计量型原子力显微镜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子力显微镜是纳米科技的重要测量手段,本课题围绕原子力显微镜的计量化进行了系统的研究和分析,包括计量型原子力显微镜的建立、主要误差来源分析、计量型原子力显微镜的校准以及纳米标准样板的制造和测量分析。主要工作有:
     1.对原子力显微镜的测量模式、微悬臂位置检测方式、扫描器和计量系统进行了分析研究,指出了计量型原子力显微镜需要:1)采用柔性铰链+压电陶瓷组成的纳米位移台;2)具有三维激光干涉测量系统。
     2.研制了计量型原子力显微镜。对共焦传感器微悬臂位置系统、三维柔性铰链位移系统的结构进行了理论分析和实验测试。实现了无阿贝误差的三维激光干涉测量系统。采用分布控制方式的控制系统,提高了系统的测量速度。提出了一种新的x向扫描方式-x方向自适应变速扫描方式,根据表面结构的实时状况采用不同的扫描速度,可大大降低对z向位移的频率响应的要求,且又能保证较高的测量速度。
     3.分析了环境因素中温度、湿度、振动对原子力显微镜测量的影响,特别指出了在纳米测量中,温度导致的尺寸变化主要体现在仪器上而不是被测样品上。对针尖几何形状导致的测量误差进行了分析研究,阐述了几种表面重建方法,给出了相应的计算公式。
     4.对位置误差的校准与补偿进行系统的分析和研究,建立了扫描器的运动模型,首次提出了全空间校准的概念,并采用了单轴校准和全空间校准组合式的方案,完善了原子力显微镜的校准方法。提出并实现了微悬臂的校准方法,保证了从计量型原子力显微镜得到所有数据均可溯源到激光波长。
     5.研制了台阶高度和线宽两种纳米几何结构样板,与德国物理技术研究院(PTB)、中国科学院微电子中心和无锡华晶集团进行了比对测量。通过台阶高度和两维线间隔的国际比对,提出了两种样板的标准算法,首次对不确定度进行分析评定,建立标准的评定方法。
     6.计量型原子力显微镜于2007年4月通过了国家技术监督检验检疫总局组织的专家考核,即将成为正式的国家最高计量标准,用于我国台阶高度和线间隔两个参数的量值传递。
Atomic Force Microscope (AFM) is one of most important tools in nanotechnology. This thesis is concentrated on the theoretical and experimental researches on metrological AFM, which include the building of metrological atomic force microscope, the analysis of error sources, the calibration of metrological atomic force microscope, and the manufacture and measurement of nano geometric references. The main work of the thesis includes the follows.
     1. The measuring mode, measuring method of the cantilever position, scanner and the metrological system are theoretically analyzed. It is pointed out that a metrological atomic force microscope should 1) use the scanner consisting of flexure hinges and piezo stacks; 2) have three dimensional laser interferometer system.
     2. A metrological atomic force microscope has been developed. A confocal sensor for positioning the cantilever, a scanner with three dimensional monolithic flexure hinges have been theoretically and experimentally analyzed. An Abbe-error free three dimensional laser interferometer has been realized. Because of using the distributed control system, the measuring speed has been improved. A new scanning method for the x direction has been proposed, which can be called self-adaptive speed scanning method and can use different scanning speeds according to the surface topography. The new method reduces the requirement for the frequency response in z direction greatly and ensures relative high measuring speed in the mean time.
     3. The influences of environment, such as temperature, humidity, vibration etc, have been analyzed. It is especially pointed out that the variation of temperature influences the instrument rather than the artifacts. The measuring error coming from geometric shape of the tip has been analyzed. The surface reconstruction methods have been expatiated and the calculation formulas have been given.
     4. The calibration and compensation of positioning errors have been fully analyzed and studied. The moving mode of the scanner has been built. A new concept - total space calibration has been proposed. Both the single axis calibration and the total space calibration have been used in the metrological atomic force microscope, and work quite well. The calibration method for the cantilever has been proposed and realized. Thus all the data obtained from metrological atomic force microscope can be traced to the laser wavelength.
     5. Sets of step height references and line width references have been developed. The comparison measurements have been carried out among Physikalish Technishche Bundesanstalt (PTB), Germany, National Institute of Metrology (NIM), China, Microelectronic Center of Chinese Academy of Science and Huajing Microelectronic Co. The metrological atomic force microscope has been used for the international comparison of step height references and two dimensional gratings. The standard calculation methods and the standard measurement uncertainty evaluation procedures have been proposed for above two types of artifacts.
     6. The metrological atomic force microscope has been assessed by the experts from the State General Administration for Quality Supervision and Inspection and Quarantine, China, and will work as the highest national metrological reference instrument for the calibration of step heights and pitches.
引文
[1] P. McKeown. Nanotechnology. Proceeding of Symposium on Nano-metrology in Precision Engineering. Hongkong,1998:5-54.
    [2] P. Holister, C. Román and T. Harper, The nanotechnology opportunity report, 2nd edition. Madrid: Científica Ltd., 2003.
    [3]白春礼.纳米科学与技术.云南:云南科技出版社,1996.
    [4]高思田等.纳米技术-人类发展过程中的一个新的里程碑.中国计量, 2001,(5):12-14.
    [5]龚建华.走进纳米世界.广州:广东经济出版社,2001.
    [6]黄德欢.纳米技术与应用.上海:中国纺织大学出版社,2001.
    [7] K. E. Drexler. Engines of creation: the coming era of nanotechnology. New York: Anchor Books, 1986.
    [8] K. E. Drexler, et al. Unbounding the future: the nanotechnology revolution. New York: William Morrow and Company Inc., 1991: 43-49.
    [9] I. Malsch. Nanotechnology,part 1, Social Map and state-of-the-art. STOA, European Parliament, Luxemburg: 1996
    [10] Parliamentary Office of Science and Technology. Making it in Miniature-Nanotechnology, UK Science and its Application. UK House of Commons: 1996.
    [11] M. C. Roco, et al. Nanotechnology Research Directions: IWGN Workshop Report - Vision for Nanotechnology R&D in the Next Decade, National Science and Technology Council (NSTC), Committee on Technology (CT), Interagency Working Group on Nanoscience, Engineering and Technology (IWGN). The U.S. Government, USA: 1999.
    [12] M.C. Roco, et al. Societal Implications of Nanoscience and Nanotechnology: NSET Workshop Report. Virginia, USA: 2001.
    [13] National Science and Technology Council, Committee on Technology, Subcommittee on Nanoscale Science, Engineering and Technology. National Nanotechnology Initiative, USA: 2000.
    [14]全国纳米技术标准化技术委员会. 2006~2010年纳米技术标准化发展规划,北京: 2005.
    [15] Semiconductor Industry Association. International Technology Roadmap for Semiconductors, USA: 2001.
    [16] Harald Bosse, et al. Developments at PTB in nanometrology for support of the semiconductor industry. Meas. Sci. Technol., 2005, (16): 2155-2166.
    [17] C. Teague. Nanometrology . AIP Conference Proceedings. Santa Barbara, CA, USA, 1991: 371-407.
    [18] G. Wikenning. Atomic scale metrology in the bridge from top down to bottom up methods. Presentation in NIM: 2005.
    [19] M.Bienias, S. Gao, K.Hasche, R. Seemann, K.Thiele. Metrological scanning force microscope used for coating thickness and other topographical measurements. Applied Physics A, 1998, 66: S837-S842.
    [20] A. Yacoot, U. Kuetgens, L. Koenders, et al. A combined scanning tunnelling microscope and x-ray interferometer. Meas. Sci. Technol. 2001, (10): 1660-1665.
    [21] G. Dai, et al. Metrological large range scanning probe microscope . Review of Scientific Instruements. 2004, 75(4): 962-969.
    [22] G. Dai, et al. Improving the perfermance of interferometers in metrological scanning probe microscopes . Measurement Science and Technology, 2004, (15): 444-450.
    [23] R. Dixson, R. Koning, T. V. Vorburger, et al. Measurement of Pitch and Width Samples With the NIST Calibrated Atomic Force Microscope. SPIE, 1998, 3332:420-432.
    [24] R. Dixson, R. Koning, J. Fu, et al. Accurate Dimensional Metrology with Atomic Force Microscopy. Sullivan N T. Metrology, Inspection, and Process Control for Microlithography XIV. 2000: 362-368.
    [25] C. Teague. The National Institute of Standards and Technology Molecular Measuring Machine Project: metrology and precision engineering design . Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films), 1990, 8(5): 3876-3877.
    [26] J. A. Kramar. Nanometre resolution metrology with the Molecular Measuring Machine . Measurement Science and Technology, 2005, 16(11): 2121- 2128.
    [27] R. Dixson, N. Sullivan, J. Schneirl, et al. Measurement of a CD and Sidewall Angle Artifact with Two Dimensional CD AFM Metrology. Proceedings of SPIE, 1996, 2725: 572 -588.
    [28]科技部.国家中长期科学和技术发展规划纲要.北京: 2005.
    [29]科技部.国家重点基础研究发展计划(973计划)“十一五”发展纲要.北京: 2005.
    [30]国家技术监督检验检疫总局.国家质检总局“十一五”科技和发展规划.北京: 2005.
    [31] G. Binnig, et al. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 1982, 49(1): 57-61.
    [32] G. Binnig and H. Rohrer, Scanning tunneling microscopy, IBM J. Res. Develop., 1986, 30(4): 355-369.
    [33] H. K. Wickramasinghe. Progress in scanning probe microscopy. Acta Mater. 2000, 48: 347-358.
    [34]王佳,赵洋,张书练等.纳米计量学与纳米计量测试技术(一) .航空计测技术, 1995, 15(5): 3-5.
    [35]王佳,赵洋,张书练等.纳米计量学与纳米计量测试技术(二) .航空计测技术, 1995, 15(6): 3-6.
    [36] C. M. Mate, et al. Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett., 1987, 59(17): 1942–1945.
    [37] P. Girard. Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology, 2001, 12: 485–490.
    [38] D. Rugar, et al. Magnetic force microscopy: General principles and application to longitudinal recording media. J. Appl. Phys., 1990, 68(3): 1169-1183.
    [39] C. C. Williams and H. K. Wickramasinghe. Scanning thermal profiler, Appl. Phys. Lett. 1986, 49(23): 1587-1589.
    [40] M. Nonnenmacher, et al. Kelvin probe force microscopy, Appl. Phys. Lett., 1991, 58 (25): 2921-2923.
    [41] J. R. Matey and J. Blanc. Scanning capacitance microscopy. J. Appl. Phys., 1985, 57(5): 1437-1444.
    [42] J. E. Griffith et al. Dimensional metrology with scanning probe microscope. 1993, 74(9): R83-R109.
    [43]高思田等. The Calibration of Non-linear Error and Cross-talk Error of the Metrological Atomic Force Microscope.仪器仪表学报,1999,20: 441-447.
    [44] G. Binnig, C. F. Quate and Ch. Gerber. Atomic force microscope. Phys. Rev. Lett. 1986, 56(9): 930-933.
    [45]白春礼、田芳、罗克.扫描力显微术.北京:科学出版社, 2000.
    [46] J. N. Israelachvili. Intermolecular and Surface Foeces. Academic, London: 1985.
    [47] N. A. Burm, et al. Tip-Surface Interactions. Procedures in Scanning Probe Microscopy, New York, USA, 1998: 565-84.
    [48] I. Yu. Sokolov, G. S. Henderson, F. J. Wicks. Theoretical and experimental evidence for "true" atomic resolution under non-vacuum conditions . J. Appl. Phys., 1999, 86(10), 5537-5540.
    [49] J. Chen, R. K. Workman, D. Sarid, et al. Numerical simulations of a scanning force microscope with a large-amplitude vibrating cantilever. Nanotechnology, 1994, 5: 199-204.
    [50] Y. Martin, C. Williams, H. Wickramasinghe. Atomic force microscope–force mapping and profiling on a sub 100-AA scale. J. Appl. Phys., 1987, 61(10): 4723-4729.
    [51] M. Tortonese, et al. Atomic resolution with an atomic force microscope using piezoresistive detection. Appl. Phys. Lett., 1993, 62(8): 834-836.
    [52] F. O. Goodman and N Gareia. Roles of the attractive and repulsive forces in atomic-force microscopy. Phys. Rev. B, 1991, 43(6): 4728-4731.
    [53] U. Dürig, O. Zügar and A. Stalder. Interaction force detection in scanning probe microscopy: Methods and applications. J. Appl. Phys., 1992, 72(5): 1778-1798.
    [54]李晓刚.原子力显微镜(AFM)的几种成像模式研究:[博士学位论文],大连,大连理工大学, 2004.
    [55] R. Garcia, R. Perez. Dynamic force microscopy method. Surface Science Repots, 2002, 47:197-212.
    [56] N. A. Burm, et al. How does a Tip tap?. Nanotechnology, 1997,(8): 67-75.
    [57]王艳霞,胡小唐等.基于AFM的振幅曲线研究探针一样品间的相互作用.仪器仪表学报,2003, 24(z1): 216-218.
    [58] H. J. Hug, Th. Jung, et al. A high stability and low drift atomic force microscope. Review of Scientific Instruments. 1992, 63(8): 3900-3903.
    [59] G. Meyer, N M Amer. Novel optical approach to atomic force microscopy . Appl. Phys. Lett. (USA), 1988, 53(12): 1045-1047.
    [60] G. Meyer, N M Amer. Optical-beam-deflection atomic force microscopy: The NaCl (001) surface. Appl. Phys. Lett., 1990, 56(21): 2100-2101.
    [61] D. Anselmetti, Ch. Gerber, et al. Compact, combined scanning tunneling/force microscope. Review of Scientific Instruments. 1992, 63(5): 3003-3006.
    [62] K. Goto, M. Sasaki, et al. A double-focus lens interferometer for scanning force microscopy. Review of Scientific Instruments. 1995, 66(5): 3182-3185.
    [63] D. Sarid, P. Pax, et al. Improved atomic force microscope using a laser diode interferometer. Review of Scientific Instruments, 1992, 63(8): 3905-3907.
    [64] T. Goeddenhenrich, S. Mueller, and C. Heiden. A lateral modulation technique for simultaneous friction and topography measurements with the atomic force microscope. Review of Scientific Instruments, 1994, 65(9): 2870-2873.
    [65] Y. Xu, et al. Metrological scanning force microscope. Precision Engineering. 1996, 19: 46-50.
    [66]孙慷等.压电学.北京:国防工业出版社, 1984
    [67] B.贾菲着,林声和译.压电陶瓷.北京:科学出版社,1979.
    [68]陈宜生.物理效应及其应用.天津:天津大学出版社, 1996.
    [69]王建林.三维一体化超微定位技术及系统的研究:[博士学位论文],天津,天津大学, 1997.
    [70] PI Co. Piezopositioning Technology: PZT Fundamentals. Germany: 2002.
    [71]杨启志等.全柔性机构中柔性运动副的结构型式与应用.江苏大学学报(自然科学版), 2003, 24(4): 9-12.
    [72]曹家勇等.两类柔性微动直线导轨的刚度特性.清华大学学报(自然科学版), 2006, 46(5): 633-636.
    [73]戴蓉,谢铁邦.新型一维位移工作台的设计及特性分析.光学精密工程, 2006, 14(3): 428-433.
    [74] S.铁摩辛柯等著,胡人礼译.材料力学,北京:科学出版社, 1978.
    [75]吴家龙.弹性力学.上海:上海交通大学出版社, 1988.
    [76] T. R. Hicks, et al. The nano positioning book. United Kingdom: Queensgate Instruments Limited, 1997.
    [77] X. Zhao. Hochaufloesende dreidimensionale Positionierungsbestimmung bei Rastersonden Mikroskopen mittles kapazitiver Aufnehmer:[博士学位论文], Germany, PTB-Bericht, PTB-F-20, 1995.
    [78]殷纯永.现代干涉测量技术.天津:天津大学出版社, 1999.
    [79]孙长库,叶声华.激光测量技术.天津:天津大学出版社,2001.
    [80] Gonda A., Doi T., Kurosawa T., et al. Real-Time, Interferometrically Measuring Atomic Force Microscope for Direct Calibration of Standards. Review of Scientific Instruments 1999, 70(8): 3362-68.
    [81] T. Fujii et al. Scanning Tunneling Microscope with Three Dimensional Interferometer for Surface Roughness Measurement. Review of Scientific Instruments, 1995,66:2504~2507.
    [82]韩旭东,艾华.共光路移相单频激光干涉测长系统.光学技术, 2004, 30(2): 195-198.
    [83]赵美蓉曲兴华陆伯印.光程差倍增的纳米级精度激光干涉仪.中国激光, 2000, 27(5):427-430.
    [84] U. Bonse, M. Hart. An X-ray Interferometer. App. Phys Lett, 1965, (6): 155-156.
    [85] Jinwon Park, et al. Development of a Two-Dimensional Nano-Displacement Measuring System Utilizing a 2D Combined Optical and X-ray Interferometer. Journal of the Korean Physical Society, 2006, 48(1):28-32.
    [86] A. Yacoot, C. Cross. Measurement of picometre non-linearity in an optical interferometer grating encoder using x-ray interferometry. Meas. Sci. Technol. 2003, 14:148–52.
    [87] A. Yacoot, L. Koenders. From nanometre to millimetre: a feasibility study of the combination of scanning probe microscopy and combined optical and x-ray interferometry. Meas.Sci.Technol. 2003, 14: N59–N63.
    [88] K. Hasche,赵克功,高思田等.计量型原子力显微镜.计量学报, 1998, 19 : 1-8.
    [89]高思田等.用于纳米级三维形貌及微小尺寸测量的原子力显微镜.制造技术与机床,2004, 8: 34-38.
    [90] S. Gao, et al. A metrological atomic force microscope with Abbe-Error Free. Proceedings of ISPMM2004,北京,机械工业出版社, 2004: 88-90.
    [91] Queensgate Instruments Limited. DPT-C AX101 / AX301 HOST UNIT OPERATING MANUAL. United Kingdom: 1995.
    [92]陈津平等.微型激光干涉仪应用于纳米测量机.计量技术, 2002, 332(4): 6-8.
    [93] G. Dai, F. Pohlenz, H-U. Danzebrink, et al. Improving the perfermance of interferometers in metrological scanning probe microscopes . Measurement Science and Technology, 2004, (15): 444-450.
    [94] D. J. Kruglinski著,潘爱民,王国印译. Visual C++技术内幕北京:清华大学出版社, 1999.
    [95] W. Oney. Programing The Window Driver Model. USA: Microsoft Press, 1999.
    [96] R. Chassaing著,王华、张健译. DSP原理及C编程开发技术.北京:电子工业出版社, 2005.
    [97]沈平等.过程控制理论基础.浙江:浙江大学出版社, 1991.
    [98]陈夕松,汪木兰.过程控制系统.北京:科学出版社, 2005.
    [99]苏鹏声,焦连伟.自动控制原理.北京:电子工业出版社, 2003.
    [100]刘豹.现代控制理论.北京:机械工业出版社, 1983.
    [101]曾正明.机械工程材料手册.北京:机械工业出版社, 2005.
    [102]李德葆,张元润.振动测量与试验分析.北京:机械工业出版社,1992.
    [103]师汉民,谌刚,吴雅.机械振动系统——分析?测试?建模?对策,武汉:华中理工大学出版社,1992.
    [104]胡小唐,陈津平,胡晓东等.外界振动对SPM测量结果的影响.天津大学学报, 2003, 36(2): 143-147.
    [105]黄文浩,陈宇航,党学明.基于SPM技术的表面纳米计量.微纳电子技术, 2004, (1): 1-9.
    [106]陈宇航,黄文浩,鲁健等. SPM图像模拟、表面重建及探针估计.电子显微学报, 2001, 20(5): 649-653.
    [107] D. Keller. Reconstruction of STM and AFM images distorted by finite-size tips. Surf. Sci., 1991, 253: 353-364.
    [108] D. Keller, F. S. Franke. Envelope reconstruction of probe microscope images. Surf. Sci., 1994, 294(3): 409-419.
    [109] J. S. Villarrubia. Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Nat!. Inst. Stand. & Technol., 1997, 102(4):425-453.
    [110] J. S. Villarrubia. A strategy for faster blind reconstruction of tip geometry for scanned probe microscopy, SPIE, 1998, 3332: 10-18.
    [111] L. S. Dongmo, J. S. Villarrubia, et al. Experimental test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy, 2000, 85(3):141–153.
    [112] W. H. Press, S. A. Teukolsky, et al著,傅祖芸等译. C语言数值算法大全.北京:电子工业出版社, 1995.
    [113] G. Wilkening and L. Koenders. Nanoscale Calibration Standards and Methods: Dimensional and Related Measurements in the Micro- and Nanometer Range. Wiley-VCH Verlag GmbH & Co. Weinheim, Germany, 2005
    [114]徐毅,高思田,李晶.纳米、亚微米标准样板及SPM量值溯源.计量学报, 2003, 24(2): 81-84.
    [115]徐毅,高思田,王春燕等.微机械及纳米计量科学.中国机械工程, 2000, 11(3):272-274.
    [116] G. Dai, H. Wolff, et al. Atomic force probe for sidewall scanning of nano- and microstructures. Appl. Phys. Lett., 2006, 88 (171908).
    [117] J. E. Griffith, D. A. Grigg, M. J. Vasile, P. B. Russell, and E. A. Fitzgerald, "Characterization of scanning probe microscope tips for linewidth measurement," J. Vac. Sci. Technol., 1991, B 9: 3586-3589.
    [118] L Koenders et al. Comparison on Nanometrology: Nano 2-Step height. Metrologia, 2003, 40: 04001.
    [119]李慎安,施昌彦,刘风. JJF 1059-1999测量不确定度评定与表示.北京:国家质检总局, 1999.
    [120] J?rgen Garnaes. Technical protocol for NANO5 - comparison of two-dimensional nanometre scale gratings. Denmark: DFM, 2005.
    [121] G. Dai, L. Koenders, et al. Accurate and traceable calibration of one-dimensional gratings. Meas. Sci. Technol. 2005, 16:S1241-S1249.
    [122] J. Jin, I. Misumi, S. Gonda. Pitch Measurement of 150 nm 1D-grating Standards Using an Nano- metrological Atomic Force Microscope. International Journal of Precision Engineering and Manufacturing, 2004, 5(3): 19-25.
    [123]黄良正.数字图像处理.江苏:东南大学出版社,1999.
    [124]崔屹.数字图像处理技术与应用.北京:电子工业出版社,1997.
    [125]高思田,杜华.计量标准考核(复查)申请书-纳米台阶和线间隔国家最高标准,中国计量科学研究院, 2006.
    [126]高思田,杜华.计量标准技术报告-纳米台阶和线间隔国家最高标准,中国计量科学研究院, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700