类菱形车转向系统研究与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转向机构作为汽车的一级部件,在整车的设计中占有重要的地位。转向系统的好坏不仅影响着整车的操纵性,也会对车辆的安全性产生很大的影响。针对类菱形车的底盘布置形式而专门开发的转向机构与传统车辆的转向机构是有很大差别的。本文首先对类菱形车转向机构的结构进行了详细地介绍,并对转向拉杆机构进行了建模以及优化,得到了满足前后轮同步转向的结构参数;其次,对类菱形车的转向性能进行了分析,并分析了构件的柔性变形对转向机构以及整车响应的影响;然后,对类菱形车进行了非线性三自由度侧向动力学分析,以及考虑了驾驶员模型和道路模型的人—车—路闭环系统分析;最后,通过类菱形车操纵稳定性试验,验证了类菱形车在所设计的转向机构作用下具有操纵灵活、响应灵敏、安全、可靠的操纵性和稳定性。基于此思路,本论文开展和完成了如下研究工作:
     1.类菱形车的底盘结构与传统车的差异,导致类菱形车的转向操纵机构、转向器和转向传动机构的具体形式又与传统车不一样,最明显的区别在于传统车一般是通过前轮转向,而类菱形车是通过前后轮同步转向。本文从转向操纵机构、转向器和转向传动机构三大部分分析了适用于类菱形车底盘结构的转筒式转向机构,并通过对四连杆机构的建模以及优化,使得转向轮向左转和向右转的角度差降到最低,并尽可能减小车轮跳动时产生的被动转向角。
     2.类菱形车的一大优点是操纵灵活,通过对类菱形车最小转弯半径和传动比特性的分析很好地验证了类菱形车操纵灵活的特点。类菱形车转向轮的结构导致其转向轮定位参数无法实现回正,本文通过附加的转向回正机构很好地解决了这种问题。建立了类菱形车的线性二自由度模型,考虑了整车质心的变化对轮胎的侧偏刚度的影响。并对类菱形车的线性二自由度模型进行了稳态响应和瞬态响应分析,分析结果表明,类菱形车不仅转向灵活,在操纵稳定性响应时间指标上,也具有较好的响应性能。
     3.类菱形车的转向机构是前后轮联动转向,纵穿了整车的前后,导致了转向机构中的拉杆较长。本文利用ADAMS软件建立了类菱形车转向机构的动力学模型和前轮悬架转向模型,并利用ANSYS软件对一些关键构件进行柔性化,得到了类菱形车转向机构的柔性模型和前轮悬架转向柔性模型。通过对刚性模型和柔性模型的仿真,得到了构件的柔性变形对前后轮同步转向的影响以及前悬架上下摆臂的柔性变形对被动转向的影响。将类菱形车简化为三点支撑的连续梁,分析了轴转向对整车稳态响应和瞬态响应的影响。
     4.本文在类菱形车线性二自由度模型的基础上,加入了纵向运动自由度来描述类菱形车在转向运动中车速的变化,并应用Pacejka轮胎模型描述轮胎侧偏特性,由此构建了具有实时在线仿真功能的类菱形车非线性三自由度侧向动力学模型。而不同转向类型的汽车,面对同一行驶道路,经驾驶员判断后产生的转向盘输入是不同的,这就需要在进行侧向动力学分析时加入驾驶员模型和道路模型。通过蛇行试验验证了类菱形车非线性三自由度侧向动力学模型和基于人—车—路的闭环系统模型的正确性。
     5.在全文的最后,按照国家标准对类菱形车进行操纵稳定性的六个基本试验,并按照操纵稳定性指标限值与评价方法对各个试验进行了评价。通过操纵稳定性试验及评价,验证了类菱形车具有优于传统四轮车的操纵性,和与传统四轮车相当的稳定性。
     本文作为一篇系统研究类菱形车转向系统的论文,对类菱形车的工程化和市场化提供了理论支撑。
Steering mechanism plays a very important part in the design of the vehicle as a key component.It influences both the handling stability and the safety of a vehicle. The steering system designed according to special layout of the Rhombic Vehicle is different from the steering system of traditional vehicle. First, the structure of steering system of the Rhombic Vehicle was introduced in detail in the paper, and then it was modeled and optimized to obtained the structural parameters which insure the front and rear tires steering synchronously.Second, the steering performance of the Rhombic Vehicle and the component’s flexible deformation’s influences to the steering mechanism’s and vehicle’s response were analyzed.Then the non-linear three degree lateral dynamics of the Rhombic Vehicle was analyzed, and the closed system of driver-vehicle-road considering the driver model and road model was analyzed. Finally, the handling stability experiment proved the handling flexibility, response sensitivity, safety, reliable handling ability and stability of the Rhombic Vehicle under developed steering systems. According to the analysis method, the dissertation has developed and accomplished pertinent researches as follows:
     1. As the steering system of a traditional vehicle, the steering system of Rhombic Vehicle is composed of steering control mechanism, steering gear and steering transmission mechanism. Because of the difference between the layout of Rhombic Vehicle and the layout of traditional vehicle, the structures of the steering control mechanism, steering gear and steering transmission mechanism of the Rhombic Vehicle are different from these of the traditional vehicle.Generally, the traditional automobile is steered by the means of the front wheels, however the Rhombic Vehicle is steered by the means of the front and rear wheels. This dissertation has analysed the steering mechanism that is fit to be used on Rhombic Vehicle. They were modeled and optimized to minimize the divergence when the steering wheels turns right or left and to avoid the passive steering when the steering wheels jump.
     2. Handling flexibility is one of the Rhombic Vehicle’s advantages, which was proved by the analysis of the minimum turning radius and the transmission ratio of the Rhombic Vehicle. Generally, the vehicle must have good returnability under turobalance condition. The Rhombic Vehicle has the good returnability only with the help of steering returnable mechanism,because the steering wheels have bad alignment parameter.The linear two degree model was modeled considered the influence to the tire’s lateral stiffness due to the change of the vehicle’s gravity center. The stationary response analysis and transient response analysis of the Rhombic Vehicle’s linear two degree model suggest that the Rhombic Vehicle not only steer flexible, but also has good performance in handling stability’s time criterion.
     3. Because the Rhombic Vehicle needs the front and rear wheels steer synchronously while steering, steering mechanism has long tension rods which almost pass through the whole vehicle. The dynamics model and front suspension model were modeled by the means of ADAMS software, and some key components were flexiblized by the means of ANSYS code to obtain the flexible model of the Rhombic Vehicle. After simulating of the rigid model and flexible model, we got the influence of the components’flexible deformation to the front and rear wheels’synchronous steer and the influence of control arms’flexible deformation of front suspension to passive return. The Rhombic Vehicle is simplified to a three points supported beam, and the influence of the axial steer to vehicle’s stable response and transient response were analyzed.
     4. The longitudinal degree of freedom was added on Rhombic Vehicle’s linear two degree of freedom model to describe the change of vehicle’s velocity when steering, and the tire’s lateral deviation was described with the Pacejka’s tire model, therefore the Rhombic Vehicle’s nonlinear three degree of freedom model with capacity of real time online simulation was modeled. Even on the same road, the driver gives different steering wheel angle displacement input to the different steer type vehicles.The driver model and road model were needed in the lateral dynamics simulation. The slalom test proved the correction of the Rhombic Vehicle’s nonlinear three dimensional lateral dynamics model and the closed system model based on driver-vehicle-road.
     5. In the end, six basic handling stability tests of the Rhombic Vehicle were operated according to the national standard.All the tests were evaluated according to the handling stability limit and the evaluation method. The handling stability tests and evaluation suggest that the Rhombic Vehicle has better handling stability than the traditional vehicle, while it has the equal stability of the traditional vehicle. This paper, as a dissertation systematicly researched on the Rhombic Vehicle’s steering system, offers a theory that laid a solid foundation to the maket orientation and engineering application of Rhombus Vehicle.
引文
[1]钟志华.类菱形汽车.中国专利.00264790.7,2001-10-17
    [2]郑军.新概念车舒适性与操纵稳定性研究:[湖南大学博士学位论文].长沙:湖南大学,2001
    [3]钟勇.基于CVT的类菱形混合动力电动汽车系统研究与仿真:[湖南大学博士学位论文].长沙:湖南大学,2005
    [4]吴军.汽车外流场湍流模型与菱形新概念车气动特性的研究:[湖南大学博士学位论文].长沙:湖南大学,2005
    [5]谢庆喜.菱形电动汽车碰撞安全性仿真研究:[湖南大学硕士学位论文].长沙:湖南大学,2005
    [6]黄智,钟志华.菱形新概念车转向性能分析.湖南大学学报(自然科学版),2006,33(6):46-50
    [7]张尚荣.类菱形概念车结构耐撞性仿真研究:[湖南大学硕士学位论文].长沙:湖南大学,2008
    [8]莫旭辉.类菱形车操纵动力学分析与优化:[湖南大学博士学位论文].长沙:湖南大学,2009
    [9]毛建中.菱形车中悬架系统优化设计与动力学分析:[湖南大学博士学位论文].长沙:湖南大学,2009
    [10]陈家瑞.汽车构造.第二版.北京:机械工业出版社,2003
    [11]Scott A.Millsap,E.Harry Law.Handling enhancement due to an automotive variable ratio electric power steering system using model reference robust tracking control.In:SAE International Congress and Expos- ition.Detroit,1996,1-19
    [12]Xu Zhenlin,Wang Hao.Studies on assist characteristic of electric power steering system.Transactions of TianJin University,2003,6(2):211-213
    [13]徐建平,何仁,苗立东,等.电动助力转向系统回正控制算法研究.汽车工程,2004,26(5):557-559
    [14]吴锋,杨志家,姚栋伟,等.电动助力转向系统控制策略的研究.汽车工程,2006,28(7):676-680
    [15]Liao Y G,Du H I.Modelling and analysis of electric power steering system and its effect on vehicle dynamic behavior.International Journal of Vehicle Autonomous Systems,2003,1(3):351-362
    [16]陈无谓,王启瑞.电动动力转向系统的模糊自调整PID控制.江苏大学学报,2004,25(2):112-115
    [17]王其东,杨孝剑,陈无谓,等.电动动力转向系统控制的台架试验研究.汽车工程,2004,26(5):553-556
    [18]张昌华,王勇,邓楚南.汽车电动助力转向系统控制策略的探讨.武汉理工大学学报,2004(6):173-175
    [19]尚喆,许镇琳,王豪,等.基于神经网络的电动转向系统助力特性研究.汽车工程,2004,26(3):319-321
    [20]吴文江,杜彦良,季学武,等.增强电动转向系统助力跟踪性能的控制.汽车工程,2004,26(4):465-475
    [21]Masahiko Kurishige,Kouji Fukusumi,Noriyuki Inoue,et al.A new electric current control strategy for EPS motors.In:SAE 2001 World Congress. Detroit,2002,9-16
    [22]Toshihide Satake,Masahiko Kurishige,Noriyuki Inoue,et al.Evalution of EPS control strategy using driving simulator for EPS.In:SAE 2003 World Congress(SP-1740).Detroit,2004,8-14
    [23]Anila Mjeda,Brendan Jackman.A fuzzy logic approach for an electrical power steering system.In:SAE 2005 World Congress.Detroit,2005,183- 188
    [24]Rakan C.Chabaan,Wang Le Yi.Control of electrical power assist systems:H∞design,torque estimation and structural stability.JSAE Review,2001,22(4):435-444
    [25]Nobuo Sugitani,Yukihiro Fujuwara.Electric power steering with H-infinity control designed to obtain road information.In:Proceeding of the American Control Conference.Albuquerque,1997,2935-2939
    [26]Diem W.The hands-off approach.Automotive engineer,2000,25(10):38-39
    [27]Masahiko Kurishige,Hideyuki Tanaka,Noriyuki Inoue,et al.An EPS control strategy to improve steering maneuverability on slippery roads.In:SAE 2002 World Congress.Detroit,2003,9-16
    [28]Masahiko Kurishige,Shunichi Wada,Takayuki Kifuku,et al.A new EPS control strategy to improve steering wheel returnability.In:SAE 2000 World Congress.Detroit,2001,8-14
    [29]Kasselmann J.Keranen T.Adaptive steering.Bendix Technical Journal, 1969,2:26-35
    [30]Ryouhei H,Katsutoshi N.The vehicle stability control responsibilityimprovement using steer-by-wire.In:Proceeding of the IEEE . Dearborn, 2000,596-601
    [31]Jun T,Naohiro Y,Shoichi S,et al.Effects of steering system characteristics on control performance from the viewpoint of steer-by-wire system design.In:SAE 1999 World Congress.Detroit,1999, 139-152
    [32]Automobile Engineering International Online.BMW’s Secrets Reveale. http://www.sae.org,2000-10
    [33]何仁,李强.汽车线控转向技术的现状与发展趋势.交通运输工程学报,2005,5(2):68-72
    [34]罗石,商高高,苏清祖.线控转向系统转向盘力回馈控制模型的研究.汽车工程,2006,28(10):914-917
    [35]Yaniv O.Robustness to speed of 4WS vehicles for yaw and lateral dynamics.Vehicle System Dynamics,1997,27(4):221-234
    [36]Laszlo Palkovics.Effect of the controller parameters on the steerability of the four wheel steered car.Vehicle System Dynamics, 1992,21(1):109-128
    [37]Masato Abe,Naoto Ohkubo,Yoshio Kano.A direct yaw moment control for improving limit performance of vehicle handling comparison and cooperation with 4WS.Vehicle System Dynamics,1996,25(S1):3-23
    [38]Ossama Mokhiamar,Masato Abe.How the four wheels should share forces in an optimum cooperative chassis control.Control Engineering Practice,2006,14(3):295-304
    [39]Akar M,Kalkkuhl J C.Lateral dynamics emulation via a four- wheel steering vehicle.Vehicle System Dynamics,2008,46(9):803-829
    [40]郭孔辉,轧浩.四轮转向的控制方法的发展.中国机械工程,1998,9(5):73-76
    [41]王洪礼,迟仲玉,乔宇.汽车四轮转向系统的非线性控制.机械强度,2003,25 (2):130-133
    [42]洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999
    [43]M.米奇克著.汽车动力学.陈萌三译.北京:人民交通出版社,1997
    [44]苏小平.依维柯汽车多体动力学仿真分析、优化研究及工程实现:[南京理工大学硕士学位论文].南京:南京理工大学,2004
    [45]廖林清,刘鑫,廖仕利.汽车悬架系统参数的稳健优化设计.重庆工业管理学院学报,1995,9(4):49-55
    [46]卞学良,白杨.汽车双横臂悬架转向机构优化分析.中国公路学报,1999,12(1):116-119
    [47]上官文斌.多刚体系统动力学在转向系和悬架运动学分析中的应用.汽车工程,1992(14):19-31
    [48]Lee Sang-Ho.Four-wheel independent steering system for vehicle handling improvement by active rear toe control.JSME International Journal,Series C,1999,42(4):947-956
    [49]Ozdalyan B,Blundell M V.Comparison of suspension rig measurements with computer simulation.In:International Conference on Simulation 98.York,1998,133-139
    [50]Holdmann Peter.Suspension kinematics and compliance-measuring and simulation.In:Proceedings of the 1998 SAE International Congress & Exposition.Detroit,1998,1-6
    [51]陈加国.前轮定位参数及其动态变化对汽车操稳性能的影响.机械设计及制造,2004,1:115-116
    [52]张建文,郭二生,黄治国.空气悬架大客车操纵稳定性仿真研究.系统仿真学报,2006,18(5):1239-1242
    [53]杨波.计及车架弹性的多轴重型越野车整车动态性能研究:[华中科技大学博士学位论文].武汉:华中科技大学,2004
    [54]邬勇民.基于虚拟样机技术的悬架优化及汽车平顺性仿真:[南京航空航天大学硕士学位论文].南京:南京航空航天大学,2007
    [55]Dave Crolla,喻凡.车辆动力学及其控制.北京:人民交通出版社,2004
    [56]喻凡,林逸.汽车系统动力学.北京:机械工业出版社,2005
    [57]Thomas D.Gillespie.车辆动力学基础.赵六奇,金达锋译.北京:清华大学出版社,2006
    [58]屈求真,刘延柱.汽车轮胎侧偏特性的研究现状及其发展.上海交通大学学报, 1999,33(6):755-759
    [59]Xia X, Willis J N. The effects of tire cornering stiffness on vehicle linear handling performance.In:SAE International Congress and Exposi- tion.Detroit,1995,1-12
    [60]Allen R W, Magdaleno R E, Rosenthal T J,et al. Tire modeling require- ments for vehicle dynamics simulation.In:SAE International Congress and Exposition.Detroit,1995,1-23
    [61]Zegelaar P W A, Pacejka H B .The in-plane dynamics of tyres on uneven roads.Vehicle System Dynamics Suppl,1996,25:714-730
    [62]Pacejka H B, Sharp R S .Shear force development by pneumatic tyres insteady state conditions:A review of modelling aspects.Vehicle System Dynamics, 1991, 20: 121-176
    [63]Bakker E, Nyborg L, Pacejka H B. Tyre modelling for use in vehicle system studies.SAE870421:2.190-2.204
    [64]Bakker E ,Pacejka H B, Lidner L. A new tire model with an application in vehicle system studies.SAE890087:101-113
    [65]Pacejka H B, Besselink I J M. Magic formula tyre model with transient properties.Vehicle System Dynamics Suppl, 1997, 27:234-249
    [66]Palkovics L.,El-Gindy M, Pacejka H B. Modelling of the cornering characteristics of tyres on an uneven road surface: a dynamic version of the‘Neuro-Tyre’.International Journal of Vehicle Design, 1994,15(1/2):189-215
    [67]Belkin A E, Bukhin B L, Mukhin O N et al. Some models and methods of pneumatic tire mechanics.Vehicle System Dynamics Suppl, 1997, 27: 250-271
    [68]Burke A M, Olatunbosun O A .Contact modelling of the tyre/road interface.Int. J. of Vehicle Design, 1997, 18(2):194-202
    [69]Burke A M, Olatunbosun O A .New techniques in tyre modal analysis using MSC/NASTRAN.Int. J. of Vehicle Design,1997, 18(2):203-212
    [70]Gim G, Nikravesh P E. An analytical model of pneumatic tyres for vehicle dynamic simulations, Part 1:Pure Slips. International Journal of Vehicle Design, 1990,11(6):589-618
    [71]Gim G, Nikravesh P E. An analytical model of pneumatic tyres for vehicle dynamic simulations, Part2: Comprehensive Slips. International Journal of Vehicle Design, 1991,12(1):19-39
    [72]Gim G, Nikravesh P E. An analytical model of pneumatic tyres for vehicle dynamic simulations, Part 3:Validation against experimental data. International Journal of Vehicle Design,1991,12(2):217-228
    [73]Gim G, Nikravesh P E. A three dimensional tire model for steady-state simulations of vehicles.SAE931913:150-159
    [74]Bernard J E ,Segel L ,Wild R E. Tire shear force generation during combined steering and braking maneuvers.SAE770852:2953-2969
    [75]赵又群,郭孔辉.稳态轮胎侧偏力学的发展与展望.汽车技术,1997,3:1-5
    [76]郭孔辉,刘蕴博,扬阳.轮胎试验技术的开发研究及其在汽车性能研究中的应用前景.汽车工程, 1990, 1:1-9
    [77]刘青,郭孔辉.轮胎侧偏特性研究的特点及其发展.汽车技术, 1997, 10:1-8
    [78]郭孔辉,隋军.轮胎垂直载荷分布与侧向力模型及纵向力之间的关系.汽车研究与开发, 1995,1: 22-25
    [79]郭孔辉.轮胎侧偏特性的一般理论模型.汽车工程, 1990, 3:1-12
    [80]郭孔辉.汽车操纵动力学.吉林:吉林科学技术出版社, 1991
    [81]崔胜民,余群.制动—驱动工况下的轮胎侧偏特性理论研究.汽车工程, 1995, 17(6):334-339
    [82]尚进,管迪华,任礼行.利用模态参数对轮胎纯侧偏特性建模.汽车工程, 1999, 21(1):31-36
    [83]管迪华,吴卫东.轮胎动特性试验模态分析.汽车工程, 1995, 17(6):328- 333
    [84]Loeb J S, Guenther D A, Chen H H F et al. Lateral stiffness, cornering stiffness and relaxation length of the pneumatic tire.SAE900129:147- 155
    [85]Heydinger G J, Garrott W R, Chrstos J P. The importance of tire lag on simulated transient vehicle response.SAE910235:362-374
    [86]Bernard J E, Clover C L.Tire modeling for low-speed and high-speed calculations.SAE950311:474-483
    [87]Mastinu G, Gaiazzi S, Montanaro F et al. A semi-analytical tyre model for steady-and transient-state simulations.Vehicle System Dynamics Suppl, 1997, 27:2-21
    [88]Wang Y Q, Gnadler R, Schieschke R. Vertical load-deflection behavior of a pneumatic tire subjected to slip and camber angles.Vehicle System Dynamics, 1996, 25:137-146
    [89]Kane T R, Man G K. Characterization of wheel-roadway interaction for recreational vehicles.SAE790181:1-13
    [90]Van Zanten A, Erhardt R, Lutz A. Measurement and simulation of transients in longitudinal and lateral tire forces. SAE900210:300-318
    [91]Lee S, Chrstos J P, Guenther D A. Modeling of dynamic characteristics of tire lateral and longitudinal force responses to dynamic inputs. SAE950314:515-532
    [92]Lee S, Heydinger G J, Guenther D A. The application of pulse input techniques to the study of tire lateral force and self-aligning moment dynamics in the frequency domain. SAE950317:533-546
    [93]孙逢春,李德圣,李晓雷.轮胎侧偏力学的新进展.汽车工程,1995,17(2):65-73
    [94]刘青,郭孔辉.根据“弦”胎体理论建立轮胎非稳态侧偏模型.吉林工业大学学报, 1996,1:1-9
    [95]郭孔辉,刘青.轮胎非稳态侧偏特性的建模.汽车技术, 1996, 2:8-12
    [96]郭孔辉,刘青.考虑胎宽时的轮胎非稳态侧偏特性建模.汽车技术, 1996, 5:5-10
    [97]郭孔辉,刘青.考虑胎体复杂变形时的轮胎非稳态侧偏特性理论模型.汽车工程,1997,19(2):66-71
    [98]Leister G. New procedures for tyre characteristic measurement. Vehicle System Dynamics Suppl, 1997, 27:22-36
    [99]罗阳,黄锡朋,刘刚.汽车轮胎力学特性的试验研究.同济大学学报, 1997, 5: 543-547
    [100]刘青,郭孔辉.轮胎非稳态侧偏特性试验分析与试验设计.吉林工业大学学报, 1998, 1:1-6
    [101]瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评.汽车技术, 1996, 7:1-8
    [102]Sano,S. et al.Influence of vehicle response parameters on drivers control performancd. Proc.of FISITA 18th Internatonal Congress, Hamburg, 1980
    [103]Fukui K, Miki K, Hayashi Y et al. Analysis of driver and a“four wheel steering vehicle”system using a driving simulator. SAE880641: 4.657-4.667
    [104]Reddy R N, Ellis J R. Contribution to the simulation of driver-vehicle -road system. SAE810513:1886-1909
    [105]Kaminaga M, Sakata T, Murata M. Vehicle cornering properties in a driver-vehicle closed-loop system. SAE945080: 144-151
    [106]Xia X, Law E H. Nonlinear analysis of closed loop driver/automobile performance with four wheel steering control.SAE920055:79-94
    [107]Apel A, Mitschke M. Adjusting vehicle characteristics by means of driver models.Int. J. of Vehicle Design, 1997,18(6):583-596
    [108]Yuhara N, Horiuchi S, Iijima T et al. An advanced steering system with active kinesthetic feedback for handling qualities improvement. Vehicle System Dynamics, 1997, 27:327-355
    [109]Kageyama I, Pacejka H B. On a new driver model with fuzzy control. Vehicle System Dynamics Suppl, 1991, 20:314-324
    [110]Xi G, Qun Y. Driver-vehicle-environment closed-loop simulation ofhandling and stability using fuzzy control theory. Vehicle System Dynamics Suppl, 1994, 23:172-181
    [111]Juergensohn T, Raupach C, Willumeit H P. A model of the driver based on neural networks.SAE945082:161-167
    [112]Shim J S, Yoon Y S, Heo S J et al. Closed-loop simulation of a vehicle system with an artificial driver. Mech Struct & Mach, 1995, 23(1): 87-113
    [113]Guo K H, Guan H. Modelling of driver/vehicle directional control system. Vehicle System Dynamics, 1993, 22:141-184
    [114]Liu M H, Guo K H. Modelling of driver-vehicle closed-loop system and stability analysis of a vehicle passing through sidewind. SAE945074: 105-112
    [115]赵又群,郭孔辉.人—车—路闭环操纵系统主动安全性评价指标的探讨.汽车研究与开发,1997, 3:25-29
    [116]郭孔辉,人—车—路闭环操纵系统主动安全性的综合评价与优化设计.汽车技术, 1993,4:4-12
    [117]郭孔辉,朱宏巍.汽车转向的力输入控制与角输入控制及其对驾驶员—汽车闭环系统的影响.吉林工业大学学报, 1997, 27(1):1-7
    [118]林柏忠,郭孔辉.汽车高速移线操纵性能分析与优化.汽车工程, 1997, 19(5):263-267
    [119]Lin B Z, Guo K H. Analysis and optimization of handling performance of a car performing a lane-change manoeuvre.Int. J. of Vehicle Design, 1998, 19(2):199-213
    [120]钟志华.用于类菱形车的前后联动转向机构.中国专利.200810031623,2008-06-30
    [121]GB 17675-1999中华人民共和国国家标准.汽车转向系:基本要求
    [122]任卫群.车—路系统动力学中的虚拟样机.北京:电子工业出版社,2005
    [123]袁传义,陈龙,江浩斌.电动助力转向系统多目标优化控制研究.中国机械工程,2007,18(14):1757-1760.
    [124]Mark E , Alex M , Jeffrey H . Multi-objective optimal design of groundwater remediation systems: application of the niched pareto genetic algorithm (NPGA). Advances in Water Remurces,2002,25(1):51—65.
    [125]Vladimir G T,Hiroshi S,Georgy I T.A method to improve multiobjective genetic algorithm optimization of a self-fuel-providing LMFBR byniche induction among nondominated solutions. Annals of Nuclear Energy,2000,27(5):397—410.
    [126]雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005
    [127]高媛.非支配排序遗传算法(NSGA)的研究与应用:[浙江大学硕士学位论文].杭州:浙江大学,2006
    [128]Srinivas N,Deb K.Multi-objective function optimization using nondominated sorting genetic algorithms.Evolutionary Computation,1995,2(3):221-248
    [129]Deb K,Agrawal S,Pratap A,et al.A fast elitist nondominated sorting genetic algorithm for multi-objective optimization:NSGA-II.In:Proc of the Parallel Problem Solving from Nature VI Conf.Paris,2000:849-858
    [130]Deb K,Pratap A,Agarwal S,et al. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6:182-197.
    [131]关志华.非支配排序遗传算法(NSGA)算子分析.管理工程学报,2004,18(1):56-60
    [132]余志生.汽车理论.2版.北京:机械工业出版社,1999
    [133]林秉华.最新汽车设计实用手册.黑龙江:黑龙江人民出版社,2005
    [134]何森东,丁渭平,王昊涵,等.基于响应面方法的汽车转向车轮定位参数优化设计.汽车技术,2007,8:42-49
    [135]Komandi G.The determination of the deflection contact area dimensions and load carrying capacity for driven pneumatic operating on concrete pavement.J Terram- echanics,1976,13(1) :15-20
    [136]庄继德.汽车轮胎学.北京:北京理工大学出版社,1996
    [137]靳立强,宋传学,彭彦宏.基于回正性与轻便性的前轮定位参数优化设计.农业机械学报,2006,37(11):20-23
    [138]魏道高,周福庚,李磊,等.双横臂独立悬架的前轮主销内倾角算法研究.汽车工程,2005,27(4):431-433
    [139]魏道高,李克强,王霄锋,等.轿车前轮主销后倾角算法.清华大学学报(自然科学版),2006,46(5):724-727
    [140]薛立军.前轮定位角对汽车转向回正作用的影响.汽车工程, 2003,25(2):198-200
    [141]胡寿松.自动控制原理.北京:科学出版社,2001.109-118
    [142]陆佑方.柔性多体系统动力学.北京:高等教育出版社,1996
    [143]陆佑方.汽车柔性多体系统动力学建模综述.汽车技术,1997,5:1-7
    [144]徐芝纶.弹性力学简明教程.北京:高等教育出版社,2002
    [145]王勖成.有限单元法.北京:清华大学出版社,2003
    [146]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社,2002
    [147]李增刚.ADAMS入门详解与实例.北京:国防工业出版社,2006
    [148]邢俊文.MSC.ADAMS/Flex与AutoFlex培训教程.北京:科学出版社,2006
    [149]刘鸿文.材料力学.第四版,北京:高等教育出版社,2004
    [150]屈求真,刘延柱.四轮转向汽车的动力学控制现状及展望.中国机械工程,1999,10(8):946-949
    [151]刘奋.四轮转向汽车侧向动力学特性及其控制研究:[上海交通大学博士学位论文].上海:上海交通大学,2003
    [152]刘兴初,张建武,刘奋.四轮转向非线性侧向动力学模型.上海交通大学学报, 2005,39(9):1465-1469
    [153]陈德铁.利用驾驶模拟器对制动防抱系统的研究及开发:[吉林大学硕士学位论文].长春:吉林大学,2003
    [154]米奇克.汽车动力学(卷A).北京:人民交通出版社, 1997
    [155]GB/T6323.1-94中华人民共和国国家标准.汽车操纵稳定性试验方法:蛇行试验
    [156]朱根兴,郭天太,黄中原.基于虚拟现实的汽车操纵稳定性试验技术.应用科技,2004,31(10):23-25
    [157]QC/T 480-1999中华人民共和国汽车行业标准.汽车操纵稳定性指标限值与评价方法
    [158]GB/T6323.6-94中华人民共和国国家标准.汽车操纵稳定性试验方法:稳态回转试验
    [159]GB/T6323.4-94中华人民共和国国家标准.汽车操纵稳定性试验方法:转向回正性能试验
    [160]GB/T6323.5-94中华人民共和国国家标准.汽车操纵稳定性试验方法:转向轻便性试验
    [161]GB/T6323.2-94中华人民共和国国家标准.汽车操纵稳定性试验方法:转向瞬态响应试验(转向盘转角阶跃输入)
    [162]GB/T6323.3-94中华人民共和国国家标准.汽车操纵稳定性试验方法:转向瞬态响应试验(转向盘转角脉冲输入)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700