基于能量流分析的结构动力学拓扑优化理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高航天、海洋等复杂装备结构的动力学特性,减轻其重量,并扩大结构的设计空间,本文系统研究了结构动力学拓扑优化的相关理论和方法。搭建了结构拓扑优化与结构能量流分析的理论融合桥梁,基于Rayleigh阻尼对比分析了频率响应、动刚度和特征频率动力学拓扑优化的建模、求解过程和优化结果,提出了基于功率流响应、模态功率流和能量有限元的结构动力学拓扑优化方法,开发了结构动力学拓扑优化的软件集成原型系统。
     本文紧紧围绕结构动力学拓扑优化方法和应用面临的关键理论和技术问题展开研究,研究的主要内容包括:结构拓扑优化与结构能量流分析的理论融合;基于Rayleigh阻尼的结构频率响应、动刚度和特征频率动力学拓扑优化;基于功率流响应的结构动力学拓扑优化;基于模态功率流理论的结构动力学拓扑优化;基于能量有限元的结构能量流拓扑优化;基于拓扑优化的结构设计集成系统。论文研究取得的主要创新成果包括:
     1、通过研究基于材料分布的结构拓扑优化和结构能量流分析的基本理论,搭建了两种理论的融合桥梁,为结构动力学拓扑优化开辟了一条新的研究途径。
     2、基于Rayleigh阻尼全面对比分析频率响应、动刚度和特征频率动力学拓扑优化的建模、求解过程和优化结果,揭示了三种拓扑优化模型的物理内涵、优缺点及其相互联系,为基于能量流分析的结构动力学拓扑优化提供了模型参考标准和结果参考依据。
     3、提出了基于功率流响应的结构动力学拓扑优化方法,推导了功率流响应的复模型表达,构建了基于功率流响应的结构动力学拓扑优化数学模型,采用伴随灵敏度分析和移动渐进线的方法对模型进行了求解,讨论了优化结果的减重特性,揭示了加载频率、材料和阻尼因子等设计参数对优化结果的影响规律。
     4、提出了基于模态功率流理论的结构动力学拓扑优化方法,构建了基于模态功率流理论的最小输入模态功率流和最大单阶功率流模态的的结构动力学拓扑优化数学模型,基于移动渐进线法分别对模型进行了求解,优化结果与传统功率流分析方法进行了对比分析,讨论了模态功率流理论在结构动力学拓扑优化中的应用可行性和优势。
     5、研究了基于能量有限元法的结构能量流拓扑优化设计,实现对结构能量流传播过程的控制和优化。从稳定状态的能量流控制方程出发,基于能量有限元法和材料接合面处的功率流守恒关系推导了双材料结构能量流拓扑优化数学模型。建立了材料密度、弹性模量和阻尼系数等设计参数的双材料SIMP插值函数。利用移动渐近线和拓扑灵敏度分析的方法对模型进行了求解。分析了不同加载频率下的最优拓扑结果,并与动刚度拓扑优化结果进行了定量对比。讨论了结构能量流拓扑优化与结构模态特性的关系,进一步验证了该方法的有效性和可行性。
     6、以结构拓扑优化的理论研究成果为指导,构建了基于拓扑优化的结构设计集成系统的工作流程和体系结构,设计了系统的功能和数据模型,并在此基础上开发了原型系统。
     总之,本文主要针对结构动力学拓扑优化方法和应用需要解决的关键理论与技术问题展开系统深入研究:进一步完善了结构动力学拓扑优化的理论方法,构建了结构拓扑优化和结构能量流分析的理论融合桥梁,提出了基于功率流响应、模态功率流和能量有限元的结构动力学拓扑优化方法,这些研究成果为面向动力学特性的结构轻量化设计应用奠定了重要的理论基础和技术支撑。
For promoting the dynamic properties, lightening the weight of aerospace/marinestructures, and extending the structural design space, both theoretical and technicalproblems of structural dynamic topology optimization were investigated thoroughly inthis dissertation. Based on comparison and analysis of material distribution basedtopology optimization methods and the structural energy flow theories, a theoreticalbridge between structural topology optimization and structural energy flow analysis wasconstructed. Methods of power flow response based structural dynamic topologyoptimization, power flow mode based structural dynamic topology optimization, andenergy finite element based structural energy flow topology optimization were proposed,and topology optimization based integrating system of structural design was developed.
     The dissertation is aimed at solving some key theoretical and technical problems ofstructural dynamic topology optimization. The following five aspects have beeninvestigated: The fusing theory of structural topology optimization and structural energyflow analysis; Rayleigh damping based topological design model of “frequencyresponse”,“dynamic compliance” and “eigen-frequency”; Power flow response basedstructural dynamic topology optimization; Power flow mode theory based structuraldynamic topology optimization; Energy finite element based structural energy flowtopology optimization; Topology optimization based structural design integrated system.The main findings of this dissertation include:
     1. Based on the studies of structural topology optimization and structural energyflow theories, a theoretical bridge between material distribution based topologyoptimization and energy flow based structural dynamic analysis was constructed,providing a novel approach for structural dynamic topology optimization.
     2. Based on Rayleigh damping, a detail comparison of “frequency response”,“dynamic compliance” and “eigen-frequency” dynamic topology optimization modelswas carried out, and the intrinsic physical meanings, advantages and disadvantages, andcoupling relationships of these three models have been explaned.
     3. The method of power flow response based structural dynamic topologyoptimization was proposed. The complex expression of power flow was deduced, basedon which the mathematic optimization model of power flow response based structuraltopological design was established. Adjoint sensitivity analysis and the method ofmoving asymptotes (MMA) were apployed for solving the model, and the effectmechanics of the loading frequency, damping factors and material parameters on theoptimum topology was discovered.
     4. The method of power flow mode theory based structural dynamic topologyoptimization was proposed. The basic theory of power flow mode was reviewed, based on which the mathematic optimization models of “minimizing the input mode powerflow” and “separated power flow mode” were established. Sensitivity analysis and themethod of moving asymptotes were apployed for solving the models, and the effectmechanics of the loading frequency and damping coefficients on the optimum topologywas analyzed. The availability and advantage of power flow mode theory for thedynamic topology design were discussed.
     5. Energy finite element method (EFEM) was employed for bi-material structuraltopology optimization of energy flow problems, such that the propagation process of theenergy flow can be controlled and optimized. Based on the energy flow governingequation in steady state, the discrete optimization model was formulated, where therelation of power flow conservation across the material junctions was applyed. Thebi-material interpolation model of material density, Young’s modulus, and dampingfactor are constructed using SIMP principle. The optimization model was solved usingMMA and a direct differentiation sensitivity analysis method. The method wasvalidated by comparison with dynamic compliance and eigenfrequency topologicaldesign results.
     6. Based on the theoretical foundings, topology optimization based structuraldesign integrating system was developed. The system process, structure, function anddata model were designed, based on which the prototype system was developed.
     In summary, this dissertation was concerned with some key theoretical andtechnical problems involved in the researches and applications of structural dynamictopology optimization. The main contributions of this dissertation include:1) atheoretical bridge between structural topology optimization and energy flow analysiswas constructed;2) power flow response based structural dynamic topologyoptimization was proposed;3) power flow mode theory based structural dynamictopology optimization was proposed;4) EFEM based energy flow topologyoptimization was proposed. The results of this dissertation provide significanttheoretical foundations and technical guidelines to support the practical.
引文
[1] Lars Krog, A. Tucker, G.Rollema. Application of topology, sizing and shapeoptimization methods to optimal design of aircraft components [C]//Proc. AltairHyperWorks3rdUK Conference, November1,2002.
    [2] Michael Y. Wang. Generative design[C]//International Conference on Advanceddesign and Manufacturing Engineering, Setember17,2011.
    [3] Ray Clough, Joseph Oenzien.结构动力学(第二版)[M],高等教育出版社,2006.
    [4] Michell A, Melbourne M. The limits of economy of material in frame-structures [J],Philosophical Magazine,1904,8(47):589-597.
    [5] Cheng K-T, Olhoff N. An investigation concerning optimal design of solid elasticplates International [J]. Journal of Solids and Structures,1981,17(3):305-323.
    [6] M.P. Bends e, N. Kikuchi. Generating optimal topologies in optimal design using ahomogenization method [J]. Comp. Meth. Appl. Mech. Engrg,1988,71:197-224.
    [7] Sigmund O. A99line topology optimization code written in Matlab[J]. Structuraland Multidisciplinary Optimization,2001,21(2):120-127.
    [8] Vivien J. Challis. A discrete level-set topology optimization code written inMatlab[J]. Structural and Mutidisciplinary Optimization,2010,41:453-464.
    [9] Shutian Liu, Heting Qiao. Topology optimization of continuum structures withdifferent tensile and compressive properties in bridge layout design[J]. Structuraland Mutidisciplinary Optimization,2011,43(3):369-379.
    [10]陈祥,刘辛军.基于RAMP插值模型结合导重法求解拓扑优化问题[J].机械工程学报,2012,48(1):135-140.
    [11]易继军,荣见华,曾韬.一种新的考虑柔顺度要求的结构拓扑优化方法[J].中南大学学报(自然科学版),2011,42(7):1953-1959.
    [12] M.H.S. Elway, A.D.S. Barr, Some Optimization Problems in TorsionalVibration[J], Journal of Sound and Vibration,1978,57(1).
    [13] Tong W H,Jiang J S,Liu G R. Dynamic design of structures under randomexcitation[J]. Computational Mechanics,1998,22:388-394.
    [14] Tong Weihua,Jiang Jiesheng,Gu Songnian. A method of dynamic design forstructures under mean square response constraint[J]. Chinese Journal of AppliedMechanics,1996,13(3):94-98.
    [15] Pantelides C P,Tzan S R. Optimal design of dynamically constrained structures[J].Computers&Structures,1997,62(1):141-150.
    [16] Izhak B. Parametric optimization of structures under combined base motion directforces and static loading[J]. Vibration and Acoustics,2002,124:132-140.
    [17] Kollmann F G. Machine acoustics-basics, measurement techniques, computation,control,2nd rev. edn[M]. Springer, Berlin Heidelberg New York,2000.(inGerman)
    [18] Koopmann G H, Fahnline J B. Designing quiet structures: a sound powerminimization approach[M]. Academic, London,1997.
    [19] Rong J H, Xie Y M, Yang X Y, et al. Topology optimization of structures underdynamic response constraints[J]. Journal of Sound and Vibration,2000,234(2):177-189.
    [20]潘晋,王德禹.动力响应约束下的桁架结构拓扑优化[J].振动与冲击,2006,25(4):8-12.
    [21] Pan J, Wang D Y. Topology optimization of truss structure with fundamentalfrequency and frequency domain dynamic response constraints[J]. Acta MechanicaSolida Sinica,2006,19(3):231-240.
    [22] S. Min, N. Kikuchi, Y.C. Park, S. Kim and S. Chang. Optimal topology design ofstructures under dynamic loads[J]. Struct. Optim.,1999,17:208-218.
    [23] C.S. Jog. Topology design of structures subjected to periodic loading[J]. J. Soundand Vibration,2002,253(3):687-709.
    [24] Niels Olhoff, Jianbin Du, Topological design of continuum structures subjected toforced vibration[C]//6th World Congresses of Structural and MultidisciplinaryOptimization, Rio de Janeiro, Brazil,2005.
    [25] N. Olhoff, J. Du. Topological design for minimum dynamic compliance ofcontinuum structures subjected to forced vibration[J]. Struct. Multidisc. Optim.(Inpress)
    [26] A. Donoso, O. Sigmund. Optimization of piezoelectric bimorph actuators withactive damping for static and dynamic loads[J]. Struct Multidisc Optim,2009,38:171-183.
    [27] Du J, Olhoff N. Topological design of freely vibrating continuum structures formaximum values of simple and multiple eigenfrequencies and frequency gaps[J].Structural and Multidisciplinary Optimization,2007,34(2),91-110.
    [28]张桥,张卫红,朱继宏.动力响应约束下的结构拓扑优化设计[J].机械工程学报,2010,46(15):45~51.
    [29] Jianbin Du, Niels Olhoff. Minimization of sound radiation from vibratingbi-material structures using topology optimization[J]. Struct Multidisc Optim,2007,33:305-321.
    [30] Jianbin Du, Niels Olhoff. Topological design of vibrating structures with respect tooptimum sound pressure characteristics in a surrounding acoustic medium[J].Struct Multidisc Optim,2010,42:43-54.
    [31] Lei Shu, Michael Yu Wang, Zongde Fang, Zhengdong Ma, Peng Wei. Level setbased structural topology optimization for minimizing frequency response[J].Journal of Sound and Vibration,2011,267(330):5820-5834.
    [32] Anders A. Larsen, Bogi Laksafoss, Jakob S. Jensen, Ole Sigmund. Topologicalmaterial layout in plates for vibration suppression and wave propagation control[J].Struct Multidisc Optim,200937:585-594.
    [33] Sigmund O, Torquato S. Design of materials with extreme thermal expansion usinga three-phase topology optimization method[J], Joumal of theMechanics andPhysic of solids,1997,45:1037-1067.
    [34] R. Stainko, O. Sigmund. Tailoring dispersion properties of photonic crystalwaveguides by topology optimization[J]. Waves in Random and Complex Media,2007,17(4),477-489.
    [35]刘书田,曹先凡.零膨胀材料设计与模拟验证[J].复合材料学报,2005,22(1):126-132.
    [36]王晓明.特定功能结构的拓扑优化[D].大连理工大学,2010.
    [37] Jacob Andkj r, N. Asger Mortensen, and Ole Sigmund. Towards all-dielectric,polarization-independent optical cloaks[J]. Appl. Phys. Lett,2012,100:101-106.
    [38] Jakob S. Jensen. Topology optimization of nonlinear optical devices[J]. StructMultidisc Optim,2011,43:731-743.
    [39] Sanchez-Palencia E. Non-homogenous media and vibration theory[J]. Lect NotesPhys,127,1980.
    [40] Benssousan A, Lions JL, Papanicoulau G. Asymptotic analysis for periodicstructures[J]. Amesterdam, North Holland,1978.
    [41] Cioranescu D, Paulin JSJ. Homogenization in open sets with holes[J]. J MathAanal Appl,1979,71:590-607.
    [42] M.P. Bends e, Optimal shape design as a material distribution problem, Struct.Optim[J].1989,1:193-202.
    [43] Guedes J, Kikuchi N. Preprocessing and postprocessing for materials based on thehomogenization method with adaptive finite element methods[J]. ComputerMethods in Applied Mechanics and Engineering,1990,83(2):143-198.
    [44] Suzuki K, Kikuchi N. A homogenization method for shape and topologyoptimization[J]. Computer Methods in Applied Mechanics and Engineering,1991,93(3):291-318.
    [45] Tenek L H, Hagiwara L. Static and vibrational shape and topology optimizationusing homogenization and mathematical programming [J]. Computer Methods inApplied Mechanics and Engineering,1993,109(1-2):143-154.
    [46] Hassani B, Hinton E. Homogenization and Structural Topology Optimization[M]·London: Springer-Verlag Limited,1999.
    [47] Belblidia F,Lee J E B, Rechak S, et al. Topology optimization of plate structuresusing a single or three-layered artificial material model[J]. Advances inEngineering Software,2001,32(2):159-168.
    [48]程耿东.关于桁架结构拓扑优化设计中的奇异最优解[J].大连理工大学学报,2000,40(4):379-383.
    [49] Rozvany GIN, Zhou M, Birker T. Generalized shape optimization withouthomogenization[J]. Struct Optim,1992,4:250-254.
    [50] Bends e M P, Sigmund O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics,1999,69(9),635-654.
    [51] Tcherniak D, Sigmund O. A web-based topology optimization program[J]. StructMultidisc Optim,2001,22:179-187.
    [52] D. Tcherniak. Topology optimization of resonating structures using SIMPmethod[J]. Int. J. Numer. Meth. Engng.,2002,54:1605-1622.
    [53] Sigmund O. On the design of compliant mechanisms using topologyoptimization[J]. Mech Struct Mach,1997,25:493–524
    [54] Buhl T, Pedersen CBW, Sigmund O. Stiffness design of geometrically nonlinearstructures in topology optimization[J]. Struct Multidisc Optim,200019:93-104.
    [55] Sigmund O. Design of multiphysics actuators using topology optimization. Part II:two-material structures[J]. Comput Methods Appl Mech Eng,2001,190:6605-6627.
    [56] Jensen JS, Sigmund O. Systematic design of photonic crystal structures usingtopology optimization: low-loss waveguide bends[J]. Appl Phys Lett,2004,84:2022-2024
    [57] Jensen JS, Sigmund O. Topology optimization of photonic crystal structures: ahigh-bandwidth low-loss T-junction waveguide[J]. J Opt Soc Am B Opt Phys,2005,22:1191-1198.
    [58] Sigmund O, Jensen JS. Systematic design of phononic band gap materials andstructures by topology optimization[J]. Philos Trans R Soc A Math Phys Eng Sci,2003,361:1001-1019.
    [59] Kharmanda G, Olhoff N. Reliability based topology optimization[J]. StructMultidisc Optim,2004,26:295-307.
    [60] Du J, Olhoff N. Topological optimization of continuum structures withdesign-dependent surface loading-Part I: new computational approach for2Dproblems[J]. Structural and Multidisciplinary Optimization,2004,27(3):151-165.
    [61] Hammer VB, Olhoff N. Topology optimization with design dependent loads[C]//In: Bloebaum CL (ed) Proceedings of WCSMO-3(CD-Rom)19:85-92,1999.
    [62] Hammer VB, Olhoff N. Topology optimization of continuum structures subject topressure loading[J]. Struct Multidisc Optim,2000,19:85-92.
    [63] Du J, Olhoff N. Topological optimization of continuum structures withdesign-dependent surface loads—Part I: New computational approach for2Dproblems[J]. Struct Multidisc Optim,2004,27:151-165.
    [64] Du J, Olhoff N. Topological optimization of continuum structures withdesign-dependent surface loading-Part II: new computational approach for3Dproblems[J]. Structural and Multidisciplinary Optimization,2004,27(3),166-177.
    [65] Bendsoe MP, Sigmund O. Topology optimization: theory, methods andapplications[M]. Springer, Berlin,2003.
    [66] Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization[J]. Computers&Structures,1993,49(5):885-896.
    [67] Xie Y M, Steven G P. Evolutionary structural optimization for dynamic problems[J]. Computers&Structures,1996,58(6):1067-1073.
    [68] Nha C D, Xie Y M, Steven G P. An evolutionary structural optimization methodfor sizing problems with discrete design variables [J]. Computers&Structures,1998,68(4),419-431.
    [69] Nha Chu D, Xie Y M, Hira A, et al. On various aspects of evolutionary structuraloptimization for problems with stiffness constraints [J]. Finite Elements inAnalysis and Design,1997,24(4),197-212.
    [70] Manickarajah D, Xie Y M, Steven G P. An evolutionary method for optimizationof plate buckling resistance[J]. Finite Elements in Analysis and Design,1998,29(3-4):205-230.
    [71] Li Q, Steven G P, Xie Y M. Displacement minimization of thermoelastic structuresby evolutionary thickness design[J]. Computer Methods in Applied Mechanics andEngineering,1999,179(3-4):361-378.
    [72] Li Q, Steven G P, Xie Y M, et al. Evolutionary topology optimization fortemperature reduction of heat conducting fields[J]. International Journal of Heatand Mass Transfer,2004,47(23):5071-5083.
    [73]荣见华,姜节胜,颜东煌.基于人工材料的结构拓扑渐进优化设计[J].工程力学,2004,21(5):64-71.
    [74]荣见华,姜节胜,胡德文.基于应力及其灵敏度的结构拓扑渐进优化方法[J].力学学报,2003,35(5):584-591.
    [75] Das R, Jones R, Xie Y M. Design of structures for optimal static strength usingESO[J]. Engineering Failure Analysis,2005,12(1):61-80.
    [76] Yang X Y, Xie Y M, Steven G P. Evolutionary methods for topology optimizationof continuous structures with design dependent loads[J]. Computers&Structures,2005,83(12-13):956-963.
    [77] Ansola R, Canales J, Tarrago J. An efficient sensitivity computation strategy forthe evolutionary structural optimization (ESO) of continuum structures subjectedto self-weight loads[J]. Finite Elements in Analysis and Design,2006,42(14-15):1220-1230.
    [78] Yang XY, Xie YM, Steven GP, Querin OM. Bi-directional evolutionary structuraloptimization[C]//Proceedings of the7th AIAA/USAF/NASA/ISSMO SymposiumMultidisc Anal. Optim (St. Louis), pp1449-1457,1998.
    [79] Huang X, Xie Y M, Burry M C, Advantages of Bi-Directional EvolutionaryStructural Optimization (BESO) Over Evolutionary Structural gptimization (ESO)[J]. Advances in Structural Engineering,2007,10:727-737.
    [80] Ling QQ, Steven GP. A performance-based optimization method for topologydesign of continuum structures with mean compliance constraint[J]. CompMethods Appl Mech Eng,2002,191:1471-1489.
    [81] Edwards CS, Kim HA, Budd CJ. Investigation on the validity of topologyoptimization methods[C]//Proceedings of the47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics Conference. Newport, Rhode Island, May2006.
    [82] Edwards CS, Kim HA, Budd CJ. An evaluative study on ESO and SIMP foroptimising a cantilever tie-beam[J]. Struct Multidisc Optim,2007,34:403-414.
    [83] Zhou M, Rozvany GIN. On the validity of ESO type methods in topologyoptimization[J]. Struct Multidisc Optim,2001,21:80-83.
    [84] Tanskanen P. The evolutionary structural optimization method: theoreticalaspects[J]. Comput Methods Appl Mech Eng,2002,191:5485-5498.
    [85] Ruiter M J, Keulen F. Topology optimization: approaching the material distributionproblem using a topological function description[J]. Computational techniques formaterials, composites and composite structures,2000,111-119.
    [86] Ruiter M J, Keulen F. Topology Optimization Using the Topology DescriptionFunction[C]//The Fourth World Congress of Structural and MultidisciplinaryOptimization, Dalian, China,2001,19-20.
    [87] Ruiter M J, Keulen F. The Topological Derivative in the Topology DescriptionFunction Approach, Engineering Design Optimization, Product and ProcessImprovement[C]//Proceedings of the4th ASMO-UK/ISSMO conference,Newcastle-upon-Tyne, UK,2002,160-167.
    [88] Ruiter M J, Keulen F. Topology optimization using a topology descriptionfunction[J]. Structural and multidisciplinary optimization,2004,26(6):406-416.
    [89] Sethian J A, Wiegmann A. Structural Boundary Design via Level Set andImmersed Interface Methods [J]. Journal of Computational Physics,2000,163(2):489-528.
    [90] Osher S J, Samosa F. Level Set Methods for Optimization Problems InvolvingGeometry and Constraints: I. Frequencies of a Two-Density Inhomogeneous Drum[J]. Journal of Computational Physics,2001,171(1):272-288.
    [91] Allaire G, Jouve F, Toader A-M. Structural optimization using sensitivity analysisand a level-set method[J]. Journal of Computational Physics,2004,194(1):363-393.
    [92] Allaire G, Gournay F, Jouve F, et al. Structural optimization using topological andshape sensitivity via a level set method[J]. Control and Cybernetics,2005,34(1):59-81.
    [93] Allaire G, Jouve F. A level-set method for vibration and multiple loads structuraloptimization [J]. Computer Methods in Applied Mechanics and Engineering,2005,194(30-33):3269-3290.
    [94] Wang M Y, Wang X, Guo D. A level set method for structural topologyoptimization[J]. Computer Methods in Applied Mechanics and Engineering,2003,192(1-2):227-246.
    [95] Wang X, Wang M Y, Guo D. Structural shape and topology optimization in alevel-set-based framework of region representation[J]. Structural andMultidisciplinary Optimization,2004,27(1):1-19.
    [96] Wang M Y, Wang X. Topology optimization "Color" level sets: a multi-phasemethod for structural with multiple materials[J]. Computer Methods in AppliecMechanics and Engineering,2004,193(6-8):469-496.
    [97] Wang MY, Chen S K, Wang X, etc. Design of multi-material compliantmechanisms using level-set methods[J]. Journal of Mechanical Design,2005,127(5):941-956.
    [98] Wang M Y, Wang X. PDE-driven level sets, shape sensitivity, and curvature flowfor structural topology optimization[J]. CMES-Computer Modeling in Engineeringand Sciences,2004,6(4):373-395.
    [99] Mei Y, Wang X. A level set method for structural topology optimization and itsapplications [J]. Advances in Engineering Software,2004,35(7):415-441.
    [100] MeiY, Wang X, A level set method for microstructure design of compositematerials[J]. Acta Mechanica Solida Sinica,2004,17(3):239-250.
    [101]梅玉林,王德伦.拓扑优化的水平集方法及其在刚性结构、柔性机构和材料设计中的应用[D].大连,大连理工大学,2003.
    [102]隋允康.建模变换优化——结构综合方法新进展[J].大连:大连理工大学出版社,1996.
    [103]隋允康,任旭春,龙连春,叶宝瑞.基于ICM方法的刚架拓扑优化[J].计算力学学报,2003,6(20):286-289.
    [104]隋允康,杨德庆等.多工况应力和位移约束下连续体结构拓扑优化[J].力学学学报,2000,32(2):171-179.
    [105] Haftka RT, Guè rdal Z. Elements of structural optimization[M].3rd ed. Kluwer,Dordrecht,1992.
    [106] Kirsch U. Structural optimization[M]. Springer, Berlin,1993.
    [107] Rozvany GIN, Zhou M. The coc algorithm, part i: cross section optimization orsizing[J]. Comp Meth Appl Mech,1991,89:281-308.
    [108] Rozvany GN. Structural design via optimality criteria[J]. Kluwer, Dordrecht,1989.
    [109] Rozvany GN, Bendsùe MP, Kirsh U. Layout optimization of structures[J]. ApplMech Rev,1995,48(2):41-119.
    [110] Rozvany GIN, Zhou M. Optimality criteria methods for large discretizedsystems[M]. In: Adeli H, editor. Advances in design optimization. Chapman&Hall, London,1994,41-108.
    [111] GIN. Rozvany, M. Zhou. The COC algorithm, part I: Cross-section optimizationsizing[J]. Computer Methods in Applied Mechanics and Engineering,1991,89:281-308
    [112] M. Zhou, GIN Rozvany. The COC algorithm, part II: Topological, geometry andgeneralized shape optimization[J]. Computer Methods in Applied Mechanics andEngineering,1991,89:309-336.
    [113] M. Zhou, Rozvany GIN. DCOC: an optimality criteria method for large systems,Part1:theory[J]. Structural Optimization,1992,5:12-25.
    [114] M. Zhou, Rozvany GIN. DCOC: an optimality criteria method for large systems,Part2: algorithm[J]. Structural Optimization,1993,6:250-262.
    [115] Rozvany G. I. N. and Sobieske J. S. New optimality criteria methods: forcinguniqueness of the adjoint strain by corner-rounding at constraint intersections[J].Structural Optimization,1992,4:244-246.
    [116]钱令希,工程结构优化设计[M].北京:水利电力出版社,1983.
    [117]程耿东,工程结构优化设计基础[M].北京:水利电力出版社,1984.
    [118]刘惟信,机械最优化设计[M].北京:清华大学出版社,1994.
    [119] K. Svanberg. The method of moving asymptotes——a new method for structuraloptimization[J]. International Journal for Numerical Methods in Engineering,1987,24:359-373.
    [120] K. Svanberg. A class of globally convergent optimization methods based onconservative convex separable approximations[J]. SIAM Journal of Optimization,2002,12:555-573.
    [121] Svanberg K, Werme M. Topology optimization by a neighbourhood searchmethod based on efficient sensitivity calculations[J]. Int J Numer Methods Eng,2006,67:1670-1699.
    [122] Svanberg K, Werme M. A hierarchical neighbourhood search method fortopology optimization. Struct Multidisc Optim,2005,29:325-340.
    [123] Krister Svanberg, Mats Werme. Sequential integer programming methods forstress constrained topology optimization[J]. Struct Multidisc Optim,2007,34:277-299.
    [124] Bendsee M.P. Optimization of structural topology, shape and material[M]. Berlin,Heidelberg, New York: Springer,1995.
    [125] M.P. Bendsoe, N. Kikuchi, A.R. Diaz. Topology and generalized layoutoptimization of elastic structures[M]. In: BendsOe, M.P.; Mota Soares, C.A.(eds.)Topology design of structures, Dordrecht: Kluwer,1993,159-205.
    [126] Sigmund O, Petersson J. Numerical instabilities in topology optimization:Asurvey on procedures dealing with checkerboards, mesh-dependencies and localminima [J].Structural and Multidisciplinary Optimization,1998,16(1):68-75.
    [127] Diaz A, Sigmund O. Checkerboard patterns in layout optimization [J].StructuralOptimization,1995,10(1):40-45.
    [128] C.S. Jog, R.B. Haber. Stability of finite element models for distributed-parameteroptimization and topology design. Comp. Meth. Appl. Mech. Engng.1996,130:203-226.
    [129] Beckers, M. Optimisation topologique de structures tridimensionelles en variablediscrete[M]. Technical Report OF-44, LTAS, University of Liege,1997.
    [130] Olhoff N, Bendsoe M P, Rasmussen J. On CAD-integrated structural topologyand design optimization[J]. Computer Methods in Applied Mechanics andEngineering,1991,89(1-3):259-279.
    [131] Bendsoe M P Rasmussen J. On CAD-integrated structural topologyoptimization[J]. Computer Methods in Applied Mechanics and Engineering,1991,89(1-3):259-279.
    [132] C. Johnson, J. Pitkaranta. Analysis of some mixed finite element methods relatedto reduced integration[J]. Mathematics of Computations,1982,38:375-400.
    [133] Sigmund, O. Design of material structures using topology optimization[D]. Ph.D.Thesis, Department of Solid Mechanics, Technical University of Denmark,1994.
    [134] Sigmund O. On the design of compliant mechanisms using topologyoptimization[J]. Mech. Struct. Mach.1997,25:495-526
    [135] Li Q, Steven G P, Querin O M, et al. Stress based optimization of torsional shaftsusing an evolutionary procedure[J]. International Journal of Solids and Structures,2001,38(32-33):5661-5677.
    [136] Querin O M, Young V, Steven G P, et al. Computational efficiency and validationof bi-directional evolutionary structural optimisation[J]. Computer Methods inApplied Mechanics and Engineering,2000,189(2):559-573.
    [137] Yang X Y, Xie Y M, Liu J S, et al. Perimeter control in the bidirectionalevolutionary optimization method[J]. Structural and MultidisciplinaryOptimization,2003,24(6):430-440.
    [138] Pedersen N L. Topology optimization of laminated plates with prestress[J].Computers and Structures,2002,80(7-8):559-570.
    [139] Rong J H, Xie Y M, Yang X Y, et al. Topology optimization of structures underdynamic response constraints[J]. Journal of Sound and Vibration,2000,234(2):177-189.
    [140] Bejan A. Constructal theory network of conducting paths for cooling a heatgenerating volume[J]. International Journal of Heat and Mass Transfer,1997,40(4):799-811.
    [141] Bejan A. Optimal lnternal Structure of Volumes Cooled by Single-Phase Forcedand Natural Convection[J]. Journal of Electronic Packaging,2003,125(2):200-207.
    [142] Bejan A. Theory of heat transfer-irreversible power plants II. The optimalallocation of heat exchange equipment[J]. International Journal of Heat and MassTransfer,1995,38(.3):433-444.
    [143] Haber R B, Jog C S, Bendsoe M P. A new approach to variable-topology shapedesign using a constraint on perimeter[J]. Structural and MultidisciplinaryOptimization,1996,11(1):1-12.
    [144] L. Ambrosio, G. Buttazzo. An optimal design problem with perimeterpenalization. Calc. Var.1993,1:55-69.
    [145] Haber R.B., Jog C.S. and Bendsoe M.P. A new approach to variable-topologyshape design using a constraint on perimeter[J]. Structural Optimization,1996,11:1-12.
    [146] M. Beckers. Optimisation topologique de structures continues en variablediscrete[M]. Technical Report0F-38, LTAS, University of Liege,1996
    [147] P. Duysinx. Layout optimization: A mathematical programming approach[M].Also: DCAMM Report No.540, Technical University of Denmark,1997.
    [148] F.I. Niordson. Optimal design of plates with a constraint on the slope of thethickness function[J]. Int. J. Solids Struct.1983,19:141-151.
    [149] J. Petersson, O.Sigmund. Slope constrained topology optimization[J]. Int. J.Numer. Meth. Engng.1998,41:1417-1434.
    [150] Zhou M, Shyy Y K, Thomas H L. Checkerboard and minimum member sizecontrol in topology optimization[J]. Structural and Multidisciplinary Optimization,2001,21(2):152-158.
    [151] G. Allaire, G.A. Francfort. A numerical algorithm for topology and shapeoptimization[M]. In: M.P. BendsCe, Mota Soares, C.A.(eds.) Dordrecht: Kluwer,1993.
    [152] G. Allalre, R.V. Kohn. Topology optimization and optimal shape design usinghomogenization[M]. In: M.P. Bendsoe, Mota Soares, C.A.(eds) Dordrecht:Kluwer,1993.
    [153] O. Sigmund, S. Torquato. Design of materials with extreme thermal expansionusing a three-phase topology optimization method[J]. J. Mech. Phys. Solids,1997,45:1037-1067.
    [154] J.M. Guedes, J.E. Taylor. On the prediction of material properties and topologyfor optimal continuum structures[J]. Struct. Optim.1997,14:183-192.
    [155]左天孔.连续体结构拓扑优化理论与应用研究[D].武汉:华中科技大学,2004.
    [156] Design of a small satellite, http://www.topopt.dtu.dk/.
    [157] Robert H. Nosner. Structural optimization with Altair Optistruct in practice[C]//Altair UK Users conference.
    [158] Michael Yu Wang. A kinetoelastic approach to continuum compliant mechanismoptimization[C]//Proceedings of the ASME2008International DesignEngineering Technical Conferences&Computers and Information in EngineeringConference, August3-6,2008, Brooklyn, New York, USA.
    [159] Gil Ho Yoon. Maximizing the fundamental eigenfrequency of geometricallynonlinear structures by topology optimization based on element connectivityparameterization[J]. Computers and Structures,2010,88:120-133.
    [160] S ren Halkj r, Ole Sigmund, Jakob S. Jensen. Maximizing band gaps in platestructures[J]. Struct Multidisc Optim,2006,32:263-275.
    [161] Chungang Zhuang, Zhenhua Xiong, Han Ding. Topology optimization ofmulti-material for the heat conduction problem based on the level set method[J].Engineering Optimization,2010,42(9):811-831.
    [162] Kim, Min-Geun, Ha, Seung-Hyun and Cho, Seonho. Level Set-Based TopologicalShape Optimization of Nonlinear Heat Conduction Problems Using TopologicalDerivatives[J]. Mechanics Based Design of Structures and Machines,2009,37(4):550-582.
    [163] Cícero R. de Lima, Edson C. C. Lopes, Hélcio F. V. Nova, Adriano A. Koga,Emílio C. N. Silva. Computational and Experimental Validation of Heat SinkDesign Obtained by Using Topology Optimization Method[C]//3rd EngOpt, July1-5,2012, Rio de Janerio, Brazil.
    [164] René Matzen, Jakob S. Jensen, and Ole Sigmund. Topology optimization fortransient response of photonic crystal structures[J]. J. Opt. Soc. Am. B,2010,27(10).
    [165] Stolpe M, Svanberg K. An alternative interpolation scheme for minimumcompliance topology optimization[J]. Struct Multidisc Optim,2001,22:116-124.
    [166] Lyon R H, DeJong R c. Theory and application of statistical ellergy analysis[M].Boston:Butterworth-Heinemann,1995.
    [167] Fahy F J. Statistical energy analysis: a critical overview [J]. PhilosophicalTransactions of the Royal Society: Physical and Engineering Sciences,1994,346(1681):431-447.
    [168] Heckl M, Lewit M. Statistical energy analysis as a tool for quantifying sound andvibration transmission paths[J]. Philosophical Transactions of the Royal Society:Physical and Engineering Sciences,1994,346(1681):449-464.
    [169] Heron K H. Advanced statistical energy analysis[J]. Philoanphical Transactions ofthe Royal Society:Physical and Engineering Sciences,1994,346(1681):501-510.
    [170] V.D. Belov, S.A. Rybak, B.D. Tartakovskii. Propagation of vibrational energy inabsorbing structures[J]. Journal of Soviet Physics Acoustics,1997,23(2):115-119.
    [171] H.G.D. Goyder, R.G. White. Vibrational power flow from machines into built-upstructures. I. Introduction and approximate analysis of beam and plate-likefoundations[J]. J. Sound Vib.1980,68:59-75.
    [172] H.G.D. Goyder, R.G. White. Vibrational power flow from machines into built-upstructures. II. Wave propagation and power flow in beam-stiffened plates[J]. J.Sound Vib.1980,68:77-96.
    [173] H.G.D. Goyder, R.G. White. Vibrational power flow from machines into built-upstructures. III. Power flow through isolation systems[J]. J. Sound Vib.1980,68:97-117.
    [174] R.J. Pinnington, R.G. White. Power flow through machine isolators to resonantand non-resonant beam[J]. J. Sound Vib.1981,75:179-197.
    [175]游进,孟光,李鸿光.声振系统中高频能量流分析法研究进展[J].振动与冲击,2012,31(11).
    [176] D.J. Nefske, S.H. Sung. Power flow finite element analysis of dynamic systems:Basic theory and application to beams[J]. Journal of Vibration, Acoustics, Stressand Reliability in Design,1989,111:94-100.
    [177] B.R. Mace, P. J. Shorter. Energy flow models from finite element analysis[J]. J.Sound Vib.2003,233(3):369-389.
    [178] Langley R S. Analysis of power flow in beams and frameworks using thedirect-dynamic stiffness method[J]. Journal of Sound and vibration,1990,136:439-452.
    [179] Mead D J, White R G, Zhang X M. Power transmission in a periodicallysupported infinite beam excited at a single point[J]. Journal of Sound and vibration,1994,169:558-561.
    [180] Cuschieri J M. Vibration transmission through periodic structures using amobility power flow approach[J]. Journal of Sound and vibration,1990,143:65-74.
    [181] Cho P E, Bernhard R J. Energy Flow Analysis of Coupled Beams[J]. Journal ofSound and Vibration,1998,211(4):593-605.
    [182] Xiong Y P, Xing J T, Price W G. Power flow analysis of reinforced beam-platecomplex coupled systems by progressive approaches[J]. Journal of Sound andVibration,2001,239(2):275-295.
    [183] Xiong Y P, Xing J T, Price W G. A general linear mathematical model of powerflow analysis and control for integrated structure-control systems[J], Journal ofSound and Vibration,2003,267(2):301-334.
    [184] Seo S H, Hong S Y, Gwon H. Power flow analysis of reinforced beam-platecoupled structures[J]. Journal of Sound and Vibration,2003,259(5):1109-1129.
    [185] Xing J T, Price W G. A power flow analysis based on continuum dynamics[J].Proc. R. Soc. A,1999,455:401-436.
    [186] P.E. Cho, R.J. Bernhard. Energy Flow Analysis of Coupled Beams[J]. J. SoundVib.1998,211(4):593-605.
    [187] Seong-Hoon Seo, Suk-Yoon Hong and Hyun-Gwon. Power flow analysis ofReinforced Beam-Plate Coupled Structures[J]. J. Sound Vib.2003,259(5):1109-1129.
    [188] Xiong Y P, Xing J T, Price W G. A power flow mode theory based on a system’sdamping distribution and power flow design approaches[J]. Proc. R. Soc. A,2005,461:3381-3411.
    [189] M.F.M. Hussein, H.E.M. Hunt. A power flow method for evaluating vibrationfrom underground railways[J]. J. Sound Vib.2006,293(3-5):667-679.
    [190] W.J. Choi, Y.P. Xiong, R.A. Shenoi. Power flow analysis for a floating sandwichraft isolation system using a higher-order theory[J]. J. Sound Vib.2009,319:228-246.
    [191] Wohlever J C, Bernhard R J. Mechanical energy flow models of rods andbeams[J]. Journal of Sound and Vibration,1992,153(1):1-19.
    [192] O. M. Bouthier, and R. J. Bernhard. Models of Space-Averaged Energetics ofPlates[J]. AIAA Journal,1992,30(3):616-623.
    [193] O. M. Bouthier, Energetics of Vibrating Systems, Ph.D. Thesis, PurdueUniversity, West Lafayette, IN,1992.
    [194] O. M. Bouthier, R. J. Bernhard. Simple-Models of the Energetics of TransverselyVibrating Plates[J]. J. Sound Vib.1995,182(1):149-166.
    [195] Park DH, Hang SY, Kil HG, et al. Power flow model and analysis of in-planewaves in finite coupled thin plates[J]. Journal of Sound and Vibration,2001,244(4):65l-668.
    [196] Gil Ho Yoon. Structural topology optimization for frequency response problemusing model reduction schemes [J]. Computer Methods in Applied Mechanics andEngineering,2010,199:1744-1763.
    [197] Olhoff N, Du J. Topology optimization of structures against vibration andnoise[C]//In: Proc. of the12th International Congress on Sound and VibrationICSV12, Lisbon Portugal,2005.
    [198] Ma ZD, Kikuchi N, Cheng HC. Topological design for vibrating structures[J].Comput Methods Appd Mech Eng,1995,121:259-280.
    [199] Jensen J S. Efficient optimization of dynamic systems using Padéapproximants[C]//In: Mota Soares CA, Martins JAC, Rodrigues HC, AmbrosioJAC (eds) Proc. third conf. computational mechanics-solids, structures and coupledproblems in engineering, Lisbon, Portugal, June5-8,2006.
    [200] Diaz AR, Kikuchi N. Solutions to shape and topology eigenvalue of optimizationproblems using a homogenization method[J]. Int J Num Mech Engng,1992,25:1487-1502.
    [201] Qi Xia, Tielin Shi, Michael YuWang. A level set based shape and topologyoptimization method for maximizing the simple or repeated first eigenvalue ofstructure vibration[J]. Struct Multidisc Optim,2011,34:473-485.
    [202] Halkjear S, Sigmund O, Jensen JS. Maximizing band gaps in plate structures.Struct Multidisc Optim.,2006,32:263-275.
    [203] Sigmund O, Jensen JS. Systematic design of phononic band-gap materials andstructures by topology optimization[J]. Philosophical Transactions of the RoyalSociety London, Series A (Mathematical, Physical and Engineering Sciences),2003,361:1001-1019.
    [204] Jensen J S, Pedersen N L. On maximal eigenfrequency separation in two-materialstructures: the1D and2D scalar cases[J]. Journal of Sound and Vibration,2006,289:967-986.
    [205] Jensen J S, Sigmund O. Topology optimization of photonic crystal structures: ahigh-bandwidth low-loss T-junction waveguide[J]. J Opt Soc Am B,2005,22(6):1191-1198.
    [206] Olhoff N. Maximizing higher order eigenfrequencies of beams with constraints onthe design geometry[J]. J Struct Mech,1997,5:107-134.
    [207] Soto CA, Diaz AR. Layout of plate structures for improved dynamic responseusing a homogenization method[J]. Adv Des Autom,19931:667-674.
    [208] Diaz AR, Lipton R, Soto CA. A new formulation of the problem of optimumreinforcement of reissner-midlin plates[J]. Comput Methods Appl Mech Eng,1994,123:121-139.
    [209] Ma ZD, Cheng HC, Kikuchi N. Structural design for obtaining desiredeigenfrequencies by using the topology and shape optimizationg method[J].Comput Syst Eng,1994,5:77-89.
    [210] Kosaka I, Swan CC. A symmetry reduction method for continuum structuraltopology optimization[J]. Comput Struct,1999,70:47-61.
    [211] Gournay FD. Velocity extension for the level-set method and multipleeigenvalues in shape optimization[J]. SIAM J Control Optim,2006,45:343-367.
    [212] SIGMUND O. Morphology-based black and white filters for topologyoptimization[J]. Struct Multidisc Optim,2007,33(4-5):401-424.
    [213] D. J. Nefske, S. H. Sung. Power flow finite element analysis of dynamic systems:basic theory and application to beams[C]//In Statistical energy analysis (ASMEspecial publication NCA-3), New York: ASME,1987, pp.47-54.
    [214] D.J. Nefske, S.H. Sung. Power flow finite element analysis of dynamic systems:Basic theory and application to beams[J]. Journal of Vibration, Acoustics, Stressand Reliability in Design,1989,111:94-100.
    [215] Wohlever J, Bernhard RJ. Mechanical energy flow models of rods and beams[J]. J.Sound Vib.1992,153(1):1-19.
    [216] O. M. Bouthier, R. J. Bernhard. Models of Space-Averaged Energetics ofPlates[J]. AIAA Journal,1992,30(3):616-623.
    [217] O. M. Bouthier. Energetics of Vibrating Systems[D]. Purdue University, WestLafayette, IN,1992.
    [218] O. M. Bouthier, R. J. Bernhard. Simple-Models of the Energetics of TransverselyVibrating Plates[J], J. Sound Vib.1995,182(1):149-166.
    [219] Langley RS, Heron KH. Elastic wave transmission through plate/beamjunctions[J]. J. Sound Vib.1990,143(2):241-253.
    [220] Cho PE. Energy flow analysis of coupled structures[D]. Purdue University,1993.
    [221] Vlahopoulos N, Garza-Rios LO, Mollo C. Numerical implementation, validation,and marine applications of an energy finite element formulation[J]. Journal of ShipResearch,1999,43(3):143-156.
    [222] George A. Borlase, Nickolas Vlahopoulos. An energy finite element optimizationprocess for reducing high-frequency vibration in large-scale structures[J]. FiniteElements in Analysis and Design,2000,36:51-67.
    [223] Wang S. Theory and applications of a simplified energy finite element methodand its similarity to SEA[J]. Noise Control Engineering Journal,2002,50(2):63-72.
    [224] W. Zhang, A. Wang, N. Vlahopoulos. An alternative energy finite elementformulation based on incoherent orthogonal waves and its validation for marinestructures[J]. Finite Elements in Analysis and Design,2002,38:1095-1113.
    [225] Weiguo Zhang, Aimin Wang, Nickolas Vlahopoulos, Kuangcheng Wu.High-frequency vibration analysis of thin elastic plates under heavy fluid loadingby an energy finite element formulation[J]. J. Sound Vib.2003,263:21-46.
    [226] WeiguoZhang, AiminWang, Nickolas Vlahopoulos, KuangchengWu. A vibrationanalysis of stiffened plates under heavy fluid loading by an energy finite elementanalysis formulation[J]. Finite Elements in Analysis and Design,2005,41:1056-1078.
    [227] Weiguo Zhang, Nickolas Vlahopoulos, Kuangcheng Wu. An energy finiteelement formulation for high-frequency vibration analysis of externallyfluid-loaded cylindrical shells with periodic circumferential stiffeners subjected toaxi-symmetric excitation[J]. J. Sound Vib.2005,282:679-700.
    [228] Jun Dong, Kyung K. Choi, Aimin Wang, Weiguo Zhang and NickolasVlahopoulos. Parametric design sensitivity analysis of high-frequencystructural-acoustic problems using energy finite element method[J]. Int. J. Numer.Meth. Engng,2005,62:83-121.
    [229] Jun Dong, Kyung K. Choi, Nickolas Vlahopoulos, Aimin Wang, Weiguo Zhang.Sensitivity Analysis and Optimization Using Energy Finite Element and BoundaryElement Methods[J]. AIAA Journal,2007,45(6).
    [230] R.D. Mindlin. Influence of rotary inertia and shear on flexural motions ofisotropic elastic plates[J]. J. Appl. Mech.1951,18(1):31-38.
    [231] Seonho Cho, Chan-Young Park, Young-Ho Park, Suk-Yoon Hong. Topologydesign optimization of structures at high frequencies using power flow analysis[J].J. Sound Vib.2006,298:206-220.
    [232] Seonho Cho, Chan-Young Park, Young-Ho Park, Suk-Yoon Hong. Topologicalshape optimization of power flow problems at high frequencies using level setapproach, International Journal of Solids and Structures,2006,43:172-192.
    [233] N.H. Kim, J. Dong, K.K. Choi. Energy flow analysis and design sensitivityanalysis of structural problems at high frequencies[J]. J. Sound Vib.2004,269:213-250.
    [234] R.S. Langley, K.H. Heron, Elastic wave transmission through plate/beamjunctions[J]. Journal of Vibration and Acoustics,1990,143:241-253.
    [235] Krishnan Suresh. A199-line Matlab Code for Pareto-Optimal Tracing inTopology Optimization[J]. Structural and Multidisciplinary Optimization,2010,42:665-679.
    [236] Allaire. http://www.cmap.polytechnique.fr//~allaire/freefem_en.html.
    [237] Michael Yu Wang. http://www2.acae.cuhk.edu.hk//~cmdl/download.htm.
    [238] Vivien J. Challis. A discrete level-set topology optimization code written inMatlab[J]. Struct Multidisc Optim,2010,41:453-464.
    [239] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov and O. Sigmund.Efficient topology optimization in MATLAB using88lines of code[J]. StructMultidisc Optim,2011,43:1-16.
    [240] Niels Aage, Morten N. J rgensen, Casper S. Andreasen, Ole Sigmund. Interactivetopology optimization on hand-held devices[J]. Struct Multidisc Optim, DOI:10.1007/s00158-012-0827-z.
    [241]冯超恒.基于现有软件的结构拓扑优化设计实现技术与程序系统[D].大连理工大学,2006.
    [242]唐治丽.随机动响应约束的结构拓扑优化方法研究与软件开发[D].长沙理工大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700