, 2005, 27(4): 357-363
    63 He Hai-Tao,Li Yan.The Research on Flatness Pattern Recogniton Based on CMAC Neural Network.Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, ICMLC 2007, v5: 2745-2748
    64 S. John, S. Sikdar, P.K.Swamy, et al. Hybrid neural-GA Model to Predict and Minimise Flatness Value of Hot Rolled Strips. Journal of Materials Processing Technology, 2008, 195(3): 314-320
    65 J.C.Lin. Prediction of Rolling Force and Deformation in Three-Dimensional Cold Rolling by Using the Finite-Element Method and a Neural Network. International Jounral of Advanced Manufacturing Technology, 2002,20(11):799-806
    66 K.P Rao, Y.K.Prasad. Neural Network Approach to Flow Stress Evaluation in Hot Deformation. Jounral of Material Processing Technology, 1995, (53):552-566
    67 K.Aistleitner, L.G.Matersdorfer, W.Hass, et al. Neural Networks for Identification of RollEccenrticity in Rolling Mills. Journal of Material Processing Technology, 1996,(53):387
    68 C.J Park, I.C.Hwang.Width Control Systems With Roll Force Automatic Width Control and Finishing Vertical Mill Automatic Width Control in Hot Strip Mill. Journal of Materials Processing Technology, 2008 ,206,(1):143-151
    69 J.Fan, K.Tieu, W.Y.Dyuen. Neural Network for Modeling of the Transient Rolling Process in a Reversing Mill. Proc.7th int.Conf On Steel Rolling, Chiba,Japan,1998:173-177
    70孙新雨,乔俊飞,王笑波.液压弯辊系统的自适应模糊神经网络控制.钢铁研究学报,2007,19(2):52-55
    71曹建国,张杰,尹晓青等.冷连轧机轧制力在线计算模型.北京科技大学学报,2006, 28(9):859-862
    72王成明,颜云辉,李骏等.基于BP神经网络的冷轧带钢表面质量检测研究.机械设计与制造, 2007,(6):106-108
    73谭文,刘振宇,吴迪.基于粒子群优化算法的热轧厚板工艺性能优化.轧钢,2007, 24(1):15-19
    74马庆龙,王东城,刘宏民等.基于神经网络和自适应预报模型参数的平整轧制力模型.塑性工程学报,2008,15(3):191-194
    75孙晓光,傅云义,刘相华等.遗传算法对热轧带钢精轧机组负荷分配BP网络参数的优化.钢铁,1998,33(7):33-36
    76王粉花,孙一康,陈占英.基于模糊神经网络的板形板厚综合控制系统.北京科技大学学报, 2003, 25(2):182-184
    77贾春玉,单修迎,牛召平.自调整动态神经网络模型及其在带材板形预测中的应用.钢铁研究学报,2006,18(12):50-53
    78张材,谭建平.基于遗传算法-反向传播模型的板形模式识别.中南大学学报,2006, 37(2):294-299
    79丁敬国,焦景民,昝培.基于模糊聚类的PSO-神经网络预测热连轧粗轧宽度.东北大学学报,2007,28(9):1282-1285
    80 J.Richalet. Model Predictive Heuristic Control: Application to Industrial Processes. Automatica, 1978,15(5):413-428
    81 C.R.Cutle,B.L.Ramaker. Dynamic Matrix Control-A computer Control Algorithm. In proceedings of the Automatic Control Conference SanFrancisco, 1980: 1483-1490
    82 Clarke,D. W., Mohtadi C., Tufs P. S. Generalized Predictive Control.Part1.The Basic Algorithm. Automatica,1987,23(2):137-148
    83 Nand Kishor.Nonlinear Predictive Control to Track Deviated Power of An Identified NNARX Model of A Hydro Plant.Expert Systems with Applications, 2008,35(4):1741-1751
    84 H.Jazayeri-Rad.Minimizing the Effects of Unmeasured Disturbances in An Open-loop UnstableChemical Plant Containing Measurement Dead Times.Chemical Engineering Research and Design,2008,86(2):153-163
    85 Tian-Tian YANG,Zhi-Yuan LIU,Hong CHEN,et al.Formation Control and Obstacle Avoidance for Multiple Mobile Robots.Acta Automatica Sinica,2008,34(5):588-593
    86 Mahfouf M.,Linkens D.A..Generalized predictive control with long-range predictive identification for multivariable anesthesia. Int.J. Control,1994,60(5):885-904
    87 J.Chen.Fault tolerance evaluation of a neural predictive flight control system.Fault Detection, Supervision and Safety of Technical Processes 2007:330-335
    88 Linkens D. A,Mahfonf M. Supervisory Generalized Predictive Control and fault detection for multivariable anaesthesia. IEE Part-D, 1994,141(2):70-82
    89席裕庚.预测控制.北京,国防工业出版社,1993:1-30
    90舒迪前.预测控制系统及其应用.北京,机械工业出版社,2001:219-220
    91王伟.广义预测控制理论与应用.北京:科学出版社,1998:67-74
    92 Camacho, E. F., Bordons C. Model Predictive Control. Springer,1999,13(7):76-79
    93徐立鸿,袁震东.ARMAX模型的递推广义预测控制算法.控制理论与应用,1990,7(3):102-107
    94郭庆鼎,金元郁,胡耀华.求解GPC中逆矩阵的递推算法.控制与决策,1996,11(4):510-513
    95慈宇红,王哲.基于柔化矩阵的广义预测控制快速算法.微计算机信息,2008,24(5-3):280-281
    96袁著祉.递推广义预测自校正控制器.自动化学报,1989,15(4):348-351
    97李奇安,褚健.对角CARIMA模型多变量广义预测控制器系数直接算法.自动化学报,2007,33(1):59-65
    98刘福才,贺浩博.一种约束输入输出的隐式广义预测控制新算法.计算机仿真,2007,
    24(6):301-303
    99王丽娜,孙志毅.广义预测控制的一种改进算法.自动化技术与应用,2007,26(9):4-6
    100王秩,席裕庚.广义预测控制的并行算法.自动化学报,1996,22(1):74-78
    101慕德俊.基于输入输出模型广义预测模型的并行算法.控制理论与应用,1997,14(1):80-83
    102陈志旺,王洪瑞.非线性模糊自适应直接广义预测控制.电机与控制学报,2007,11(1):55-59
    103由勇,吴澄,由俊生等.基于T-S模糊逻辑推理的DFS预测控制方法的研究.系统仿真学报,2006,18(5):1257-1259
    104 Q.Li,B.C.Qu,Z.Q.Ge.study of Fuzzy Generalized Predictive Control Algorithm On Nonlinear systems.First Internation Conference on lnovalive Computing, Information and Control,2006,1:437-440
    105 Sung Jin Yoo,Yoon Ho Choi,Jin Bae Park.Generalized Predictive Control Based on self- Recurent Wavelet Neural Network for Stable Path Tracking of Mobile Robots:Adaptive Learning Rates Approach.IEEE Transactions on Circuits and System-1:Regular Papers,2006,53(6):1381-1394
    106杨志军,齐晓慧,单甘霖.非线性系统的神经网络广义预测控制军械工程学院学报,2008,20(3):55-58
    107向丹,迟永滨,杨永.基于Hammerstein模型和GA的非线性广义预测控制.暨南大学学报,2008,29(1):16-19
    108 D.Q.Mayne,H.Michalska.Receding horizon Control of Nonlinear Systems.IEEE Trans,1990,35:814-824
    109 M.Almir,G.Bornard.On the stability of receding horizon control of nonlinear discrete-time systems.Systems and Control Letters,1994,23:291-296
    110孙峻.非线性模型预测控制理论及应用研究[西北工业大学工学博士论文].2002:5
    111席裕庚,王凡.非线性系统预测控制的多模型方法.自动化学报,1996,22(4):456-460
    112王伟.具有Hammerstein形式的非线性系统广义预测控制.控制理论与应用,1994,11(6):6772-680
    113 W.H.Chen.Predictive Control of General Nonlinear Systems Using Approximation.IEE Proc. Control Theory and Applications,2004,151(2):137-144
    114 Q.B.Luo,Q.M.Li,R.P.Feng. Adaptive Predictive Control of Nonlinear System Based on Multi-Layer Recursive Method.Proceeding of the 6th World Congress on Intelligent Control and Automation,Dalian,China,2006:748-751
    115徐立鸿,冯纯伯.论广义预测控制.控制与决策,1992,7(4):241-246
    116张峻,席裕庚.广义预测控制系统的若干稳定性结果.控制理论与应用,1998,15(1):24-30
    117魏环,高峰,王东凯等.简化稳定广义控制算法.系统仿真学报,2007,19(2):2757-2760
    118 Robinson B.D,Clarke D.W. Robustness effect of a prefilter in Generalized Predictive Control.IEE Proc-D,1991,138(1):2-1
    119张峻,席裕庚.带有噪声滤波器的GPC鲁棒性分析.控制与决策,1997,12(3)260-263
    120刘斌,蒋峥,苏宏业等.稳定广义预测控制与性能分析.控制理论与应用,2006,23(3):378-382
    121王哲,张晓峰,王国栋等.六辊可逆轧机板形神经网络广义预测控制系统.东北大学学报自然科学版, 2001,22(3):331-334
    122王志勇,郑德忠.基于预报误差补偿的液压弯辊预测控制策略的研究.中国机械工程,2007,18(16):1904-1907
    123彭艳.基于条元法的HC冷轧机板形预设定控制理论研究及工业应用.[燕山大学博士论文].2000:60-45
    124 Xiao D.J, Babajide O. Familoni. A diagonal recurrent neural network-based hybrid direct adaptive SPSA control system. IEEE Transations on Automatic Control. 1999,44(7):1469-1473
    125高大启.有教师的线性基本函数前向三层神经网络结构研究.计算机学报,1998,21(1):80-85
    126张秀玲,刘宏民.板形控制的传递矩阵方法.机械工程学报,2003,39 (11):100-103
    127王志勇.基于混沌优化的板形信号模式识别的研究.计量学报,2007,28(4):375-378
    128邓自立.自校正滤波理论及其应用.哈尔滨:哈尔滨工业大学出版社,2003:58-64
    129孙文瑜,徐成贤,朱德通.最优化方法.高等教育出版社,2004:119-128
    130王志勇.基于模糊混沌的板形识别与控制技术的研究.[燕山大学博士论文],2008:85-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700