集约化生产技术及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于受到传统观念和行业习惯及标准的限制,力学性能的调整主要是通过其成分的改变来实现,导致性能相近的材料采用不同的化学成分,钢种种类繁多。一方面对炼钢组织生产不利,加大了人力资源的消耗;另一方面未能充分利用钢铁材料的细晶化、复相化等强化机理,未能充分发挥钢铁材料性能的内在潜力。因此,从钢铁产品标准着手,考虑具有相同或相近力学性能钢铁牌号的归并,通过对轧制与冷却工艺的调整实现具有减量化成分坯料的柔性化升降级轧制,实现“一钢多能”的集约化生产目的,具有重要的理论与实际意义。
     由于客户需求的多样性,钢铁企业中一个钢种牌号可能对应着几个成分控制要求的出钢记号。与此同时,相同系列产品中的相邻力学性能级别的钢铁牌号,例如X46、X52与X56,由于力学性能差别不大,而化学成份的差异主要在于一个或者两个主要成分;不同系列或不同标准中的相同力学性能级别,例如510L与X52、Q235B与SS400,由于力学性能基本在同一个级别,化学成分具有很大的交集。因此,实现集约化生产的首要问题是智能化钢种归并。通过选择合理的钢种归并对象,从钢铁产品标准及企业内控标准出发,结合对现场生产数据的统计分析,本文建立了智能化钢种归并系统,针对梅钢1422mm热轧带钢生产线实现了普碳结构钢系列的归并分析。
     针对管线钢系列(X46、X52和X56)和结构钢系列(SS330、SS400和SS490),从产品标准方面进行了初步归并分析。采用归并后成份范围内的坯料,通过运用TMCP(热机械控制)技术,即轧制与冷却工艺的调整,实现了X52、SS400的柔性化升降级轧制,从实验的角度验证了集约化生产技术的可行性。
Traditional conception, common practice of steel industry and restriction of steel standard, which could be interpreted as adjusting the mechanical properties according to the changing of chemical composition, resulted in increased number of steel grade and steel products with similar mechanical properties using different chemical composition. On the one hand, this goes against the production organization, and increased the waste of human resource. On the other hand, grain refinement strengthen and complex phase strengthen have not been made full use of to develop the inherent potential of steel materials. Therefore, starting from product standard of steel and considering steel grades with the same or similar mechanical properties, the upgrade/degrade rolling using one chemical composition could be carried out according to the adjustment of rolling and cooling process parameters. It could be theoretically and practically important to realize intensification production named "one steel multi-grade mechanical property".
     Because of the various demands of customers, one steel grade may be represented as several tapping marks that have different requirements of chemical composition. Meanwhile, the chemical composition's difference of steel grades which are in a series with similar mechanical properties, such as X46, X52 and X56, is mainly the percentige of one or two major elements. For the steel grades in different series with the same mechanical property grade, such as 510L & X52, Q235B & SS400, wide intersection exists in chemical composition. Therefore, the integration of steel grades need to be done first. Selecting reasonable steel series and starting from product standard or inner standard of steel enterprise, the intellectual steel integration system was established based on the statistical analysis of production data. For the MeiSteel 1422mm hot rolling strip production line, steel integration analysis of plain carbon structural steel was completed.
     Elementary integration analysis from the product standard aspect was conducted for the series of pipeline steel (X46, X52 and X56) and structural steel (SS330, SS400 and SS490). Using the slab with chemical composition in the range of integrated results, the upgrade/degrade rolling of X52 and SS400 was realized by TMCP technology which is to adjust the rolling and cooling process. The feasibility of intensification production technology was validated experimentally.
引文
[1]周世春,丁建华,陈超.全球化市场背景下我国钢铁企业生产模式的探讨[J],冶金经济与管理,2004,(1):20-23.
    [2]刘相华,王国栋,杜林秀,刘振宇.钢材性能柔性化及柔性化轧制技术[J],钢铁,2006,11(41):32-36.
    [3]董安平.热轧钢结构翼板钢轧制过程有限元仿真及其柔性化研究[D],济南,山东大学,2005.
    [4]王国栋,刘相华,吴迪.节约型钢铁材料及其减量化加工制造[J],轧钢,2006,23(2):1-5.
    [5]刘相华,陆匠心,张丕军等.400-500MPa级碳素钢先进工业化制造技术[J],中国有色金属学报,2004,14(增刊1):207-210.
    [6]董杰吉,张继奎,马丙涛,吕宝敏.柔性生产工艺的研究与实施[J],莱钢特殊钢厂报,94-99.
    [7]沙孝春,兰勇军,李殿中,李依依.热轧带钢组织性能预测与控制技术应用与发展[J],轧钢,2003.7,20(3):23-26.
    [8]王占学.塑性加工金属学[M],北京:冶金工业出版社,2006年.
    [9]王国栋,刘相华,李伟娟等.超级Super-SS400钢的工业轧制实验[J],钢铁,2001,36(5):39-43.
    [10]HodgsonPD,Hiekson M R.Ultrafine ferrite in low carbon steel[J],Scripta Materialia,1999,40:1179-1184.
    [11]UmKK,CholJK,ChooWY.Meehanieal properties of dual phase steels eontaining strain-indueed dynamieally transformed ferrite[A],proceeding of the Workshop on HIPERS 21,Pohang.Korea:POSCO,2002.
    [12]Niikura M,Yokota T,Sato K,etal.Utrarefinement of grain size and its effect on mechanical properties [A],NG Steel 2001[C].Beijing:The Chinese Society for Metals,2001.
    [13]李军凯.基于物理冶金学和BP网络的热轧带钢组织-性能的模拟和预测[D],沈阳,东北大学,2008.
    [14]P.A Manohar,S.S.Shivathaya,M.Ferry.Design of an expert system for the optimization of steel compositions and process route[J],Expert Systems with Applications,1999,17,129-134.
    [15]刘振宇,许云波,王国栋.热轧钢材组织-性能演变的模拟和预测[M],沈阳,东北大学出版社,2004.
    [16]邓天勇,吴迪,许云波,刘相华,王国栋.低碳钢组织性能的柔性化研究[J],钢铁,2008,43(1),58-63.
    [17]彭良贵,朱伏先,刘相华.柔性生产策略在热轧带钢控冷过程中的应用[J],钢铁研究,2007,35(1),33-37.
    [18]刘雅政,孙景宏,李志强,曲阳.有效控制产品质量的轧制技术[J],轧钢,2003,20(3):19-22.
    [19]王丹民,李华德,李擎.力学性能预测模型及其控制的研究[J],机械强度,2006,28(6),878-882.
    [20]曲锦波,单以银,赵明纯等.加速冷却对控轧管线钢组织和性能的影响[J],钢铁,2001,36(9):46
    [21]Zhao Mingchun,Yang Ke,Xiao Furen.Continuous cooling transformation of undeformed and deformed low carbon pipeline steels[J],Mater Sci Eng,2003,(1):126.
    [22]Zhao Mingchun,Yang Ke,Shan Yiying.Effects of thermomechanical control process on microstructures and mechanical properties of X60 pipeline steel[J],Mater Sci Eng,2002,(3):14.
    [23]刘力.Cpk使用中的有关问题的探讨[J],宝钢技术,2001,4:58-60.
    [24]赵明纯,单以银,杨振国等.热加工对管线用低碳钢性能的影响[J],材料研究学报,2002,15(6):669.
    [25]崔忠圻.金属学与热处理[M],北京,机械工业出版社,2000,274-275.
    [26]付俊岩,东涛.控轧低C--Mn-Mo--Nb针状铁索体钢的性能和显微组织
    [27]吴新朗,赵征志,田允等.Nb--Ti微合金钢热变形后组织演变及第二相粒子析出行为[J],钢铁钒钛,2008;2:29(1).
    [28]李龙,丁桦,杨春征等.控轧控冷工艺对低碳铌微合金钢组织和性能的影响[J],钢铁研究学报,2006.7,18(7):46-51.
    [29]王延溥,齐克敏主编,金属塑性加工学[M],冶金工业出版社,北京,2001.
    [30]李龙,丁桦,杜林秀等.TMCP对低碳锰钢组织和力学性能的影响[J],钢铁,2006,41(11):53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700