考虑刚体摆动的钢悬链式立管出平面运动分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋石油工业的飞速发展,深水油气勘探开发活动大大增加,作为联系海底油井与海洋平台的关键设备,立管系统在海洋油气资源开发中占有举足轻重的地位。钢悬链式立管(Steel Catenary Risers, SCRs)是近年来发展起来的一项新型深水立管技术,克服了柔性立管及顶张力立管在深海应用的局限性,成为深水油气资源开发的首选立管系统。涡激振动是钢悬链式立管设计的核心问题,由于特殊的几何形状及深水流场的复杂性,钢悬链式立管的涡激振动分析比顶张力立管复杂的多。因此,钢悬链式立管的动力学模型及涡激振动特性等方面的研究具有重要的理论意义及应用价值。
     深水钢悬链式立管是一种大挠度柔性结构,尤其是触地点区域的大曲率,使普通梁模型难以准确模拟其力学特性。本文运用大挠度柔性索理论,采用具有弯曲刚度的大挠度细长梁模型模拟钢悬链式立管,充分考虑触地点区域的大曲率及悬垂段张力连续分布的特点,建立钢悬链式立管的复杂弯曲控制方程,并采用基于该理论的SCR动力分析程序CABLE3D求解立管的静力及动力学问题。
     基于大柔性圆柱体两向涡激振动试验及由此提出的考虑结构振动及与流体耦合的涡激升力模型,本文提出了钢悬链式立管非锁定区考虑流固耦合的两向涡激振动模型,该模型不仅考虑脉动拖曳力引发的立管顺流向涡激振动,而且考虑横向流固耦合问题,研究表明,该模型物理意义清晰,能够较好的模拟钢悬链式立管的涡激振动本质。触地点是钢悬链式立管的特征点,本文重点分析了立管触地点处的涡激振动特性,分析表明,钢悬链式立管触地点区域的涡激振动响应处于局部峰值,且频率构成较复杂,因其决定立管的疲劳寿命,因此该点应作为钢悬链式立管涡激振动分析的关键点。
     针对钢悬链式立管静态位形的大曲率特点,本文提出钢悬链式立管刚体摆动模型,该模型假定立管悬垂段为绕悬挂点与触地点连线所形成的倾斜轴的刚体摆动系统,若环境荷载不在SCR初始平面内,则环境荷载与摆动轴到单元的矢径即形成力矩,该力矩为刚体摆动系统提供摆动动力,单元重力分量则提供恢复力。将刚体摆动模型以惯性力及水动力阻尼的形式与立管弯曲振动耦合,即形成考虑刚体摆动及弯曲振动的钢悬链式立管出平面运动模型,研究立管的出平面运动特性。研究表明,钢悬链式立管刚体摆动能够达到与弯曲振动相同的数量级,且其对立管下部管段的动力响应有较大影响,在钢悬链式立管的动力分析中应予以充分考虑。
     本文对钢悬链式立管刚体摆动模型及触地点区域涡激振动特性的研究尚处于初级阶段,在为深水立管设计及理论研究提供新思路、新方法的同时,难免存在不足之处,更为深入的研究深水钢悬链式立管的动力特性问题还需要学术界共同的努力。
With the development of offshore oil and gas industry, exploitation activities indeepwater are increasing greatly. As key equipments connecting platforms and wells,risers hold a significant position in ocean resource development. Steel Catenary Risers(SCRs) are a new type of deepwater risers developed in recent years, they overcomethe limitation of traditional flexible risers and TTRs and become the preffered risersystems in deepwater development now. Vortex induced vibration (VIV) is the coreproblem in the design of SCRs, special configurations and complex flow make theVIV analysis of SCRs much more complicated than TTRs. So the study of dynamicmodel and VIV property of SCRs in this paper has great significance in theory andapplications.
     SCRs are the flexible structures with large deflection, so the simulation of themby commom beam model is very inaccurate. Based on the theory of flexible cable,SCRs are modeld by small extensible slender rod with bending stiffness in this paper,the large curve of TDP and continuous distribution of tension are considered in themodel, the control equation is established and then the corresponding dynamic code ofSCRs, CABLE3D, is used to solve the static and dynamic problem.
     Based on VIV experiment of flexible cylinders and the revised lift force model, atwo-way VIV model of SCRs with fluid-structure interaction, beyond lock-in district,is proposed in the paper, both in-line vibration with pulsating drag force andfluid-structure coupling of cross flow are included in the new model. The studiesshow that the model has clear physical interpretation and can describe the VIV ofdeepwater risers pretty well. TDP is the feature point of SCRs, the special analysis ofTDP in the paper shows that the VIV response of the point is the local extremum andthe frequency component is complex, the point decides the fatigue life of SCRs, so theVIV study of TDP is an unavoidable problem in the study of SCRs.
     Due to the large curvature of sag bends, rigid swing model of SCRs is proposedin the paper, the model takes SCRs as rigid swing systems about the axis from thehanging point to the touch down point (TDP), if the direction of environmental loadhas a angle with SCRs plane, the torque is then produced of the force and the vectorfrom the axis to the riser, which provide the driving force for the swing and the weightof the riser provide the restoring force. The rigid motion is coupled with bendingvibration as inertial force and hydrodynamic damping, then the out-of-plane motion ofSCRs with both bending vibration and rigid motion are simulated. The studies show that the response of rigid motion have a magnitude equal to that of the bendingvibration, rigid motion affects the dynamic response of lower part of SCRs greatlyand can not be ignored in their dynamic analysis.
     The study of rigid swing model of SCRs and VIV analysis of TDP is still atprimary stage in the paper, the deficiency is unavoidable when the new ideas andmethods for the design and research of SCRs are provided, so the further considerablestudy on the dynamic property of SCRs is very essential in the future.
引文
[1]王丽勤,侯金林,庞然,刘冬雪,深水油气田开发工程中的基础应用探讨[J],海洋石油,31(4),2011
    [2]贾承造,我国能源前景与能源科技前沿[J],高校地质学报,2011(2)
    [3] H. Howells. Advances in Steel Catenary Riser Design[R].2H Offshore Engineering Ltd,1995.
    [4] R.Y. Edwards, R.Z.M. Filho, W.F. Hennessy, C.R. Campman, H. Bailon. Load Monitoring atthe Touch Down Point of the First Steel Catenary Riser Installed in a Deepwater MooredSemi-submersible Platform[A]. Proceedings of Offshore Technology Conference[C]. Houston,USA, OTC,1999,2:295-303.
    [5] R. Franciss, E. Ribeiro. Analyses of a Large diameter Steel Lazy Wave Riser for UltraDeepwater in Campos Basin[A]. Proceedings of the International Conference on OffshoreMechanics and Arctic Engineering[C]. Vancouver, Canada, ASME,2004,1:355-361.
    [6] K.M. Lund, P. Jensen, D. Karunakaran, K.H. Halse. A Steel Catenary Riser Concept forStatfjord C[A]. Proceedings of the International Conference on Offshore Mechanics and ArcticEngineering[C]. Lisbon, Portugal, ASME,1998,1-9.
    [7] M.K. Nygard, A. Sele, K.M. Lund. Design of a25.5-in Titanium Catenary Riser for the AsgardB Platform[A]. Proceedings of Offshore Technology Conference[C]. Houston, USA, OTC,2000,3:343-354.
    [8] G. Chaudhury, J. Kennefick. Design, Testing and Installation of Steel Catenary Risers[A].Proceedings of Offshore Technology Conference[C]. Houston, USA, OTC,1999,2(2):339-346.
    [9] C.T. Gore, El Paso, B.B. Mekha. Common Sense Requirements (CSRs) for Steel CatenaryRisers (SCRs)[A]. Proceedings of Offshore Technology Conference[C]. Houston, USA, OTC,2002, OTC14153.
    [10] D.R. Korth, B.S.J. Chou, G.D. McCullough. Design and Implementation of the First BuoyedSteel Catenary Risers[A]. Proceedings of Offshore Technology Conference[C]. Houston,USA, OTC,2002,1339-1357.
    [11] H. Howells. Analysing the Practicalities of Moving to Steel Catenary Risers in the AtlanticFrontier[R].2H Offshore Engineering Ltd,1996.
    [12] S.K. Patel, D. Kumar, B. Master, D. Karunakaran. Design of Steel Catenary Riser forDeepwater Fields in Indian Offshore-A Case Study[A]. Proceedings of the InternationalConference on Offshore Mechanics and Arctic Engineering[C]. Rio de Janeiro, Brazil,ASME,2001, OMAE2001/S&R-2036.
    [13]黄维平,白兴兰,李华军,国外深水钢悬链线立管研究发展现状[J],中国海洋大学学报,39(2),2009,290-294
    [14] C.A. Martins, E. Higashi. A Parametric Analysis of Steel Catenary Risers: Fatigue Behaviornear the Top[A]. Proceedings of the International Offshore and Polar EngineeringConference[C]. Seattle, USA, ISOPE,2000,2:54-59.
    [15] S.A. Hatton, N. Willis. Steel Catenary Risers for Deepwater Environment[A]. Proceedings ofOffshore Technology Conference[C]. Houston, USA, OTC,1998, OTC8607.
    [16] E. Giertsen, R. Verley, K. Schroder. A Catenary Riser/Soil Interaction Model for Global RiserAnalysis[A]. Proceedings of the International Conference on Offshore Mechanics and ArcticEngineering[C]. Vancouver, Canada, ASME,2004,23(1):633-640.
    [17] B.B. Mekha. New Frontiers in the Design of Steel Catenary Risers for Floating ProductionSystems[J]. Journal of Offshore Mechanics and Arctic Engineering,2001,123(4):153-158.
    [18] A. Miliou, S.J. Sherwin, J.M.R. Graham. Fluid Dynamic Loading on Curved Riser Pipes[J].Journal of Offshore Mechanics and Arctic Engineering,2003,125(3):176-182.
    [19] R. Thethi, D. Walters. Alternative Construction for High Pressure High Temperature SteelCatenary Risers[A]. Flowlines Risers and Export Pipelines[C], USA, OPT,2003:1-13.
    [20] B.J. Leira, E. Passano, D. Karunakaran, K.-A. Farnes. Analysis Guidelines and Application ofa Riser-Soil Interaction Model Including Trench Effects[A]. Proceedings of the InternationalConference on Offshore Mechanics and Arctic Engineering[C]. Vancouver, Canada, ASME,2004,23(1B):955-962.
    [21] N.R.T. Willis and K.S. Thethi. Stride JIP: Steel Risers for Deepwater Environment–ProgressSummary[A]. Proceedings of Offshore Technology Conference[C]. Houston, USA, OTC,1999, OTC10974.
    [22] N.R.T. Willis and P.T.J. West. Interaction Between Deepwater Catenary Risers and a SoftSeabed: Large Scale Sea Trials[A]. Proceedings of Offshore Technology Conference[C].Houston, USA, OTC,2001, OTC13113.
    [23] L.M. Yamada da Silveira, Clovis de Arruda Martins. A Numerical Method to Solve the StaticProblem of a Catenary Riser[A]. Proceedings of International Conference on OffshoreMechanics and Arctic Engineeing[C]. Vancouver, Canada, OMAE,2004,1:693-702.
    [24] G. Moe, O. Arnisen. An Analytic Model for Static Analysis of Catenary Risers[A].Proceedings of the International Offshore and Polar Engineering Conference[C]. Stavanger,Norway, ISOPE,2001,2:248-253.
    [25] P.R. Hays. Steel Catenary Risers for Semi-submersible based Floating Production Systems[A].Proceedings of Offshore Technology Conference[C]. Houston, USA, OTC,1996,4:845-859.
    [26] C.P. Pesce, J.A.P. Aranha, C.A. Martins, O.G.S. Ricardo, S. Silva. Dynamic curvature incatenary risers at the touch down point region: An experimental study and the analyticalboundary-layer solution[J]. International Journal of Offshore and Polar Engineering,1998,8(4):303-310.
    [27] C.P. Pesce, M.O. Pinto. First-Order Dynamic Variation of Curvature and Tension in CatenaryRisers[A]. Proceedings of the International Offshore and Polar Engineering Conference[C].Los Angeles, USA, ISOPE,1996,2:163-174.
    [28] J.A.P. Aranha, C.A. Martins, C.P. Pesce. Analytical approximation for the dynamic bendingmoment at the touchdown point of a catenary riser[J]. International Journal of Offshore andPolar Engineering,1997,7(4):293-300.
    [29] Luciano de A. Campos, C. A. Martins. Nonlinear dynamic response of a steel catenary riser atthe touch-down point[A]. Proceedings of the International Offshore and Polar EngineeringConference[C]. Stavanger, Norway, ISOPE,2001,2:234-238.
    [30] Christopher D Bridge and Hugh A Howells. Observations and Modeling of Steel CatenaryRiser Trenches[A]. Proceedings of International Offshore and Polar EngineeringConference[C]. Lisbon, Portugal, ISOPE,2007,2:803-813.
    [31] C. Bridge, N. Willis. Steel Catenary Risers–Results and Conclusions from Large ScaleSimulations of seabed interaction[R].2H Offshore Engineering Ltd.
    [32] C. Bridge, K. Laver, E. Klukey, T. Evans. Steel Catenary Riser Touchdown Point VerticalInteraction Model[A]. Proceedings of Offshore Technology Conference[C]. Houston, USA,OTC,2004, OTC16628.
    [33] C. Bridge, H. Howells, N. Toy, G. Parke, R. Woods. Full Scale Model Test of a Steel CatenaryRiser[R].2H Offshore Engineering Ltd.
    [34] C.P. Pesce, C.A. Martins. Riser-soil interaction: local dynamics at TDP and a discussion onthe eigenvalue problem[A]. Proceedings of the International Conference on OffshoreMechanics and Arctic Engineering[C]. Vancouver, Canada, ASME,2004,23(1):583-594.
    [35] B. Bostrom, G. Svano, G. Eiksund, B.J. Leira, A. Bjorset. Response Effects of Riser-SoilInteraction Modeling[A]. Proceedings of the International Conference on OffshoreMechanics and Arctic Engineering[C]. Lisbon, Portugal, ASME,1998, OMAE98-3093.
    [36] R. Thethi. Soil interaction effects on simple catenary riser response[J]. Pipes and PipelinesInternational,2001,46(3):15-24.
    [37] J. You, G. Biscontin, C.P. Aubeny. Seafloor Interaction with Steel Catenary Risers[A].Proceedings of International Offshore and Polar Engineering Conference [C]. Vancouver,Canada, ISOPE,2008,2:110-117.
    [38] Ali Nakhaee and Jun Zhang. Effects of the Interaction with the Seafloor on the Fatigue Life ofa SCR[A]. Proceedings of International Offshore and Polar Engineering Conference [C].Vancouver, Canada, ISOPE,2008,2:87-93.
    [39] Ali Nakhaee and Jun Zhang. Trenching effects on dynamic behavior of a steel catenaryriser[J]. Ocean Engineering,2010,37(2-3):277-288.
    [40] Nakhaee Ali and Zhang Jun. Dynamic Interaction Between SCR and the Seabed[A].Proceedings of the International Conference on Offshore Mechanics and ArcticEngineering[C]. San Diego, USA, ASME,2007,2:555-559.
    [41] W. J. Kim, J. A. Newlin, and J. H. Haws. Experimental and Analytical Investigation ofSoil/SCR Interaction under VIV[A]. Proceedings of International Offshore and PolarEngineering Conference [C]. San Francisco, USA, ISOPE,2006,2:68-75.
    [42] Mark Randolph, Peter Quiggin. Non-Linear Hysteretic Seabed Model for Catenary PipelineContact[A]. Proceedings of International Conference on Ocean, Offshore and ArcticEngineering[C]. Honolulu, USA, ASME,2009, OMAE2009-79259.
    [43] E. Fontaine. SCR-Soil Interaction: Effect on Fatigue Life and Trenching[A]. Proceedings ofInternational Offshore and Polar Engineering Conference [C]. San Francisco, USA, ISOPE,2006,2:60-67.
    [44] Ed Clukey and Rupak Ghosh, Prakash Mokarala&Mark Dixon. Steel Catenary Riser (SCR)design issues at touch down area[A]. Proceedings of International Offshore and PolarEngineering Conference [C]. Lisbon, Portugal, ISOPE,2007,2:815-819.
    [45] H.H. Wang, Y.D. Chin. Challenges in Deepwater Riser System Design and Analysis[J]. Pipesand Pipelines International,2001,46(3):5-14.
    [46] C.J. Wajnikonis, P.E. CEng. VIV Predictions of an SCR in Sheared Ocean Currents[A].Proceedings of ETCE2002ASME Engineering Technology Conference on Energy[C],Houston, USA, ASME,2002,2/B:707-727.
    [47] J.K. Vandiver, E.C. Gonzalez. Fatigue Life of Catenary Risers Excited by Vortex Shedding[A]Proceedings of International Conference on Behavior of Offshore Structures[C]. TheNetherlands, BOSS,1997:485-496.
    [48] C.L. Cunff, D. Averbuch, F. Biolley. Influence of Current Direction on VIV of a SteelCatenary Riser[A]. Proceedings of the International Conference on Offshore Mechanics andArctic Engineering[C]. Vancouver, Canada, ASME,2004,1:23-30.
    [49] C.L. Cunff, F. Biolley, E. Fontaine, S. Etienne, M.L. Facchinetti. Vortex-Induced Vibration ofrisers: Theoretical, Numerical and Experimental Investigation[J]. Oil&Gas Science andTechnology,2002,57(1):59-69.
    [50] B.B. Mekha. On the Wave and VIV Fatigue of Steel Catenary Risers connected to FloatingStructures[A]. Proceedings of the International Conference on Offshore Mechanics andArctic Engineering[C]. Oslo, Norway, ASME,2002,1:57-63.
    [51] J. Pollack, K.B. Davies, D.C. Riggs. A Feasibility Study for Steel Catenary Risers Connectedto a Spread-Moored Monohull in a Field Offshore Brazil[A]. Proceedings of the InternationalConference on Offshore Mechanics and Arctic Engineering[C]. Cancun, Mexico, ASME,2003,2:771-780.
    [52] J. Dalheim. Numerical Prediction of Vortex-Induced Vibration on Steel Catenary Risers[A].Proceedings of the International Offshore and Polar Engineering Conference[C]. Seattle,USA, ISOPE,2000,3:499-503.
    [53] P. Simantiras, N. Willis. Investigation on Vortex Induced Oscillations and Helical StrakesEffectiveness at Very High Incidence Angles[A]. Proceedings of the International Offshoreand Polar Engineering Conference[C]. Brest, France, ISOPE,1999.
    [54] P. Simantiras, N. Willis. Steel catenary risers-allegheny offshore VIV monitoring campaignand large scale simulation of seabed interaction[R].2H Offshore Engineering Ltd,1999.
    [55] C.P. Pesce, J.A.P. Aranha, C.A. Martins, M.O. Pinto. Steel Catenary Risers for Deep WaterApplications[A]. Proceedings of the International Offshore and Polar EngineeringConference[C]. The Hague, The Netherlands, ISOPE,1995,5(2):190.
    [56] A. Lucia F.L. Torres, M.M. Mourelle, R.M.C. da Silva. Fatigue Damage Verification of SteelCatenary Risers[A]. Proceedings of the International Conference on Offshore Mechanics andArctic Engineering[C]. Rio de Janeiro, Brazil, ASME,2001,1:749-759.
    [57] S. F. Senra, B.P. Jacob, A. Lucia, F.L. Torres, M.M. Mourelle. Sensitivity Study on FatigueBehavior of Steel Catenary Risers[A]. Proceedings of the International Offshore and PolarEngineering Conference[C]. Kitakyushu, Japan, ISOPE,2002,12:193-198.
    [58] E.H. Phifer, Frans Kopp, R.C. Swanson, D.W. Allen, C.G. Langner. Design and installation ofAuger steel catenary risers[A]. Proceedings-Offshore Technology Conference[C]. Houston,USA, OTC,1994:399-408.
    [59] J. Landes, K. Lee, W.W. Bose. Evaluation of Fatigue Lives of Steel Catenary Risers[A].Proceedings of the International Conference on Offshore Mechanics and ArcticEngineering[C]. Rio de Janeiro, Brazil, ASME,2001,2:111-118.
    [60] I.P. Pasqualino, I.A. Valeriano. Crack growth prediction in girth welds of steel catenaryrisers[A]. Proceedings of International Offshore and Polar Engineering Conference [C].Kitakyushu, Japan, ISOPE,2002,12:192-197.
    [61]郭海燕,高秦岭,王小东.钢悬链线立管与海床土体接触问题的ANSYS有限元分析[J].中国海洋大学学报,2009,39(3):521-525.
    [62]郭海燕,孟丹,徐思朋.顶部浮体激励下钢悬链线立管的动力响应分析[J].中国海洋大学学报,2009,39(5):1125-1130.
    [63] Yao Xiongliang and Sun Liping. Fatigue mitigation design of deepwater steel caenaryrisers[A]. Proceedings of the International Conference on Offshore Mechanics and ArcticEngineering[C]. Hamburg, Germany, ASME,2006, OMAE2006-92061.
    [64]饶志标,杨建民,付世晓,李润培,剪切流下钢悬链线立管涡激振动响应研究[J],振动与冲击,2010,29(10)
    [65]何宁,王波,王辉,梁辉,张昭,深水钢悬链线立管三维动力分析[J],中国海洋油气,2010(2)
    [66]白兴兰.基于惯性耦合的深水钢悬链线立管非线性分析[D].中国海洋大学博士学位论文.2009.
    [67] King R.A.(1977)A review of vortex shedding research and its application.OceanEngineering,4:141-171.
    [68] Au-Yang M.K.(2001)Flow-induced vibrations of power and process plant components—apractical workbook.The American Society of Mechanical Engineers, New York,USA.
    [69] Vandiver J K. The relationship between in-line and cross-flow vortex-induced vibration ofcylinders. Journal of Fluids and Strucrures,1987(1):381-399
    [70] Erik A H, Mads B, Stefan M. Interaction of in-line and cross-flow vortex induced vibrationsin risers. OMAE2002-28303. Presented on21thInternational Conference on OffshoreMechanics and Arctic Engineering, Oslo, Norway,2002,June23-28.
    [71] Jeon, D., Gharib, M.,2001. On circular cylinders undergoing two-degree-of-freedom forcedmotions. J. Fluids Struct.15,533–541.
    [72] Vikestad K, Vandiver J K, Laesen C M. Added mass oscillation frequency for a circular cylinder subject to vortex-shedding vibrations and external disturbance [J]. Journal of Fluids andStructures,2000,14:1071-1088.
    [73] Huera-Huarte F J, Bearman P W. Wake structures and vortex-induced vibrations of along flexible cylinder-Part1: Dynamic response[J]. Journal of Fluids and Structures,2009,25:969-99
    [74] Dahl J M, Hover F S, Triantafyllou M S. Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces[J]. Physical Review Letters,2007,99:144-503.
    [75] Dahl J M, Hover F S, Triantafyllou M S. Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers[J]. Journal of Fluid Mechanics,2010,643:395-424.
    [76] Vandiver J K, Jaiswal V, Jhingran V. Insights on vortex-induced, traveling waves on long risers[J]. Journal of Fluids and Structures,2009,25:641-653.
    [77] Jauvtis N, Williamson C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of Fluid Mechanics,2004,509:23-62.
    [78] Dahl J M, Hover F S, Triantafyllou M S. Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces[J]. Physical Review Letters,2007,99:144-503.
    [79] Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures,2004,19:389-447.
    [80] Baarholm G S, Larsen C M, Lie H. On fatigue damage accumulation from in-line and cross-flow vortex-induced vibration on risers[J].Journal of Fluids and Structures,2006,22:109-127
    [81] Trim A D, Braaten H, Lie H, Tognarelli M A. Experimental investigation of vortex-induced vibration of long marine risers[J]. Journal of Fluids and Structures,2005,21:335-361.
    [82] Sarpkaya T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response[J].Journal of Offshore Mechanics and Arctic Engineering,1995,117:232-238.
    [83]方平治,顾明.圆柱两自由度涡激振动的数值模拟研究.同济大学学报,2008,36(3):691-694.
    [84]方平治,杜明侠,顾明.两自由度椭圆柱体涡激振动的数值模拟,振动与冲击,2009,28(1):51-55
    [85]黄智勇,潘志远,崔维成.两向自由度低质量比圆柱体涡激振动的数值计算。船舶力学,2007,11(1):1-9
    [86]薛鸿祥,唐文勇,张圣坤.非均匀来流下深海立管涡激振动响应研究[J].振动与冲击,2007,26(12):10-13
    [87]葛菲,龙旭,王雷等。大长细比圆柱体顺流向与横向流固耦合涡激振动研究。中国科学G辑,2009,39(5),pp:752-759.
    [88]唐世振.考虑顺流向振动的深水顶张力立管涡激振动分析[D].中国海洋大学,2010,15-20.
    [89] Xiaohong, Chen. Study on Dynamic Interaction between Deep-water Floating Structures andTheir Mooring/tendon Systems:[D]. Houston: Texas A&M University,2002.
    [90] Love, A.E.H.. A Treatise on the Mathematical Theory of Elasticity.4th Edition, DoverPublications, New York,1944.
    [91] Nordgren, R.P. On computation of the motion of elastic rods. ASME Journal of AppliedMechanics,1974, September,777-780.
    [92] Garrett, D.L.. Dynamic analysis of slender rods. Journal of Energy Resources Technology,1982, Transaction of ASME104,302-307.
    [93] Paulling, J.R., Webster, W.C. A consistent large-amplitude analysis of the coupled response ofa TLP and tendon system. Proceedings of Offshore Mechanics and Arctic Engineering(OMAE),1986, Tokyo, Japan, Vol.3, pp.126-133.
    [94] Ma, W., Webster, W.C. An Analytical Approach to cable Dynamics: Theory and User Manual.1994, SEA GRANT PROJECT R/OE-26.
    [95] Garrett, D.L.. Dynamic analysis of slender rods. Journal of Energy Resources Technology,1982, Transaction of ASME104,302-307.
    [96]竺艳蓉.海洋工程波浪力学[M].天津大学出版社,1991.
    [97]聂武,刘玉秋.海洋工程结构动力分析[M],哈尔滨工程大学出版社,2002
    [98] Feng C C. The measurement of vortex induced effects in flow past stationary and oscillatingcircular and d-section cylinders [D]. Canada: Master’s Thesis, Department of MechanicalEngineering, University of British Columbia,1968
    [99] SARPKAYA T. Fluid forces on oscillating cylinders [J]. Journal of Waterway Port Coastaland Ocean Division ASCE,1978,104:275-290.
    [100] Gopalkrishnan R. Vortex induced forces on oscillating bluff cylinders [D]. MA, USA:Thesis, Department of Ocean Engineering, MIT, Cambridge,1993
    [101] Hartlen R T, Currie I G. Life-oscillator model of vortex-induced vibration [J]. ASCE Journalof the Engineering Mechanics,1970,96:577-591
    [102] SkopR A, Grifin O M. A model for the vortex-excited response of bluff cylinders [J]. Journalof Sound and Vibration,1973,27:225-233
    [103] StansbY P K, Slaouti A. Simulation of vortex shedding including blockage by therandom-vortex and other methods [J]. International Journal of Numerical Methods in Fluids,1993,17:1003-1013.
    [104] Korpus R, Jones P, Oakley O, et al. Prediction of Viscous Forces on Oscillating Cylinders byReynolds-Averaged Navier-Stokes solver [C]//Proceeding of the10thInternational Offshoreand Polar Engineering Conference.[S. I.]:[s. n],2000:471-477
    [105] Tutar M, Moldo A. E. Large Eddy Simulation of a smooth circular cylinder oscillatingnormal to a uniform flow [J]. ASME Journal of Fluids Engineering,2000,122:694-702
    [106] Evangelinos C, Lucor D, Karniadakis G E. Derived force distribution on flexile cylinderssubject to vortex-induced vibration [J]. Journal of Fluid and Structures,2000,14:429-440
    [107]黄维平,刘娟,王爱群.基于实验的圆柱体流固耦合升力谱模型研究[J],工程力学,2012,29(2):192-196,204
    [108]黄维平,王爱群,李华军.海底管道悬跨段流致振动实验研究及涡激力模型修正[J],工程力学,2007,24(12):153-157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700