平面3-RRR柔性并联机器人机构弹性动力学建模与振动主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻型、高速、高加速度、高精度柔性并联机器人在诸如电子装配,精密加工与测量,航空航天领域有着巨大的应用前景。然而在外力和惯性力的作用下,其柔性构件容易发生弹性变形。那不仅影响了系统的运动精度和定位精度,而且还会因为过大的应力导致柔性杆件疲劳、损伤。为了清楚地认识柔性并联机器人的动力学特性以及柔性构件与其他柔性构件柔性构件和刚性构件之间的耦合机理。必须对其弹性动力学模型进行深入研究。为了抑制柔性构件的弹性振动,提高柔性并联机器人的性能。必须对柔性构件弹性振动控制问题进行系统地研究。然而,对于复杂的柔性并联机器人机械系统的弹性动力学建模与振动控制研究一直是非常具有挑战性的工作。本文以平面3-RRR柔性并联机器人为研究对象,对其弹性动力学建模和振动主动控制问题进行了理论和实验研究。主要内容如下:
     (1)基于有限元方法和Lagrange方程,建立了平面3-RRR柔性并联机器人的弹性动力学方程。该方程考虑了刚体运动对柔性杆弹性变形运动的影响,还考虑了弹性变形运动对刚体运动的影响。同时只考虑柔性杆的轴向变形和横向变形,忽略其剪切变形。研究了系统间的各种约束关系,包括刚体运动约束、弹性变形运动约束以及动平台动力学约束。对系统动力学特性进行了研究,包括灵敏度、频率特性、模态分析和柔性杆的动态应力。比较研究了两类(3-RRR和3-PRR)平面完全3自由度柔性并联机器人动力学特性。最后比较分析了一步法(即KED方法)和两步法求解所建立的系统刚-柔耦合动力学方程。考虑横向弹性位移引起的轴向二阶耦合变形位移,把动力刚度项引入到系统弹性动力学方程中。建立了系统的一阶近似耦合(FOAC)模型,并与传统的零阶近似耦合(ZOAC)模型进行比较。
     (2)系统高速、高加速度运动产生的惯性力将使柔性连杆发生弹性变形,从而在柔性连杆内产生弹性应力。在高精度的要求下,由温度变化而产生的热应力对系统精度的影响也至关重要。本文研究了平面3-RRR柔性并联机器人系统在环境温度改变的情况下,系统动力学特性随温度变化的规律。基于哈密尔顿原理和有限元方法,建立了一致温度影响下的平面3-RRR柔性并联机器人系统热-弹性动力学方程,从定性和定量两方面研究了柔性连杆最大等效应力随温度的变化情况以及动平台和柔性杆的弹性变形位移随温度的变化情况。商用软件ANSYS13.0被用来证明所建立的动力学模型的正确性。
     (3)对平面3-RRR柔性并联机器人振动主动控制进行了理论和实验研究,在理论研究方面,基于所建立的系统总的动力学方程,设计了应变率反馈控制器和最优状态反馈控制器。研究发现:两种控制器都能有效的抑制系统的残余振动。相对应变率反馈控制,最优状态反馈控制在更低的控制电压下能取得更好的控制效果。同时,粘贴一对PZT片的控制效果明显比粘贴一片更好。在实验研究方面,仅考虑被动杆柔性且在每根柔性杆上粘贴2对压电陶瓷驱动器和一片压电传感器。基于应变率反馈控制策略设计了4种控制方案,分别是3根柔性杆同时控制、仅柔性杆1施加控制、仅柔性杆2施加控制、仅柔性杆3施加控制。比较研究了4种控制方案的优劣。实验结果表明:各柔性杆单独控制只能抑制自身的弹性振动,对其他柔性杆的振动没有起到抑制作用;3根柔性杆同时控制能有效抑制各柔性杆的弹性振动。
Light, high-speed, high-acceleration, high-precision flexible parallel robots are widelyused in industry, such as in the electronic assembly industry, precision machining andmeasurement field, aerospace industry and so on. The elastic deformation of its flexiblecomponents is very likely to be caused under the external force and inertia force. Thoseelastic deformations do not only affect kinematic accuracy and positioning precision, but alsocause fatigue and damage of the flexible components because of the heavy internal stress. Inorder to clearly understand the dynamic characteristics of the flexible parallel robots and thecoupling mechanism between the flexible component and the other flexible components, theflexible component and the rigid component, its dynamic model must be deeply researched.And, in order to suppress the elastic vibration of the flexible components and improve theperformance of the flexible parallel robots, the vibration control of the flexible componentsmust be systematically investigated. However, both elastodynamic modeling and vibrationcontrolling of complex flexible parallel robots have ever been a challenging task. In this paper,elastodynamic modelling and active vibration control of planer3-RRR flexible parallel robotsare systematically analyzed and studied. The main contributions in this thesis are listed asfollows:
     (1) Based on the finite element method (FEM) and Lagrange equation, elastodynamicmathematics model was established, in which the coupling influence of the elasticdeformation motion and the rigid-body motion, the axial deformation displacement and thetransverse deformation displacement of flexible beam were considered while its sheardeformation was ignored. The different constraint relationships of the system including rigidmotion constraint, elastic deformation motion constraint and dynamic constraint of themoving platform are derived. The dynamic characteristics of the system including sensitivityanalysis, frequency characteristics, model analysis and dynamic stress analysis are studied.The dynamic characteristics of planar3-RRR and3-PRR flexible parallel robots are presented.A comparative analysis of one-step method (KED method) and two-step method for solvingrigid-flexible coupling nonlinear dynamic equations is given. In consideration of the second-order coupling quantity of the axial displacement caused by the transversedisplacement of flexible beam, the first-order approximation coupling (FOAC) model ofplanar3-RRR flexible parallel robots is presented, and compared with the conventionalzero-order approximation coupling (ZOAC) model.
     (2) In general, the strain and stress are caused not only by the external exciting force, butalso temperature change. The effect of temperature change on dynamic performances ofplanar3-RRR flexible parallel robots is studied in this paper. Based on the Hamilton principleand the finite element method, the general thermal-elastic coupling dynamic equations of the3-RRR systems are determined. The flexible link maximum stress and elastic displacement ofthe moving platform and the flexible links with respect to temperature changes are studiedusing qualitative and quantitative method. The commercial software ANSYS13.0is used toconfirm the validity of the theory model.
     (3) The theoretical and experimental research for active vibration control of planar3-RRR flexible parallel robots. In theoretical study, both strain rate feedback controller andoptimal state feedback controller are designed based on general dynamic equations of thesystem. The simulation results reveal that two kinds of controllers can effectively suppressresidual vibration of the system. Moreover, comparing the strain rate feedback (SRF) control,the optimal state feedback control can obtain better control results in a lower control voltage.At the same time, the control result of pasting a pairs PZT film actuators is better than pastingjust one PZT film actuator. In experimental study, we only consider that passive links areflexible and each passive flexible link pastes two pairs of PZT actuator and one PZT filmsensor. Four control schemes that include three passive flexible links simultaneously control,only exert control to passive flexible link1, only exert control to passive flexible link2andonly exert control to passive flexible link3are designed based on the strain rate feedbackcontrol strategy. A comparative study is presented on four control schemes. The experimentalresults show that controlling one passive flexible link can only suppress elastic vibration itself.And when three passive flexible links simultaneously exert control, elastic vibration of allflexible links can be suppressed.
引文
[1] Bruno Siciliano, Oussama Khatib. Springer Handbook of Robotics [M]. BerlinHeidelberg: Springer Press,2008
    [2] Merlet J P. Parallel Robots[M]. Berlin Heidelberg: Springer Press,2006
    [3]刘善增.三自由度空间柔性并联机器人动力学研究[D].北京:北京工业大学,2009
    [4] http://www.botec.cn/p-6free.php
    [5] http://mh.vogel.com.cn/paper_view.html?id=30490
    [6] Gwinnett J E. Amusement device. Patent1789680,1931
    [7] Pollard G. Spray painting Mechine. US Patenet No.2,213,108,1940
    [8] Gough VE. Contribution to discussion of paperson research in automobile stability,control and tyre performance [J]. Proc. Auto Div. Inst. Mech. Eng,1947,1956-1957
    [9] Stewart, D. A. Platform with6degrees of freedom[J]. Proceedings of the Institution ofMechanical Engineers,1965,180(1,15):371–386
    [10] Hunt, K.H. Kinematic geometry of mechanisms [M]. Oxford, Great Britain: OxfordUniversity Press,1978
    [11] Clavel, R D. a fast robot with parallel geometry[C].In:18th Int.Symp. On IndustrialRobots (ISIR), Lausanne,1988:91-100
    [12]杜铁军.机器人误差补偿器研究[D].秦皇岛:燕山大学,1994
    [13]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997
    [14]黄真,赵永生等.高等空间机构学[M].北京:高等教育出版社,2006
    [15] Merlet J P. Direct kinematics of planar parallel manipulateors[C]. Proc. IEEE Int. Conf.on Robotics&Automation, Minneapolis, MN,1996:3744–3749
    [16] Gosslin C.M., Angeles J.. The optimal kinematic design of a planar three degree offreedom parallel manipulator[J]. J of Mech. Transm. Autom.Des.,1988,110(3):35-41
    [17] Sophia E S.Design, Manufacture and control of a planar three degree of freedom[D].McGill University,1993
    [18] Yang G L, Chen W H, Chen I M. A geometrical method for the singularity analysis of3-RRR planar parallel robots with different actuation schemes[C]. Proceedings of the2002IEEE/RSJ intl. conference on intelligent robots and systems,2002,2055-2060
    [19] Sébastien B, Ilian A B. Accuracy analysis of3-DOF planar parallel robots[J].Mechanism and Machine Theory,2008,43(4):445–458
    [20]高名旺.平面并联机器人设计、分析与控制[D].广州,华南理工大学,2012
    [21] Flavio, F, Ron P. P. Singularity analysis of planar parallel manipulators based onforward kinematic solutions[J]. Mechanism and Machine Theory,2009,44(7):1386–1399
    [22] Mostafavi Yazdi, S J A, Irani S. Transverse vibration of double cracked beam usingassumed mode method[C]. RAST '09.4th International Conference on Recent Advancesin Space Technologies,11-13June2009,156-160
    [23] Theodore R J, Ghosal A. Comparison of the assumed modes and finite element modelsfor flexible multi-link manipulators[J]. The International Journal of Robotics Research1995,14(2):91–111
    [24] Hastings G G, Book W J. Verification of a linear dynamic model for flexible roboticManipulators[C], Proceedings of the IEEE International Conference on Robotics andAutomation,1986:1024–1029
    [25] Megahed S M, Hamza K T. Modeling and simulation of planar flexible linkmanipulators with rigid tip connections to revolute joints[J],2004Robotica,22:285–300
    [26] Spong M W, Hutchinson S, Vidyasagar M. Robot Dynamics and Control(SecondEdition). Wiley,2004
    [27] Chen C, Shabana A A, Rismantab.Sany J. Generalized constraint and joint reactionforces in the inverse dynamics of spatial flexible mechanical systems[J]. Journal ofMechanical Design,1994,116:777~784
    [28] Kim S S, Haug E J. A recursive formulation for flexible multi-body dynamics, par t1:open loop systems[J]. Computer Methods in Applied Mechanics and Engineering,1988,71:293~314
    [29] Kim S S, Haug E J. A recursive formulation for flexible multi-body dynamics, part2:closed loop systems[J]. Computer Methods in Applied Mechanics and Engineering,1989,74:251~269
    [30] Pier Paolo Valentini, Ettore Pennestrì. Modeling elastic beams using dynamic splines[J].Multibody Syst Dyn,2011,25:271–284
    [31] Aghil Yousefi-Koma, George Vukovich. Development and Application of an ActiveControlSystem for Smart Structures Using the Wave Method[J]. Journal of Vibrationand Control,2005,11(8):1043–1065
    [32]丁希仑, Selig John Mark.空间弹性变形构件的利群和李代数分析方法[J].机械工程学报,2005,41(1):17-23
    [33]张策,黄永强,王子良,等.弹性连杆机构的分析与设计(第二版)[M].北京:机械工业出版社,1997
    [34]高峰.机构学研究现状与发展趋势的思考[J].机械工程学报,2005,41(8),3-17
    [35]于清,洪嘉振.柔性多体系统动力学的若干热点问题[J].力学进展,2000,29(2):145-154
    [36] Wit C C D, Siciliano B, Bastin G. Theory of Robot Control,2nd ed[M]. Springer-Verlag,1997,220–261
    [37] Benosman M, Vey G L. Control of flexible manipulators: A survey [J]. Robotica,2004,22:533–545
    [38]胡俊峰.柔性机器人机构动力学分析及其振动控制研究[D],广州,华南理工大学.2007
    [39] Bai S J, Pinhas Ben-Tzvi, Qingkun Zhou1, Xinsheng Huang. Dynamic Modeling of aRotating Beam Having a Tip Mass[C]. ROSE2008–IEEE International Workshop onRobotic and Sensors Environments Ottawa–Canada,17-18October2008:52-57
    [40] Cai G P, Hong J Z, Yang S X. Dynamic analysis of a flexible hub-beam system with tipmass[J]. Mechanics Research Communications,2005,32(2):173–190
    [41] Cai G P, Hong J Z, Yang S X. Model study and active control of a rotating flexiblecantilever beam[J]. International Journal of Mechanical Sciences,2004,46(6):871–889
    [42] Cai G P, Lim C W. Active control of a flexible hub-beam system using optimal trackingcontrol method[J]. International Journal of Mechanical Sciences,2006,48(10):1150–1162
    [43] Zhu G, Ge S S, Lee T H, Simulation studies of tip tracking control of a single-linkflexible robot based on a lumped model, Robotica17(1999)71–78
    [44] Khalil W, Gautier M, Modeling of mechanical systems with lumped elasticity,Proceedings of the IEEE International Conference on Robotics and Automation4(2000)3964–3969
    [45]杨辉,洪嘉振,余征跃.刚柔耦合建模理论的实验验证.力学学报[J],2003,35(2):253-260
    [46]杨辉,洪嘉振,余征跃.一类刚柔耦合系统的模态特性与实验研究[J].宇航学报,2002,23(2):67-72
    [47] Qiu Zhicheng, Han Jianda, Zhang Xianmin, et al. Active vibration control of a flexiblebeam using a non-collocated acceleration sensor and piezoelectric patch actuator[J].Journal of Sound and Vibration2009,326(3-5):438–455
    [48]邱志成.刚柔耦合系统的振动主动控制[J].机械工程学报,2006,42(10):26-33
    [49]邱志成.基于加速度反馈的挠性智能结构振动主动控制[J].机械工程学报,2008,44(3):143-151
    [50]邱志成.基于特征模型的压电悬臂板振动控制[J].机械工程学报,2008,44(10):187-195
    [51]邱志成,王斌,韩建达,等.无杆气缸驱动的柔性机械臂振动控制[J].机器人,2012,34(1):9-16
    [52] Fukuda T, Arakawa A. Modeling and control characteristics for a two-degrees-of-freedom coupling system of flexible robotic arms[J], JSME, Series C,1987,30(267):1458–1464
    [53] Fukuda T, Arai F, Hosogai H, et al, Flexibility control of flexible structures (Modelingand control method of bendingtorsion coupled vibration)[J], JSME, Series C,1988,31(3):575–581
    [54] Ower J C, Van De Vegte J. Classical control design for a flexible manipulator: modelingand control system design[J]. IEEE Journalof Robotics and Automation,1987,RA-3(5):485-489
    [55] Buffinton K W, Kane T R. Dynamics of beam moving over supports, International [J].Journal of Solids Structures,1885,21(7):617–643
    [56] Buffinton K W. Dynamics of elastic manipulators with prismatic joints [J]. ASMEJournal of Dynamic Systems, Measurement, and Control,1991,114(1):41–49
    [57] Morris A S, Madani A. Static and dynamic modeling of a two-flexible-link robotManipulator[J], Robotica,1995,14(3):289–300
    [58] Morris A S, Madani A. Computed torque control applied to a simulated two-flexiblelink robot[J], Trans Inst Mc,1997,19(1):50–60
    [59] Morris A S, Madani A. Quadratic optimal control of a two-flexible-link robotManipulator[J], Robotica,1998,16(pt1):97–108
    [60] Bayo E. Computed torque for the position control of open chain flexible robots[C].Proceedings1988IEEE International Conference on Robotics and Automation,Philadelphia, PA, USA,1988:316–321
    [61] Khalil W, Boyer F. efficient calculation of computed torque control of flexibleManipulators[C]. Proceedings of the IEEE International Conference on Robotics andAutomation. part1, Nagoya, Jpn, May21,1995-May27,1995:609–614
    [62] Cheong J, Chung W K, Youm Y, et al. Control of two-link flexible manipulatorusing disturbance observer with reaction torque feedback[C], in: ICAR97, Monterey,CA,1997:227–232
    [63]张宪民,刘济科,沈允文.计入几何非线性时弹性连杆机构的通用动力学方程的建立[J].机械科学与技术,1995,2:9-12
    [64] Lee J D, Wang B L. Optimal control of a flexible robot arm[J]. Computers andStructures,1988,29(3):459–467
    [65] Yin Haibin, Kobayashi Yukinori, Hoshino Yohei. Decomposed Dynamic Control forFlexible Manipulator in Consideration of Nonlinearity[J].Journal of System Design andDynamics,2011,5(2):219-230
    [66] Chen W. Dynamic modeling of multi-link flexible robotic manipulators[J].Computers&Structures,2001,79(2):183-195
    [67] Zhang Xianmin, Liu Hongzhao, Shen Yunweng. Fintie Dynamic Element Analysis forHigh-speed Flexible Linkage Mechanisms[J]. Computers&Structures,1996,60(5):787-796
    [68] Zhang Xianmin, Shao Changjian, Shen Yunwen, etal. Complex Mode DynamicAnalysis of Flexible Mechanism Systems with Piezoelectric Sensors and Actuators[J].Multibody System Dynamics,2002,8(1):51–70
    [69] Hou Wenfeng, Zhang Xianmin. Dynamic analysis of flexible linkage mechanisms underuniform temperature change[J]. Journal of Sound and Vibration,2009,319(1-2):570–592
    [70] Zhang Xianmin, Shao Changjian, Arthur G. Erdman. Active vibration controller designand comparison study of flexible linkage mechanism systems. Mechanism and MachineTheory,2002,37(9):985–997
    [71] Zhang Xianmin. Integrated optimal design of flexible mechanism and vibration control.International Journal of Mechanical Sciences,2004,46(11):1607–1620
    [72] Wang, W. Lu J, Hsu S S, et al. Experiments on the position control of a one-linkflexible robot arm[C]. Proceedings of the26th IEEE Conference on Decision andControl, Los Angeles, CA, USA,1987:2191-2195
    [73] Book W J. Analysis of massless elastic chains with servo controlled joints[J], ASMEJournal of Dynamic Systems, Measurement and Control,1979,101(3):187–192
    [74]张宪民.弹性连杆机构残余振动主动控制的研究[J].振动工程学报,1999,12(3):397-402
    [75]卢剑伟,张宪民,沈允文.弹性生连杆机构结构和噪声控制一体化设计[J].机械工程学报,2003,39(3):40-43
    [76]卢剑伟,张宪民,沈允文.弹性连杆机构振动主动控制中作动器与传感器的位置优化[J].振动工程学报,2001,14(2):211-214
    [77]邵长健,张宪民,沈允文.高速弹性连杆机构振动的复模态主动控制研究[J].机械科学与技术,2000,19(4):527-530.
    [78] Piras G, Cleghorn W L, Mills Jeams K. Dynamic finite element analysis of a planarhigh-speed, high-precision parallel manipulator with flexible links[J]. Mechanism andMachine Theory,2005,40(7):849-862
    [79] Wang Xiaoyun. Mills J K. Dynamic modeling of a flexible-link planar parallelplatform using a substructuring approach[J]. Mechanism and Machine Theory,2006.41(6):671-687
    [80] Wang xiaoyun, Mills J K. A FEM model for active vibration control of flexiblelinkages[C]//Proceeding of IEEE International Conference on Robotics and Automation.New Orleans, LA, USA.vol.5,2004,4308-4313
    [81] Zhang Xuping, Mills J K, Cleghorn W L. Study on the Effect of Elastic Deformations onRigid Body Motions of a3-PRR Flexible Parallel Manipulator[C]//IEEE InternationalConference on Mechatronics and Automation, Harbin Chain,2007,1805-1810
    [82] Lu Ren. Synchronized Trajectory Tracking Control for Parallel Ronotic Manipulators[D]. Ottawa, Uinversity of Toronto,2006
    [83] Zhang Xuping. Dynamic Modeling and Active Vibration Control of a Planar3-PRRParallel Manipulator with Three Flexible Links[D]. Ottawa, University of Toronto.2009
    [84] Wang Xiaoyun. Dyanmic Modeling, Experimental Identification, and Active vibrationControl Design of a “Smart Parallel Manipulator”[D]. Ottawa, University of Toronto.2006
    [85] Zhang Xuping, Mills J K, Cleghorn W L. Effect of Axial Forces on Lateral Stiffness ofa Flexible3-PRR Parallel Manipulator Moving With High-speed[C]. In: Proceedings ofthe2008IEEE International Conference on Information and Automation June20-23,2008, Zhangjiajie, China
    [86] Zhang Xuping, Mills J K, Cleghorn W L. Flexible linkage structural vibration control ona3-PRR planar parallel manipulator: experimental results[J]. Proceedings of theInstitution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2009,233(1):71-84
    [87] Zhang Xuping, Mills J K,. Active vibration control of configuration-dependentlinkage vibration with application to a planar parallel platform[C]. In: Proceedings ofthe IEEE International Conferenceon Robotics and automation, Barcelona, Spain,2005:4327–4332
    [88] Zhang Xuping, Mills J K, Cleghorn W L. Vibration control of elastodynamicresponse of a3-PRR flexible parallel manipulator using PZT transducers[J]. Robotica,2008,26(5):655–665
    [89] Zhang Xuping, Mills J K, Cleghorn W L. Coupling characteristics of rigid bodymotion and elastic deformation of a3-PRR parallel manipulator with flexible links[J].Multibody Syst Dyn,2009,21:167–192
    [90] Zhang Xuping, Mills J K, Cleghorn W L. Multi-mode vibration control and positionerror analysis of parallel manipulator with multiple flexible links[J]. Transactions of theCanadian Society for Mechanical Engineering,2010,34(2):197-213
    [91] Wang Xiaoyun, Mills J K, Guo Shuxiang. Experimental Identification and ActiveControl of Configuration Dependent Linkage Vibration in a Planar Parallel Robot[J].IEEE Transactions on control systems technology,2009,17(4):960-969
    [92] Zhang Xuping, Mills J K, Cleghorn W L. Experimental Implementation on VibrationMode Control of a Moving3-PRR Flexible Parallel Manipulator with Multiple PZTTransducers [J]. Journal of Vibration and Control,2010,16(13):2035–2054
    [93] Abbas Fattah, Angeles J, Misra A K. Dynamics of a3-DOF spatial parallelmanipulator with flexible links[C]. In: IEEE International Conference on Robotics andAutomation.21-27May1995,1:627-633
    [94]杜兆才,余跃庆,张绪平.平面柔性并联机器人动力学建模[J].机械工程学报,2007,43(9):96-101
    [95] Yu Yueqing, Du Zhaocai, Yang Jianxin, et al. An Experimental Study on the Dynamicsof a3-RRR Flexible Parallel Robot[J]. IEEE Transaction on robotics,2011,27(5):992-997
    [96]杜兆才,余跃庆.柔性机器人的动态应力计算及疲劳特性分析[J].中国机械工程,2007,18(24):2985-2989
    [97]王雯静,余跃庆.基于有限元法的柔顺机构动力学分析[J].机械工程学报,2010,46(9):79-86
    [98]杜兆才,余跃庆.平面柔性连杆3-RRR并联机器人动力学建模[J].机械设计与研究,2008,24(3):18-25
    [99] Du Zhaocai, Yu Yueqing. Dynamic Modeling and Inverse Dynamic Analysis ofFlexible Parallel Robots[J]. International Journal of Advanced Robotic Systems,2008,5(1):115-122
    [100] Sahin M, Aridogan U. Performance evaluation of piezoelectric sensor/actuator onactive vibration control of a smart beam[J]. Proc Inst Mech Eng Part I J Syst ControlEng.2011,225(5):533-547
    [101]Bayo E, A finite-element approach to control the end point motion of a single linkflexible robot[J], Journal of Robotic systems,1987,4(1):63–75
    [102] Bayo E, Movaghar R, Medus M. Inverse dynamics of a single-link flexible robot:analytical and experimental results[J], International Journal of Robotics Automation,1988,3(3):150–157
    [103] Trautt T A, Bayo E. Inverse dynamics of flexible manipulators with Coulomb frictionand backlash and non-zero initial conditions[J]. Dynamics and Control,1999,9(2):173–195
    [104] Kanaoka K, Yoshikawa T, Dynamic singular configurations of flexiblemanipulators, Proceedings of the IEEE/RSJ International Conference on IntelligentRobots and Systems1,2000:46–51
    [105] Salmasi H, Fotouhi R, Nikiforuk P N. Active vibration suppression of a flexible linkmanipulator using a piezoelectric actuator[J]. WIT Transactions on the BuiltEnvironment,2007,91(2007):199-208
    [106] Liao C Y, Sung C K. An Elastodynamic Analysis and Control of Flexible LinkagesUsing Piezooeramic Sensors and Actuators[J]. Journal of Mechanical Design,115:658-665
    [107] Santosh Devasia, Tesfay Meressi, Brad paden, et al. Piezoelectric actuator design forvibration suppression: placement and sizing[J]. Journal of guidance, control, anddynamics,1993,16(5):859-864
    [108] Edward F, Crawley Javier de Luis. Use of Piezoelectric Actuators as Elements ofIntelligent Structures[J]. AIAA Journal,1987,25(10):1373-1385
    [109] Hunt K H. Structural kinematics of in-parallel-actuated robot arms[J]. Journal ofMechanism, Transmission, and Automation in Design,1983,105(4):705-712
    [110] Pierrot F, Fournier A, Dauchez P. Towards a fully-parallel6dof robot for high-speedapplications[C]. Proceedings of IEEE International Conference on Robotics andAutomation,1991,2:1288-1293
    [111] Gosselin C M, Sefrioui J. Polynomial solutions for the direct kinematic problem ofplanar three-degree-of-freedom parallel manipulators[C]. Proc.5th Int. Conf. AdvancedRobotics,1991:1124-1129
    [112]刘善增,余跃庆,刘庆波等.3-RRC并联机器人动力学分析[J].机械工程学报.2009,(45)5:220-224
    [113]刘善增,余跃庆,佀国宁等.3自由度并联机器人的运动学与动力学分析机(3-RRS).机械工程学报.2009,45(8):11-17
    [114] Kang B S, Chu J, Mills J K. Design of high speed planar manipulator and multiplesimultaneous specification control[C]. In: Proceedings of the IEEE InternationalConference on Robotics&Automation, Seoul, Korea,2001:2723–2728
    [115] Gasparetto A. On the modeling of flexible-link planar mechanisms: experimentalvalidation of an accurate dynamic model[J]. ASME Journal of Dynamic Systems,Measurement, and Control,2004,126(2):365-375
    [116] Nagarajan S, Turcic D A. Lagrangian formulation of the equations of motion for elasticmechanisms with mutual dependence between rigid body and elastic motions. Part I:element level equations[J]. ASME Journal of Dynamic Systems, Measurement, andControl,1990,112(2):203-214
    [117] El-Absy H, Shabana A A. Coupling between rigid body and deformation modes[J].Journal of Sound and Vibration,1996,198(5):617-637
    [118] Yang Z, Sadler J P. A one-pass approach to dynamics of high-speed Machinery throughthree-node lagrangian beam elements[J]. Mechanism and Machine Theory,1999,34(7):995-1007
    [119] Karkoub K, Yigit A S. Vibration control of a four-bar mechanism with a flexiblecoupler link[J]. Journal of Sound and Vibration,1999,222(2):171-189
    [120] Li S R, Xi S. Large thermal deflections of timoshenko beams under transverselynon-uniform temperature rise[J]. Mechanics Research Communications,2006,33(1):84-92
    [121] Li S R, Zhou Y H. Geometrically nonlinear analysis of timoshenko beams underthermomechanical loadings[J]. Journal of Thermal Stresses,2003,46(26):861-872
    [122] Manoach E. and Ribeiro P. Coupled, thermoelastic, large amplitude vibrations oftimoshenko beams[J]. International Journal of Mechanical Sciences,2004,46(11):1589-1606
    [123] Manoach E, Samborski S, Mitura A, et al. Vibration based damage detection incomposite beams under temperature variations using Poincar′e maps[J]. InternationalJournal of Mechanical Sciences,2012,62(1):120-132
    [124] Pi Y L, Bradford M A, Qu W. L. Extremal Thermoelastic Buckling Analysis of FixedSlender Beams[J]. Procedia Engineering,2011,14(2011):256-263
    [125] Zhang Y X, Bradford A M. nonlinear analysis of moderately thick reinforced concreteslabs at elevated temperatures using a rectangular layered plate element withtimoshenko beam functions[J]. Engineering Structures,2007,29(10):2751-2761
    [126] Li Dongmei, Zhang Xianmin, Guan Yishen, et al. Multi-objective TopologyOptimization of Thermo-mechanical Compliant Mechanisms[J]. Chinese Journal ofMechanical Engineering (English Edition).2011,24(6):1123-1129
    [127] Zhang Xianmin, Hou Weifeng. Dynamic analysis of the precision compliantmechanisms considering thermal effect[J]. Precision Engineering,2010,34(3):592-606
    [128]李维特,黄保海,毕仲波.热应力理论分析及应用.北京.中国电力出版社,2004
    [129] Kane T R, Ryan R R. Banerjee A K. Dynamics of a cantilever beam attached to Amoving base. J Guid Control Dyn,1987.10(2),139-151
    [130] Juana M M, Daniel G V, Jaime D. Study of the Geometric Stiffening Effect:Comparison of Different Formulations. Multibody Syst Dyn.2004.11:321-341
    [131] Urbano L, Miguel A, Naya, et al. Implementation and efficiency of two geometricstiffening approaches. Multibody Syst Dyn.2008.20:147-161
    [132] Zhang D J, Liu Y W, Houston R L. On Dynamic stiffening of flexible bodies havinghigh angular velocity. Mech.Struct.&Mach.1996.24(3):313-329
    [133] Zhang Xuping, Wang Xiaoyun, Mills J K, et al. Experimental Implementation onVibration Mode Control of a Moving3-PRR Flexible Parallel Manipulator withMultiple PZT Transducers[J]. Journal of vibration and Control,2010,16(13):2035–2054

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700