基于节约型减量化的钢铁材料加工过程理论及实践研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以循环经济条件下的钢铁材料加工过程为背景,针对节约型减量化的钢铁材料加工过程的理论和实践过程的关键技术和重点问题,进行了系统研究,结合实验室研究工作及相关研究成果的工业推广应用,阐述了节约型减量化工艺技术的实际应用效果。
     结合我国当前钢铁工业能耗高,资源、能源以及环境压力日益增大的发展现状,本文指出钢铁材料加工过程的节约型减量化是钢铁工业发展循环经济的重要组成部分,已成为钢铁工业可持续发展的必然选择。
     在分析当前钢铁材料加工技术发展状况的基础上,针对钢铁材料加工过程的能源、资源消耗,结合钢铁材料的节约型减量化目标,建立节约型减量化钢铁材料加工过程的评价指标体系,包括节约热能、节约水电、节约资源和环境减排4个一级指标和15个二级指标。将定性分析与定量研究相结合,提出了基于层次分析法和模糊综合评价方法的钢铁生产减量化评价模型。采用层次分析法计算各级指标对上级指标的影响权重,通过模糊综合评判钢铁企业的减量化生产等级。结果表明该理论是客观有效的,能够定量评价减量化生产的评价等级,对企业实施减量化生产有明确的指导作用。在此基础上,进一步阐述了现代钢铁企业的减量化生产运作机制。
     钢铁材料加工过程的减量化技术是与钢铁产品生产流程密切相关的,对于钢铁产品生产制造过程,最基本的原则在于减少进入生产和消费过程的资源和能源量,从源头开始节省资源、提高利用率、防止废物产生,而不是将重点放在产生废物后的治理上。因此,减量化的工艺技术体现,一方面在于减量化的成份设计,减少资源如铁矿石、合金元素的使用量;另一方面在于减量化的工艺设计,通过生产工艺技术进步,减少工序流程,从而降低能源消耗,提高综合效率。实际上,减量化的成份设计通常需要工艺技术进步的支撑,而减量化的工艺设计,又通常体现在成份设计的减量化。钢铁材料加工过程中随着温度的不同,钢材内部发生着复杂的相变过程,通过成分设计和热处理工艺可得到性能范围极宽的不同规格特性的产品,这就是钢铁材料加工过程实现减量化的基础。本文针对钢铁材料加工流程,结合对传统TMCP技术的分析,阐述了新一代TMCP技术的实现条件以及其在棒线材、板带材等领域的实验室研究及潜在应用。
     基于钢铁材料的加工特性,钢铁材料加工过程的减量化还体现在基于组织性能控制的柔性化轧制技术上。基于新一代钢铁材料开发过程实践,采用同一种化学成分的坯料生产不同性能的产品已成为可能,其最为显著的效益及应用在于适度解放炼钢。
     生命周期的减量化是节约型钢铁材料的重要组成部分,关系到钢铁材料的再循环和再利用。结合产品生命周期评价的相关理论与方法及钢铁材料加工过程特征,建立了钢铁产品的生命周期评价方法一基于多目标规划的LCA模型,探析钢铁材料生命周期的减量化问题,并通过应用算例说明了模型的有效性和可行性。
     最后,结合韶钢生产实际,将节约型减量化技术应用于广东省韶关钢铁集团公司生产实践,促进企业循环经济发展,满足企业节能减排需要。
Under the background of circular economy, this thesis was completed on the base of iron material forming process. Aiming at key technologies and key points which was found out during the theory and exercise steel material forming process equipped with saving-type quantitative reduction theory, several systematized research was carried out, and then, combining with laboratory work and its industrial application, saving-type quantitative reduction technology's practical application effect was illustrated.
     According to current steel industry's development status of high energy consumption, high resources-energy stress and serious environment problem, this thesis pointed out that steel material forming process's saving-type quantitative reduction was a chief part of steel industry development circular economy, and was regarded as a inevitable choice of steel industry sustainable development.
     On the base of analyzing current steel material forming process development status, accounting into the energy resource consumption during steel material forming process, and combining with the target of steel material saving-type quantitative reduction, steel material forming process evaluation index system was established. This system included 4 first grade indexes (which were saving heat energy, saving water and electricity, saving resource and reducing environment emission) and 15 second index. After considering qualitative analysis and quantitative study, steel quantitative reduction analysis model was proposed on the ground of analytic hierarchy process and fuzzy comprehensive evaluation method. To be more specific, analytic hierarchy process was used to calculate each index's influence weight to its higher index and fuzzy comprehensive evaluation method was used to evaluate steel enterprise's quantitative reduction production grades. The practice showed that these theories were able to evaluate quantitative reduction production grade, and also were able to guide enterprise for quantitative reduction production. On the foundation of that, modern steel enterprise quantitative reduction production operation mechanism was elaborated furtherly.
     Steel material forming process's quantitative reduction technology was closely related to steel products' production process. As for the steel products production manufacturing process, the basic principle was reducing the energy resource which entered into production and consumption process, that is, resource was saved at the beginning and then utilization ratio was increased and waste material was prohibited. Therefore, quantitative reduction technology was, on the one hand, reflected on the face of chemical composition design, such as reducing iron ore and alloy content, and, on the other hand, reflected on the aspect of technology process design, such as reducing working procedure to decrease energy consumption. In fact, chemical composition design was supported by technology improvement and technology process design was also reflected by chemical composition design quantitative reduction. During the steel material forming process, steel temperature was varied, and then complicated phase transition was occurred, therefore, all kinds of characteristic was obtained through chemical composition design and heat treatment technology. This was the foundation of steel material forming process quantitative reduction. In this thesis, according to steel material forming processing flow and then combining with traditional TMCP technology analysis, new generation TMCP technology's realization condition and its laboratory research and potential application in wire and rod and plate-strip fields was discussed.
     As for steel material's forming properties, steel material forming process quantitative reduction was also reflected in the field of flexible rolling technology which was based on microstructure control. On the base of new generation steel material development practice, different characteristic products produced by the same chemical composition was realized, and its most significant benefits was that steelmaking process was liberated furtherly.
     Life cycle quantitative reduction which related to steel material's recycle and reuse was one of the most components of saving-type steel material. Combining with life cycle evaluation theory and steel material's forming process characteristic, steel products life cycle evaluation methods was established. To be more specific, the model was LCA model based on multi-objective programming. The model's efficiency and feasibility was proved by application example.
     In the end, combining with SHOW GUAN steel corporation production practice, saving-type quantitative reduction technology was utilized in that corporation. Through analyzing the application results, we can find out that enterprise circular economy development was promoted and enterprise's saving-energy demands was satisfied.
引文
[1]殷瑞钰.冶金流程工程学[M],冶金工业出版社,2005:1-10
    [2]袁文.2007年全球粗钢产量达到13.435亿吨[J],冶金管理,2008,(1):17-18
    [3]宋淑芹.大力发展循环经济加快向钢铁强国的根本转变[J],冶金管理,2007,6:49-51
    [4]张群,邵球军,李岭.论中国钢铁行业发展和循环经济[J],冶金管理,2007(8):38-41.
    [5]张寿荣.可持续发展战略与我国钢铁工业的结构调整[J],冶金经济与管理,2004,1:14-19
    [6]戚向东.2007年我国钢铁行业运行情况及2008年供需形势分析[J],冶金管理,2008,2:17-25
    [7]戚向东.2006年我国钢铁行业运行情况及2007年供需形势分析[J],冶金管理,2007,No.2:11-17
    [8]王诚翔,陈芳.2007年我国钢铁产品产量和结构变化趋势分析[J],冶金管理,2007,No.4:27-32
    [9]中国钢铁工业协会.中国钢铁工业节能目标及完善能源指标体系的建议[J],冶金管理,2007,No.7:17-23
    [10]魏建新.钢铁企业节能减排的途径探讨[J],冶金经济与管理,2008,No.1:24-27
    [11]兰德年.钢铁行业节能减排方向及措施[J],冶金管理,2008,No.7:25-30
    [12]殷瑞钰.冶金流程工程学[M],冶金工业出版社,2005:46-71
    [13]崔兆杰,张凯.循环经济理论与方法[M],科学出版社,北京,2008.
    [14]Thomas Graedel.Industrial Ecology:Definetion and Implementation In:Industrial Ecology and Glotal Change.The Press Syndicate of the University of Camtrige,1994:23.
    [15]胡长庆.钢铁工业生态化研究进展与前景分析[J],钢铁,2004,39(8):112-116.
    [16]殷瑞玉.绿色制造与钢铁工业[R].北京:中国工程院2002.
    [17]张寿荣.钢铁工业的发展趋势与我国铁工业21世纪应对挑战的策略[J],宏观经济研究,2006,(2):10-15.
    [18]王国栋,刘相华.新一代钢铁材料的研究开发现状和发展趋势[J],鞍钢技术,2005(4):1-8.
    [19]殷瑞玉.节能、清洁生产、绿色制造与钢铁工业的可持续发展[J],钢铁,2002,37(8):1-8.
    [20]蓝慧芳,杜林秀.控轧控冷工艺对高强度结构刚组织及力学性能的影响[J],东北大学学报,2009,30(2):200-202.
    [21]范建文,易敏.细晶强化Q345中板的控轧控冷工艺研究[J],轧钢,2003,20(1):11-13
    [22]朱伏先,李艳梅.控轧控冷条件下Q345中厚板的生产工艺研究[J],钢铁,2005,40(5):32-34
    [23]Gunter Flemming.Present and Future CSP Technology Expands Product Range[J].Aise Steel Technology,2000(1):53-57.
    [24]高秋艳.薄板坯连铸连轧生产线的技术现状[J],轧钢,2003,20(6):30-33.
    [25]王国栋.节约型钢铁材料及其减量化加工制造[J],轧钢,2006,23(2):1-5.
    [26]殷瑞钰.关于钢铁制造流程优化与产品优化问题的讨论[J],轧钢,2004,21(5):1-6.
    [27]王国栋,刘相华.包钢CSP“超快冷”系统及590MPa级C-Mn低成本热轧双相钢开发[J],钢铁,2008,43(3):49-52
    [28]温志强,王丹.中厚板快速冷却工艺控制系统的开发[J],宽厚板,2009,15(1):26-28
    [29]刘云彩.炼铁生产的过去、现在和未来[J],中国冶金,2005,15(3):2-3.
    [30]刘云彩.当代高炉炼铁成就[J],炼铁,2001,20(3):29.
    [31]王维兴,黄洁.中国高炉炼铁技术发展评述[J],钢铁,2007,42(3):3.
    [32]王维兴.中国高炉炼铁技术进展[J],钢铁,2005,40(10):10.
    [33]全红.直接还原炼铁工艺技术综述[J],云南冶金,2007,36(2):58-60.
    [34]秦廷许.当今非高炉炼铁技术及发展趋势[J].江苏冶金,1995,4:15-18.
    [35]吴义生.世界钢铁技术的发展与展示[J].山东冶金,1999,21(2):1.
    [36]SU Tian-sen.Development of Hot Metal Pretreatment[A].The Ⅷ International Symposium for Desulphurization of Hot Metal and Steel[C].Anif.Austria.2002,41.
    [37]余志祥.现代转炉炼钢技术[J],钢铁,2001,17(1):17.
    [38]潘秀兰,王艳红,郭艳玲等.国内外转炉炼钢技术的新进展[J],鞍钢技术,2004,6:2.
    [39]刘浏.炉外精炼工艺技术的发展[J],炼钢,2001,17(4):1.
    [40]刘敬龙,金恒阁,刘世坚等.浅谈炉外精炼技术[J],河南冶金,2004,12(2):8.
    [41]姜茂发,金成姬.国内外电炉炼钢技术现状与发展趋势[J],工业加热,2000,5:6.
    [42]杨拉道,谢东钢.常规板坯连铸技术[M],北京:冶金工业出版社,2002
    [43]宋波,张可建.薄板坯连铸连轧生产工艺技术及应用[J],武钢技术,2006,44(2):50-53.
    [44]刘相华,王国栋.钢材性能柔性化于柔性轧制技术[J],钢铁,2006,41(11):32-36.
    [45]完卫国,李祥才.棒线材低温轧制技术发展[J],中国冶金,2005(1):11-16.
    [46]王定武.无头轧制技术的开发应用和发展[J,冶金管理,2005(3):51-53.
    [47]高寅元.切分轧制技术的发展及在上海地区用用前景[J],钢铁工艺,1991,(4):27-34.
    [48]冯光宏.轧钢工序节能技术分析[J],中国冶金,2006,16(11):37-40.
    [49]藏锦,陈英.轧钢节能技术综述[J],冶金能源.2000,19(5):14-17.
    [50]JFE R&D Corporation.Preventing Global Wanning at JFE Steel[R].Japan:JFE Environmental Report,2004,20-22.
    [51]戴铁军,陈连生.轧钢系统能耗分析与节能对策[J],河北理工学院学报,2001,23(4):25-28.
    [52]陈国康.建立评价指标体系,促进创建资源节约型钢铁企业[J],中国钢铁业,2005,(7):24-29.
    [53]Saaty T L.The analytic hierarchy process[M].NewYork:McGraw-Hill,1980.
    [54]LiB Z.Assessing the influence of indoor environment on productivity in offices(DoctoralDissertation)[D].Reading(UK):University ofReading,1998.
    [55]林齐宁.决策分析[M],北京:北京邮电大学出版社,2002.
    [56]同济大学数学教研室.线性代数(第2版)[M],北京:高等教育出版社,1991.
    [57]黄贯虹,方刚.系统工程方法与应用[M],广州:暨南大学出版社,2005.
    [58]丁桑岚.环境评价概论[M],北京:化学工业出版社,2001.
    [59]李永新.节能减排创新循环经济的发展模式[J],中州煤炭2007,5:1-1
    [60]戴林,周火青 田智宇.武汉钢铁公司增产节能的可持续发展模式[J],中国工程科学2006,8(12):6
    [61]王泰昌,迟京东.我国钢铁工业节能降耗现状分析与措施建议[J],冶金管理,2007,3:4-5
    [62]单尚华.推进节能减排建设绿色钢铁[J],冶金管理,2008,6:1-2
    [63]王国栋,刘相华,吴迪.节约型钢铁材料及其减量化加工制造[J],轧钢,2006,23(2):1-5
    [64]王有铭,李曼云,韦光.钢铁的控制轧制和控制冷却[M],北京:冶金工业出版社,1995:1-3.
    [65]小指军夫.控制轧制·控制冷却[M],北京:冶金工业出版社,2002:6-44.
    [66]徐匡迪.20世纪——钢铁冶金从技艺走向工程科学[J],稀有金属材料与工程,2001,30(增刊):10-19
    [67]王国栋.以超快速冷却为核心的新一代TMCP技术[J],上海金属,2008,30(2):1-5.
    [68]王国栋.新一代TMCP的实践和工业应用举例[J],上海金属,2008,30(3):1-4.
    [69]赵宪明,吴迪,王国栋.一种线材和棒材热轧生产线用超快速冷却装置[P],专利申请号:200510046822.4,公开日:2006年1月11日.
    [70]孙艳坤,吴迪.轴承钢棒材超快速冷却新工艺的应用研究[J],钢铁,2008,43(7):47-50.
    [71]刘相华,王国栋,杜林秀.普碳钢产品升级换代的现状与发展前景[A],中国金属学会轧钢学会,中国金属学会第7届年会论文集[C],北京:冶金工业出版社,2002:415-420.
    [72]Buyyichilli,Anneli E.Present Status and Perspective of European Research in the Field of Advanced Structural Steel,ISIJ,2002,42(12):1355-1356
    [73]刘相华,王国栋,杜林秀.钢材性能柔性化与柔性轧制技术[J],钢铁,2006,41(11):32-36
    [74]王国栋,刘相华,杜林秀.C-Mn超级钢的工业化生产和应用[J],中国冶金,2004,(8):7-13
    [75]王国栋,刘相华,朱伏先.新一代钢铁材料的研究开发现状和发展趋势[J],鞍钢技术,2005,(4):1-8.
    [76]余海.热轧多相钢的生产[J],钢铁技术,2005,(6):10-16
    [77]沙高原,黄志甲,刘颖昊.产品生命周期评价在钢铁行业的应用和前景[J],2007,(5):38-40
    [78]ROSS S,EVANS D.Use of life cycle assessment in environmental management[J].Environmental Management,2002,29(1):132-142.
    [79]GB/T 24042-2002(idt ISO 14042:2000).环境管理生命周期评价生命周期影响评价[S],2002.
    [80]王汉玉.产品的生命周期评价浅析[J],环境与可持续发展,2007,(5):57-58.
    [81]Udo de Haes H,JollietO,Life-cycle impact assessment:striving towards best ractice[M].Pensacola,FL,USA:SETAC Press,2002.
    [82]Udo de Haes H.Towards a methodology for lifecycle impact assessment[M].Brussdls:SETAC-Europe,1996.
    [83]王寿兵,杨建新,胡聘.生命周期评价方法及其进展[J],上海环境科学,1998,17(11):7-10.
    [84]王静,宾鸿赞.产品生命周期评价及其指标体系的建立[J],机械设计与制造工程,2001,30(2):1-2.
    [85]曹华林.产品生命周期评价(LCA)的理论及方法研究[J],西南民族大学学报,2004,25(2):281-284.
    [86]樊庆锌.生命周期评价[J],环境科学与管理,2007,32(6):177-180.
    [87]殷瑞钰.绿色制造与钢铁工业[J],钢铁,2000,35(6):61-65.
    [88]刘影昊,沙高原.产品生命周期评价在钢铁行业中的应用和前景[J],环境工程,2008,26(1):81-84.
    [89]张培.钢铁产品生命周期影响评价方法[J],安徽工业大学学报,2007,24(1):84-88.
    [90]钱易,唐孝炎.环境保护与可持续发展[M],北京:高等教育出版社,2000.
    [91]Lave L,Hendrickson C,Horvath A,et al.Economic input-output models for environment life-cycle assessment,Environmental Science&Technology,2002,32(7):184-191
    [92]Joshi S.Product environmental life-cycle assessment using input-output techniques,Journal of Industrial Ecology.2000(2/3):95-120.
    [93]Michrfumi Yoshioka,Hisashi Ishitani,Ryuji Matsuhashi.International Journal of Global Energy Issues,1998,11(4):104-110
    [94]K E Kniel,J AHiggins,J MTrout.Characterization and potential use of a cryptosporidium parvum virus(CPV) antigen for detecting C.parvum oocysts.Journal ofMicrobiologicalMethods,2004,58(2):189-195.
    [95]Azapagic A,R Clife.The application of multiobjective linear program-mingto life cycle assessment.Fifth SETAC-Europe Congress,Copenhagen,25-28.
    [96]Zimmermarnn,H.J.Fuzzy programming and linear programming with several objective functions[J].Fuzzy Sets and Systems,1978,1:45-55.
    [97]Tan R.Application of symmetric fuzzy linear programming in life cycleassessment[J].Environmental Modelling and Software,2005,(20):1343-1346.
    [98]Tan R,Briones L,Culaba A.Fuzzy data reconciliation in reacting and non-reacting process data for life cycle inventory analysis.Journal of Cleaner Production 2007;15:944-9.
    [99]Heijungs R,Suh S.The computational structure of life cycle assessment.Dordrecht:Kluwer;2002.
    [100]T.Nishimura.Corrosion Performance of Si and Al-bearing Ultrafine Grained Weathering Steel.The Proceedings of Second International Conference on Advanced Structural Steels,Shanghai:2004
    [101]2007年中国钢铁企业发展循环经济专题研究报告[M],2007:2-102.
    [102]崔兆杰,张凯.循环经济理论与方法[M],2008,科学出版社:131-132.
    [103]魏建新.钢铁企业节能减排的途径探讨[J],节能减排,2008,1:1-27.
    [104]李新创.节能减排——钢铁工业紧迫的历史使命[J],冶金经济与管理,2008,1:1-2.
    [105]王国栋,刘相华,吴迪.节约型钢铁材料及其减量化加工制造[J],轧钢,2006,23(2):1-4.
    [106]李定一.韶钢TRT技术总结报告[J],韶钢科技,2008,1:1-6.
    [107]郑团星,张燕儒,雷淑萍.控轧控冷工艺在SWRCH08A生产中的应用[J],韶钢科技,2008,1:1-4.
    [108]王学志,黄远坚.控轧控冷工艺在2500中厚板生产线的应用[J],韶钢科技,2008,1:3-6.
    [109]王学志,黄远坚.控轧控冷工艺在2500中厚板生产线的应用[J],韶钢科技,2008,1:1-6.
    [110]杨钊.转炉钢渣资源综合利用的可行性研究[J],有色金属设计,2007,34(7):1-6.
    [111]谭聪礼,何忠光.韶钢钢渣综合利用发展方向探讨[J],韶钢科技,2003,1:2-4
    [112]谭聪礼,何忠光.韶钢钢渣综合利用发展方向探讨[J],韶钢科技,2003,1:1-4
    [113]荷秀珍.绿色湘钢:“绿色增长”提升“两型社会”[J],中国质量万里行,2008,3:1-1
    [114]李艳青,李志峰,王梅,闫志华.冶金企业节能减排生产技术浅析[J],冶金丛刊,2008,173:1-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700