微图形化技术在印刷电子材料的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要进行了激光图形化技术在印刷电子材料中的应用研究。近年来,随着新型有机半导体材料的不断涌现,以低成本的印刷方式制作电子器件成为可能,诸如电子纸、柔性显示屏、柔性发光二极管等具有柔软特性的电子产品不断推出,印刷电子也被业界称为下一代半导体制造技术。其中柔性透明导电膜作为印刷电子材料的一个重要课题,得到了广泛研究,以低成本的印刷工艺生产柔性透明导电膜成为科研人员的一个目标。然而现今的印刷电子工艺,如丝网印刷、喷墨打印和凹版柔性印刷都无法同时实现高效率、低成本和高精度的印刷制作。
     本论文将精密光刻微图形、纳米压印技术和Ag浆刮涂技术相结合,实现了由微细金属网格栅构成的柔性透明导电膜的制作。首先,对能够保证图形高精度拼接和高效率光刻的飞行频闪平铺曝光技术和Z轴校正技术进行了分析,对图形化设备的图形输入器件DMD在相干光照明下的相位调制特性进行了理论和实验研究,发现DMD的微镜偏转角误差(±1o)对图形化设备的能量利用率有很大影响。利用激光图形化设备制作了透明导电膜所需的电路图形的精密光掩模板,其线宽为2.5μ m。研究了厚胶曝光工艺,采用铸模技术得到柔性PDMS压印模板,实验表明用负胶母版二次铸模得到的PDMS模板的雾度(8%)要低于正胶模板一次铸模(19%)。最后,采用紫外固化纳米压印技术在以PET为基底的UV胶上压印出沟槽图形,用Ag浆刮涂技术将纳米Ag填入沟槽中得到微细金属网格透明导电膜,其表面电阻为3Ω/。在刮涂Ag浆的实验中,通过增加沟槽的深度和UV胶表面的亲水性,可使得更多的Ag浆刮入到沟槽内,从而提高了导电膜的导电率。
     本论文利用纳米压印技术和Ag浆刮涂技术,实现了金属网栅柔性透明导电膜的高效率、低成本和高精度的制作,探索了印刷电子制作的基本工艺流程,为实现图形化设备在印刷电子的应用,以及为进一步研究印刷电子工艺提供了技术工艺基础。
In this thesis, we focus on the research about laser direct writing patterningtechnology and its application in the fabrication of printed electronic devices. Recently,owing to the continuous emergence of new organic semiconductor materials, it is possibleto make electronic devices by some low-cost printing approaches. Printed electronicdevices, such as flexible paper, flexible displays and flexible illuminating diodes, havebeen regarded as the next generation of semiconductor manufacturing technology. One ofthe key components in printed electronics, known as transparent conductive film, hasattracted wide attention in both academic and industrial society. More and more researchersare devoted to the development of novel materials, equipments and process for therealization of mass-production of flexible transparent conductive film with low-cost, highefficiency and stability. However, the state-of-art techniques can not satisfy the criticaldemand in printing electronics yet.
     In this thesis, with the combination of micro-scratching technique and nanoimprintlithography, a novel conductive transparent film on PET substrate, is realized by patterningwith fine meshes, which width is2.5μ m, utilizing our parallel laser direct writingtechnology based on spatial light modulator. At first, a photomask with designed pattern isdirect wrote on glass coated with Cr as mask, the z-axis correction technique and the flightstroboscopic tiled technique are adopted in the exposure process to guarantee the accuratestitching between neighbor patterning areas with high-efficiency. We also investigate theinfluence of the phase modulation of in digital mirror devices (DMD) under theillumination of coherent lights on the patterning process theoretically and experimentally. The results show that the micromirror deflection angle error (±1o) of DMD can greatlyaffect energy utilization ratio in system. Secondly, a soft PDMS template is obtained by thereplication of surface texture on photoresist patterned by contact UV exposure lithography.The haze of two types of samples, fabricated by negative and positive photoresist, aremeasured. The experimental results suggest that the haze of former one(8%) is only halfthat of the latter one (19%). Thirdly, the patterned surface texture on PDMS is transferredto PET substrate by UV curable nanoimprint lithography. Finally, silver is filled in thetrenches in above samples by micro-scratching and transparent conductive film is obtained,which sheet resistance is3Ω/. The depth, width of trenches and the surface physicalhydrophilicity has great influence on the conductivity.
     In this thesis, with the technology of micro-scratching and nanoimprint lithography,we achieve the production of metal mesh flexible transparent conductive film with highefficiency, low cost and high precision. We discussed the basic fabrication process ofprinted electronics, provides a process basis for achieving the application ofmicro-structure patterning technology in printed electronics and further study in process ofprinted electronics.
引文
[1]杨振国,印刷电子的现状、技术特征及产业化前景[J],印刷电路信息,2010, No.1,综述与评论
    [2] C.D.Sheraw, L.Zhou, J.R.Huang, et al, Organic thin-film transistor-driven polymerdispersed liquid crystal displays on flexible polymeric substrates[J], Appl. Phy. Lett.80,1088(2002)
    [3] J. A. Rogers, Elastomeric Transistor Stamps: Reversible Probing of Charge Transportin Organic Crystals[J], Science291,1502(2001)
    [4] H. Sirringhaus et al. High-Resolution Inkjet Printing of All-Polymer TransistorCircuits[J], Science290,2123(2000).
    [5]木村雅秀,根津祯,"印刷电子(三)材料技术的进步起到支撑作用"http://china.nikkeibp.com.cn/news/elec/52071-20100625.html.2010-06-28
    [6] Mi-Young Lee, Myung-Won Lee, Ji-Eun Park, A printing technology combiningscreen-printing with a wet-etching process for the gate electrodes of organic thin filmtransistors on a plastic substrate[J], Microelectronic Engineering87,(2010)1922-1926
    [7] André D. Taylor, Edward Y. Kim, Virgil P. Humes, Inkjet printing of carbonsupported platinum3-D catalyst layers for use in fuelcells[J], Journal of PowerSources,171,1(2007)101-106
    [8] Laura Basiric, Piero Cosseddu, Beatrice Fraboni, et al. Inkjet printing of transparent,flexible, organic transistors[J], Thin Solid Films520,1291-1294(2001)
    [9] B. Bollier, D.Gamota, P.Brazis, et al. Printed Organic and Molecular Electronics[M],Kluwer Academic Publishers,2004.
    [10] Marko Pudas, Juha Hagberg, Seppo Lepp vuori, Gravure offset printing of polymerinks for conductors[J], Progress in Organic Coatings49(2004)324-335
    [11] G.C.Schmidt, M.Bellmann, B.Meier, et al. Modified mass printing technique for therealization of source/drain electrodes with high resolution[J], Organic Electronics11
    [12] J.M.Ding, A.F.Vornbrock, C.Ting, V.Subramanian, Patternable polymer bulkheterojunction photovoltaic cells on plastic by rotogravure printing[J], Sol.EnergyMater. Sol.Cells93(2009)459-464.
    [13] Myung-Gyu, Kang, HuiJoonPark, SeHyunAhn,L. JayGuo, Transparent Cu nanowiremesh electrode on flexible substrates fabricated by transfer printing and its applicationin organic solar cells[J], Solar Energy Materials&Solar Cells94(2010)1179-1184
    [14]根津祯,"透明电极导入新材料", http://china.nikkeibp.com.cn/news/elec/53814-20101028. html
    [15] N.Al-Dahoudi, M.A. Aegerter, Comparative study of transparent conductiveIn2O3:Sn (ITO) coatings made using a sol and a nanoparticle suspension[J], ThinSolid Films502(2006)193-197
    [16] D.R.Sahu, Jow-LayHuang, Development of ZnO-based transparent conductivecoatings[J], Solar Energy Materials&Solar Cells93(2009)1923-1927
    [17] Siegfried Eigler, A new parameter based on graphene for characterizing transparent,conductive materials[J], CARBON47(2009)2933-2939
    [18] Bo-Tau Liu, Chao-Hsiang Hsu, Wei-Hong Wang, A comparative study on preparationof conductive and transparent carbon nanotube thin films[J], Journal of the TaiwanInstitute of Chemical Engineers43(2012)147-152
    [19] TaeYoung Kim, JongEun Kim, YunSang Kim, et al, Preparation and characterizationof poly(3,4-ethylenedioxythiophene)(PEDOT) using partially sulfonated poly(styrene-butadiene-styrene) triblock copolymer as a polyelectrolyte[J], CurrentApplied Physics9(2009)120-125
    [20] Kristofer Tvingstedt, Olle Ingan s, Electrode Grids for ITO-free OrganicPhotovoltaic Devices[J], Adv. Mater.2007,19,2893-2897
    [21] Ali Kemal Havarea, Mustafa Cana, Serafettin Demica, The performance of OLEDsbased on sorbitol doped PEDOT:PSS[J], Synthetic Metals161(2012)2734-2738
    [22] Jun Kawahara, Peter Andersson Ersman, Magnus Berggren, Improving the colorswitch contrast in PEDOT:PSS-based electrochromic displays[J], OrganicElectronics13(2012)469-474
    [23] J.S. Moon, J.H.Park, T.Y.Lee, Transparent conductive film based on carbonnanotubes and PEDOT composites[J], Diamond&Related Materials14(2005)1882-1887
    [24] T. Yonezawa, S. Onoue, N. Kimizuka, Self-Organized Superstructures ofFluorocarbon-Stabilized Silver Nanoparticles[J], Advanced Materials13(2001)140-142
    [25] Azulai.D, Belenkova.T, Gilon.H, Transparent Metal Nanowire Thin Films Preparedin Mesostructured Templates[J], Nano Lett.2009,9,4246–4249.
    [26] Liangbing Hu, Han Sun Kim, Jung-Yong Lee, Scalable Coating and Properties ofTransparent, Flexible, Silver Nanowire Electrodes[J], ACS Nano4(5)20102955-2963
    [27]邹竞,章峰勇,安国强,银盐法制备透明导电膜的研究与应用[J],信息记录材料11(2)2010
    [28] Myung-Gyu Kang, L. Jay Guo, Nanoimprinted Semitransparent Metal Electrodesand Their Application in Organic Light-Emitting Diodes[J], Adv. Mater.2007,19,1391-1396
    [29] Chia-Meng Chen, Chih-Wei Hsieh1, Cheng-Kuo Sung, Insertion Structures forTransparent Metal Electrodes Prepared by Nanoimprint Lithography[J], AppliedPhysics Express5(2012)044202
    [30] Kamon.K, The optical proximity effect of a next generation super resolutiontechnique[C], Proc.of SPIE,1997,3051:66-76
    [31] Daliwhal R S, Golladay S.D, Gordon M.S, et al, PREVAIL-electron projectiontechnology approach for next generation lithography[J], IBM J.Res.&Dev.,2001,45(5):615-38
    [32] Golladay S.D, Pfeiffer H.C, Rockrohr J.D, et al,PREVAIL Alpha system:Status andDesign consideration[J], Journal of Vacuum Science&Technology B,2000,18(6):3072-8
    [33] Fritze.M, Noomstein.T.M, Tyrrell.B, Rothschild.M, Extending193nm immersionwith hybrid optical maskless lithography[J], Solid State Technol.2006,49(9):41-3
    [34] Benjamin Eynon, Banqiu Wu, Photomask Fabrication Technology[M], McGraw-HillProfessional,1edition, July21,2005
    [35] Brian J. Grenon, Kurt R. Kimmel,Resolution extensions in the Sigma7000imagingpattern generator[C], Proc. SPIE4889,157(2002)
    [36] Tomas Vikholm, Lars Kjellberg, Per Askebjer, Results from a new laser patterngenerator for180-nm photomasks[C], Proc. SPIE4066,624(2000)
    [37] Ljungblad U,High-end mask manufacturing using spatial light modulators[J], SolidState Technology,2005,48(4):8-10
    [38] Lakner H, Durr P, Dauderstaedt U, et al, Design and fabrication of micromirrorarrays for UV lithography[C], Proc.of SPIE,2001,4561:255-64
    [39] Yijian Chen, Chi Hui Chu, Shroff Y, et al, Design and fabrication of tilting and pistonmicromirrors for maskless lithography[C], Proc.of SPIE,2005
    [40] Jorg Paufler, Stefan Brunn, Tim Korner, Continous image writer improved imagequality for high accuracy optical patterning[C], Proc.of SPIE,2001,4349:51-59
    [41]李凤有,激光直写光刻技术研究[D],中国科学院研究生院(长春光学精密机械与物理研究所),2002
    [42]陈龙江,曲面激光直写中若干关键技术研究[D],浙江大学,2010
    [43]郭小伟, SLM无掩模光刻技术的研究[D],四川大学,2007
    [44]饶玉芳,无掩模光刻系统的研究与设计[D],南昌航空大学,2010
    [45] H.Moritz, High-resolution lithography with projection printing[C], IEEE Trans.Electron Devices,1979,26:705-710
    [46] Michael L.Huebschman, Bala Munjuluri, Harold R. Garner.Dynamic holographic3-D image projection [J], Optics Express2003,11(5):437~445
    [47] Walter M. Duncan, Benjamin L. Lee, Paul Rancuret, et al. DLP switched blazegrating: the heart of optical signal processing[C], Proc SPIE,4983,297(2003)
    [48]陆亚聪,陈林森,魏国军.基于DMD高分辨率激光直写系统设计与实现[J],激光杂志,2007,28(6):46~47
    [49] DMD0.7XGA12°DDR DMD DiscoveryTM.Product preview data sheet [Z],TIDN2503686,2005-08-30
    [50]姚启钧,光学教程[M],北京:高等教育出版社,2002:21
    [51] Stefan C. B. Mannsfeld1, Benjamin C, Highly sensitive flexible pressure sensorswith microstructured rubber dielectric layers[J], NATURE MATERIALS9OCTOBER2010
    [52]赵小力,基于PDMS的自组装及转移印刷制备微结构的研究[D],哈尔滨工业大学,2007
    [53]沈德新,张春权,田昭武. PDMS微流控芯片中真空氧等离子体键合方法[J],微纳电子技术,2003,(Z1)
    [54]罗运军,桂红军.有机硅树脂及其应用[M],化学工业出版社,2001:6一17
    [55]孟斐,陈恒武,方肇伦,聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究[J],高等学校化学学报,23(7),2002
    [56] H.Takao, M.Okoshi, N.Inoue, Swelling and Modification of Silicone Surface by F2Laser Irr adiation[J], Applied Physics A.2004,79:1571-1574
    [57] D.B.Wblfe,J.B.Ashcom,J.C.Hwang,et al.Customization of Pol (Dimethylsiloxane)StamPs by Micromachining Using a Femtosecond-Pulsed Laser[J], AdvancedMaterials.2003,15(l):62-65
    [58] C.A.Coenjarts, C.K.Ober. Two-Photon Three-Dimensional Microfabrication ofPoly(Dimethylsiloxane) Elastomers[J], Chemistry of Materials.2004,16(26):5556一5558
    [59] Chou S Y, Krauss P R, Renstrom P J, Nanoimprint lithography[J], Journal of VacuumScience&Technology B,1996,14(6):4129-4133.
    [60] Wood M A, Bagnaninchi P, Dalby M J, The [beta] Integrins and CytoskeletalNanoimprinting [J], Experimental Cell Research.2008,314(4):927-935.
    [61] Taylor A D, Lucas B D, Guo L J, et al. Nanoimprinted Electrodes for Micro-fuel CellApplications [J], Journal of Power Sources.2007,171(1):218-223.
    [62] Meie M, Nauenheim C, Gilles S, et al. Nanoimprint for Future Non-volatile Memoryand Logic Devices[J], Microelectronic Engineering,2008, In Press, AcceptedManuscript:272.
    [63] Plachetka U, Kristensen A, Scheerlinck S, et al. Fabrication of Photonic Componentsby Nanoimprint Technology within ePIXnet[J], Microelectronic Engineering,2008,In Press,Uncorrected Proof:464.
    [64] Stephen Y Chou, Peter R Krauss, Preston J Renstrom. Imprint Lithography with25-Nanometer Resolution[J], Science,1996,272:5258:85-87.
    [65] X ia Y, Whitesides, Annu G M. Soft lithography[J], Rev Mater Sci1998,28:153-184
    [66] Robert Darveaux. Effect of simulation methodology on solder joint crack growthcorrelation[C],2000electron ic components and technology conference,1048-1058
    [67] Ziqi Liang, Kun Li, Qing Wang, Direct Patterning of Poly(p-phenylene vinylene)Thin Films Using Microcontact Printing[J], Langmuir2003,19,5556
    [68] Ki-don Kim, Jun-ho Jeong, et al, Development of a very large-area ultravioletimprint lithography process[J], Microelectronic Engineering86(2009)1983-1988
    [69] Won Mook Choi, O Ok Park, A soft-imprint technique for submicron-scale patternsusing a PDMS mold[J], Microelectronic Engineering73-74(2004)178-183
    [70] Joonhyuk Cho, Kyoung-Hwan Shin, Jyongsik Jang, Micropatterning of conductingpolymer tracks on plasma treated flexible substrate using vapor phasepolymerization-mediated inkjet printing[J], Synthetic Metals160(2010)1119-1125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700