热轧钢结构翼板钢轧制过程有限元仿真及其柔性化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“以有限的坯料资源开发无限多的产品”已经成为众多钢铁企业的工作理念。在利用济钢现有设备进行宽规格翼板钢的开发过程中,面临诸多困难:产品规格多、孔型形状复杂、轧件在孔型中变形和流动规律难以解析描述。为此,定量研究孔型和工艺参数对翼板钢宽展的影响十分重要。
     本文利用商业有限元软件ANSYS/LS-DYNA,采用显式动力弹塑性有限元法,模拟翼板钢粗轧前三道次轧制过程。经有限元模型建立、材料选择、单元选择及网格划分、初始边界条件确定、模拟计算等步骤,得到了各道次孔型和工艺的部分参数对轧件宽展及其相应的应力、应变分布的影响规律,分析了孔型腰部的强迫宽展作用,为弯腰大斜度箱形孔轧制翼板钢的显式动力学有限元模拟提供了实例。同时,基于模拟研究结果,对现有孔型和工艺参数进行了优化,优化效果完全可以满足生产宽度大于220mm翼板钢的需要。本文取得的研究成果和相关结论如下:
     (1)成功地实现了方坯进入弯腰大斜度箱形孔型、拟矩形弯腰大斜度坯进入弯腰大斜度箱形孔型、拟矩形弯腰大斜度坯进入弯腰小斜度箱形孔型的三种轧制过程模拟。模拟结果与现场试验结果吻合较好,表明显式动力学有限元法可有效地进行弯腰大斜度箱形孔型不同坯料轧制过程的仿真和孔型参数优化研究。
     (2)揭示了孔型腰部倾角对轧件宽展的影响规律,即轧件宽展随着腰部倾角增大而增加。
     (3)分别研究了K10、K9孔型腰部楔高和楔宽对轧件宽展的影响。轧件宽展均随楔高和楔宽增大而增加。
     (4)研究了摩擦系数改变对轧件宽展的影响。当摩擦系数在一定范围内变化时,轧件宽展发生相应变化,但变化范围不大。
     (5)揭示了腰部圆弧半径对轧件宽展的影响规律,即轧件宽展随圆弧半径增大而减小,但总体变化范围不大。
     (6)孔型参数和摩擦系数对轧件宽展的影响程度不同,在本文模拟条
"Develop infinity products with limited billets" has been applied to many iron and steel works. There are many difficulties during the process of producing broad wing plate steel, such as different standards of products, complication of pass shape and hard description of the law about deformation in the box passes and metal flows. So it is very important to study the parameters of the pass and techniques for the spread of the wing plate steel.With the aid of commercial finite element analysis code ANSYS/LS-DYNA, this paper simulated the former three rolling process of wing plate steel in a box pass. Every simulation in this paper is 3-D DEM (Dynamic Explicit Method) coupled elastic-plastic analysis. After establishing the FEM model, the selection of material, the determination of element types and the meshing, deciding the initial and boundary conditions, the simulation etc, the variety laws of rolled billet spread and the distribution of strain and stress field affected by some pass and technique parameters were received, and the forced-spread function of the waist was discussed. This paper provides examples for the simulation of the special shaped steel rolling process by DEM. At the same time, the current pass and technique parameters were optimized, the optimized results indicate that it satisfies the manufacture of the exceed 220mm wing plate steel. The paper has some conclusions as follows:(1) Three rolling processes were simulated, the first one is the process of rolling the square billet in a box pass whose waist is bowing and large pitch, the second is the process of rolling the billet whose waist is bowing and large pitch in a alike pass, and the third is the process of rolling the billet whose waist is bowing and large pitch in a box pass whose waist is bowing and small
    pitch. The difficulty of the billet biting in SEM (Static Implicit Method) was solved, the simulating results are almost in good agreement with the practice ones. It indicates that explicit dynamics finite element method can be effectively applied in the simulation of the billet rolling process with different shapes and the research on the optimization of the pass.(2) The waist obliquity of the K10 pass, i.e. the spread increases with the increase of the obliquity was discovered.(3) The variety law of rolled billet spread affected by the waist height and waist width of the K10 and K9 pass, i.e. the spread increases with the increase of the waist width and waist height was discovered. The relation between the spread and the waist width and waist height was regressed and the regressed equation was received. The deformation of work piece and stress field together with strain field of cross section of the work piece in rolling area were analyzed.(4) The variety laws of rolled billet spread affected by the friction coefficient were studied. When the friction coefficient varied, the billet spread changed accordingly, but it changed slightly.(5) The variety law of rolled billet spread affected by the arc radius of the K8 pass was studied. When the arc radius varied, the billet spread changed accordingly, and it changed slightly.(6) The effects of the waist obliquity, the waist width, the waist height and some other factors on the rolled billet are different, in the condition of the simulation in this paper, the waist width of the pass is the most principal influential factor, next is waist width and the waist obliquity of the pass, the friction influence is slight. The parameters of the pass and techniques for manufacturing exceed 220mm wing plate steel were decided.(7) The industry examination of the first pass cogging of rolling was carried out in the same conditions with the simulation, and the waist obliquity is 45° and 55° in each examination. The industry examinations of the second and the third pass cogging of rolling were carried out too. The numerical simulation results are almost in good
    agreements with the industry examinations.
引文
[1] 田勇.强迫宽展技术在热轧钢结构翼板钢生产中的研究与应用.山东大学硕士学位论文:2004年11月.
    [2] 高铁梅,孔宪丽,刘玉,胡玲.中国钢铁工业供给与需求影响因素的动态分析[J].管理世界,2004年第6期:73-81.
    [3] 张树堂.21世纪轧钢技术的发展[J].轧钢,2001,21(1):3-6.
    [4] 张曼翊,孙雪坤,王国栋,刘相华.数值模拟技术在我国钢铁工业中的应用现状与展望[J].钢铁研究,2000,3(114):53-58.
    [5] 黄迎新.焊接H型钢用热轧翼缘板产品的开发及应用[J].天津冶金,2004年第4期:44-46.
    [6] 刘相华.刚塑性有限元及其在轧制中的应用[M].北京:冶金工业出版社,1994.
    [7] 杜立权.H型钢的轧制与发展[J].鞍钢技术,1998年第4期:21-27.
    [8] Kazutake Komori, Katsuhiko Koumura. Simulation of deformation and temperature in muti-pass H-shape rolling[J] Journal of Materials Processing Technology, 2000, 105: 34-31.
    [9] Z Y Jiang, A K Tieu. A simulation of three-dimensional metal rolling process by rigid-plastic finite element method[J]. Journal of Materials Processing Technology, 2001, 112: 144-151.
    [10] Youngsoo Yea, Youngsoo Ko, Naksoo Kim, Jongchan Lee. Prediction of spread, pressure distributionand roll force in ring rolling process using rigid-plastic finite element method[J] Journal of Materials Processing Technology., 2003, 140: 478-486.
    [11] 谢红飙,肖宏,张国民,刘积成.用显示动力学有限元法分析压下率对板带轧制压力分布的影响[J].钢铁研究学报,2003,14(1):33-35.
    [12] 李建超,吴迪,赵宪明.箱形孔型轧制方坯的显式动力学有限元模拟[J].特殊钢,2002,23(2):23-25.
    [13] 刘立忠,刘相华,王国栋.轧制过程的显式动力学有限元法模拟[J].东北大学学报,2001,22(3):327-330.
    [14] 李建超,崔建忠,吴迪,赵宪明.椭圆孔型轧制方坯的显式动力学模拟[J].塑性工程学报,2003,10(1):57-60.
    [15] 卜勇力,刘才,赵文才,崔振山,程存江.H型钢轧制过程三维弹塑性大变形有限元模拟[J].钢铁研究学报,1999,14(1):22-25.
    [16] 李学通,杜凤山,吴建峰.宝钢2050粗轧带钢宽展规律仿真研究[J].重型机械,2004,(1):24-27.
    [17] 李学通,杜凤山,王敏婷,张晓峰,许志强.热轧带钢头部翘曲有限元研究[J].重型机械,2004,(3):41-44.
    [18] 徐建中,周志敏,吴迪,白光润.异型扁坯轧制过程横变形规律的研究[J].钢铁,1997,32(4):25-29.
    [19] 董永刚,张文志,宗家富,周庆田.轧制板坯成异型坯的宽展公式研究[J].燕山大学学报,2003,27(4):352-354.
    [20] 苏敏文,龚永平.型材轧制的宽展模型[J].北京科技大学学报,1995,17(6):534-537.
    [21] 贾春玉.热轧带钢宽展预报的人工智能方法[J].轧钢,2001,18(1):13-15.
    [22] 李兴田.提高热轧带钢宽度控制精度的综合措施[J].轧钢,2004,21(1):49-51.
    [23] 罗德兴.轧辊直径不等的非对称轧制条件下变形区内的变形分析[J].钢铁研究学报,2004,21(1):49-51.
    [24] 冯桂起.热轧粗轧过程金属变形规律有限元模拟研究.硕士学位论文:2003年2月.
    [25] 杜凤山,刘才,连家创.板带轧制过程中的三维接触摩擦模型[J].应用力学学报,1995,12(2):79-82.
    [26] 刘雅政、孙景宏、李志强、曲阳.有效控制产品质量的轧制技术[J].轧钢,2003 20(3):19-22.
    [27] 王廷溥,齐克敏.金属塑性加工学[M].北京:冶金工业出版社,2001
    [28] 王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西 北工业大学出版社,1999.
    [29] 张国民,肖宏,谢红飙.板带轧制过程的三维耦合有限元分析[J].塑性工程学报,2004,11(5):46-49.
    [30] 李尚健.金属塑性成形过程模拟[M].北京:机械工业出版社,1999,130-140.
    [31] 王瑁成,邵敏.有限单元法基本原理和数值方法[M].北京:消华大学出版社,1997,443-454.
    [32] 陈如欣,胡忠民.塑性有限元法及其在金属成形中的应用[M].重庆:重庆大学出版社,1989,16-56.
    [33] 汪凌云,刘静安.计算金属成形力学及应用[M].重庆:重庆大学出版社,1991,211-23.
    [34] 刘立忠.中厚板轧制的数值模拟及数学模型研究。东北大学博士学位论文,2002年3月.
    [35] 许光明.ANSYS基础及其在工程上的应用[M].沈阳:东北大学出版社,2002.
    [36] 美国ANSYS公司北京办事处.ANSYS/LS-DYNA培训手册[M].北京,2000.
    [37] 洪庆章,刘清吉,郭嘉源.ANSYS7.0教学范例[M].北京:中国铁道出版社,2003.
    [38] 白光润.型钢孔型设计[M].北京:冶金工业出版社,1995.
    [39] 朱国明,吴迪,赵宪明.H型钢开坯轧制四道次有限元模拟[J].材料与冶金学报,2002,1(2):226-229.
    [40] 王丽娟,孙雪坤.轧制变形的ANSYS有限元分析的处理[J].钢铁研究,1999,14(1):40-43.
    [41] Y. Lee, H. J. Kim, S. M. Hwang. Analytic model for the prediction of mean effective strain in rod rolling process[J]. Journal of Materials Processing Technology, 2001, 114: 129-138.
    [42] K. Komori. Simulation of deformation and temperature in caliber rolling: effect of finite element mesh in cross section[J]. Journal of Materials Processing Technology, 2003, 143-144: 367-372.
    [43] 刘立忠,张曼翊,刘相华,王国栋.隐式静力和显式动力有限元在轧制过程模拟中的应用[J].塑性工程学报,2001,8(4):81-83.
    [44] 刘洪伟,阎军,陈大宏,钱健清.H型钢冷却过程温度场有限元分析[J].安徽工业大学学报,2003,20(1):4-7.
    [45] 罗洲,华林,周勇强,王志慧.环件轧制过程的显式有限元模拟分析[J].塑性工程学报,2004,11(1):68-70.
    [46] 刘才,卜勇力,赵文才,崔振山.H型钢轧制翼缘不同压下量的应力应变分析[J].轧钢,1999,(4):11-14.
    [47] 杨正波,申荣法,李胜祇,阎军.简单断面型钢轧制变形过程三维有限元模拟[J].安徽工业大学学报,2001,18(4):311-314.
    [48] Z. Y. Jiang, A. K. Tieu. A 3-D finite element method analysis of cold rolling of thin strip with friction variation[J]. Tribology International, 2004, 37: 185-191.
    [49] R. Iankov. Finite element simulation of profile rolling of wire[J]. Journal of Materials Processing Technology, 2004, 37: 185-191.
    [50] Jiang zhengyi, Xiong Shangwu, Liu Xianghua, Wang Guodong, Zhang Qiang. 3-D rigid-plastic FEM analysis of a strip with local redidual deformation[J]. Journal of Materials Processing Technology, 1998, 79: 109-112.
    [51] 汪大年.金属塑性成形原理[M].北京:机械工业出版社,1985.
    [52] 汪家才.金属压力加工的现代力学原理[M].北京:机械工业出版社,1991.
    [53] 采利科夫等著.王克智,欧光辉,张维静译.轧制原理手册[M].北京:冶金工业出版社,1989.
    [54] H. Dyja, P. Korczak. The thermal-mechanical and microstructural model for the FEM simulation of hot plate rolling[J]. Journal of Materials Processing Technology, 1999, 92-93: 463-467.
    [55] 姚若浩.金属压力加工中的摩擦与润滑[M].北京:冶金工业出版社, 1990.
    [56] Annika Nilsson. FE simulations in hot strip rolling[J]. Journal of Materials Processing Technology, 1998, 80-81: 325-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700