新型紫外纳米压印光刻胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外纳米压印技术基于机械压印原理,具有避免使用昂贵的光源及投影光学系统,不受光学光刻的最短曝光波长的物理限制和工艺简便等特点,在下一代纳米图形加工技术中脱颖而出,引起了人们广泛的关注。目前,纳米压印技术己经应用到光探测器、晶带板、以及柔性电路板、有机电子装置、LED封装、具有以及高密度数据存储器的研究。在欧盟提出的DONDODEM计划中,也对纳米压印光刻技术给予了支持,该计划旨在形成一套纳米压印光刻技术的工艺规范和工业标准,以促进其早日在工业界得到广泛应用。在紫外压印工艺中,压印成像用的光刻胶是该技术成功的关键之一,光刻胶的粘性,湿度,紫外光聚合的动力学,还有刻蚀的选择性等都是需要关注的问题,需要不断开发新的光刻胶体系。本论文结合目前的紫外纳米压印技术,针对目前紫外纳米压印胶的一些缺陷,探索和设计了不同类型的紫外纳米压印胶,并深入研究了其性能与结构之间的关系,并将之进一步应用到纳米压印及其图形转移、以及软模板制备中。
     一、开发出一种基于硫一烯点击化学的新型的有机一无机杂化的紫外纳米压印胶JTHc—a。合成了基于巯基的P0ss—sH,相对于商业用的巯基化合物,挥发性小、且是有机无机杂化的分子级的功能化材料。将P0ss—sH和传统的甲基丙烯酸酯类化合物组合形成硫一烯类紫外光刻胶JTHc_a,该上海交通大学博士学位论文体系透明均一,稳定性好,有良好的储存性能。全文系统研究和考察了压印胶的组份及其聚合物膜的性能,整个光刻胶体系具有较低的粘度(6.1—24.4 cP),及其适合低压压印,同时P()SS的掺入大大提高了光刻胶的抗氧刻蚀性能和热稳定性能。通过红外和PhotoI)sc的原位跟踪检测,该光刻胶的光聚合过程中有效降低了氧阻聚作用,提高了碳碳双键转化率(93%),同时降低了光刻胶聚合后的本体收缩率(5.3%)。将优化后的压印胶JTHc—al用于紫外纳米压印,成功的压印出从微米到l00纳米尺寸的结构,并将之应用到图形转移中,能得到高分辨率的硅纳米图案。
     二、基于硫一烯点击化学的作为紫外压印胶的优点,进一步开发出一种基于硫一烯点击化学的含氟的紫外压印胶JTHc_b,并将之用于制备软模板。通过对含巯基的低倍多聚硅氧烷化合物(POSS—sH)巯基端基嫁接低表面能的氟化官能团,将硫一烯点击化学和POSS氟化物(P()SS—F—sH)的优势结合起来,开发出一种基于硫一烯点击化学的含氟的紫外压印胶JTHc_b。该光刻胶由POSS—F—sH,双官能团的含氟甲基丙烯酸酯DcFA。作为交联剂,和光引发剂I一907按一定摩尔比混合组成。这种基于硫一烯点击化学的光刻胶,具备紫外压印胶优异的品质,包括低粘度(16—239 cP)、低本体收缩率(4.8—7.5%)、以及极好的抗氧阻聚性能。此外,与传统的PI)MS软模板相比,JTHc_b软模板具有低表面张力(14—20.4 mJM-5)、高脱模效率、高透光率、高机械强度(0.3l—1.56 GPa)以及较高的热稳定性(Td>:300℃),并且进一步将此软模板应用于商业紫外光刻胶的压印中,得到很好的脱模效果以及大范围高精细的微纳米图形(200 nm一3.9um)。软模板在高温及不同压力下反复套用10次后,表现出较强的机械性能,模板没有撕裂和结构破损。这种经济的软模板制备方法,以及较强的机械性能和脱模性能使得该软模板具有在大规模微纳米器件制造中存在着潜在的价值。
     三、首次报道了一种基于硫一炔点击化学的含POSS的杂化紫外压印胶JTHc—c。这种基于硫一炔化学的体系比硫一烯体系具有更高的交联密度和玻璃化温度。整个光刻胶由双功能化的POSS—sH一0A,双官能团炔烃组成。整个体系透明均一,稳定性好,有良好的储存性能。P()SS—sH一0A的掺入能有效降低聚合后的本体收缩率(0.8—4.8%),大大提高了光刻胶的抗氧刻蚀性能以及热稳定性。同时,聚丙二醇类炔烃(PPGY)的加入能提高疏水性能(水接触角>90。C),这种基于硫一炔点击化学的光刻胶还因为其反应速度快,且具有低粘度(127一198 cP)、便于旋涂涂覆,极其适合低压压印。本章系统考察和优化了压印胶的组份,成功的压印出高精的微纳米图形,并将之应用到图形转移中,能得到高深宽比的硅纳米图案。
     四、为了进一步提高模板的利用效率,我们设计了一种可擦除的紫外压印胶。首先合成出具有光可逆功能的带有丙烯酸酯官能团的香豆素衍生物AHEMc作为交联剂。进一步的组合了光可逆紫外纳米压印胶,并对光可逆紫外压印胶的优化~‘11'眭1能进行了表征。通过uV_vis光谱的跟踪检测,可逆胶具有明显的光可逆性能。并且优化后的光可逆压印胶通过光二聚和解聚后,可以溶解在氯仿溶剂中,从而达到了很容易在模板表面清洗的目的。通过紫外纳米压印,AMP—10G—AHEMc光可逆胶能够大范围的压印出高精度的微纳米图形,同时和商业胶的抗sF6刻蚀性能做了对比,表现出极好的抗sF6性能,说明AMP—10G—AHEMc可逆压印胶的机械性能和抗刻蚀性能完全可以作为商用压印胶应用到纳米压印技术中。
UV nanoimprint lithography (UV-NIL) has gained increasing attention as a next-generation patterning technique that allows the fabrication of nanostructures with high resolution, and that offers a complementary alternative to traditional photolithography. Due to its facile, cost-effective, and high-throughput production processes, UV-NIL technology has been successfully used in the fabrication of electric and optical devices, such as light-emitting diodes and optical-disk storage devices, and in biological applications. NIL technology is listed in the International Technology Roadmap for Semicon-ductors for 22 nm half-pitch manufacturing. Despite the achievements in NIL technology, its progress has been limited by the availability of suitable resist materials. There are many factors will be considered, for example: the viscosity, humidity, the kinetic of the reaction and the etching resistance of the resist. To fully explore the potential of UV-curable resist and increase its versatility, it is desirable to develop new resist materials. In this thesis, we developed several types of organic-inorganic composite photoresists. Meanwihle, the relationship between the properties and the structure of the resists had been studied. Furthermore, the novel photoresists were sucessfully applied in UV-NIL, pattern transfer or the fabrication of the soft- mold.
     1. A novel hybrid resist for UV-NIL based on the thiol-ene photopolymerization, which is comprised of mercaptopropyl polyhedral oligomeric silsesquioxane (POSS-SH), diluted benzyl methacrylate (BMA) and crosslinker trimethylolpropane trimethacrylate (TMPT). The obtained hybrid resists possess a variety of characteristics desirable for UV-NIL, including low viscosity (6.1-24.4 cP), low bulk volumetric shrinkage (5.3%), high Young's modulus (0.9-5.2 GPa), high thermal stability and excellent dry etch resistance. Based on these performances, optimized component were evaluated as UV-NIL resist. The resultant pattern exhibited the high resolution pattern with feature sizes in the range of 100 nm to several microns. The double-layer resist approach is used for pattern transfer into silicon substrates. Due to excellent oxygen etch resistance of the etch barrier material, the final height of the transfer pattern is about 3 times more than that of the original NIL pattern.
     2. A novel fluorinated hybrid resist as soft mold for NIL based on the thiol-ene photopolymerization was precisely designed and synthesized, which is comprised of fluorinated mercaptopropyl polyhedral oligomeric silsesquioxane (POSS-F-SH), diluted crosslinker 2,2,3,3,4,4,5,5-octafluoro-1,6-hexyl diacrylate (DCFA4). The obtained fluorinated hybrid resists possess a variety of characteristics desirable for UV-NIL, including low viscosity (16-239 cP), low bulk volumetric shrinkage (4.8-7.5%) and a good resistance to oxygen inhibition. The cross-linked hybrid resins exhibited high transparency to UV light and resistance to organic solvents. As soft mold, the excellent mechanical property (Young's modulus 0.31-1.56 GPa) and low surface energy (14-20.4 mJ/m-2) of the fluorinated polymers provided a clean mold release without fracture or deformation of the embossed structures. The thermally stability (Td >300 C) render them capable of being used for both UV and thermal NIL duplication processes. The resultant soft mold exhibited the high resolution patterning capacity with feature sizes in the range of 200 nm to several microns. After repeating 10 imprinting cycles at relatively high temperature and pressure, no detectable crack or contamination of the replica surface was observed. The economic efficiency of the mold fabrication as well as the high durability and excellent releasing properties could be quite valuable to NIL for high-throughput fabrication of nano-devices.
    
     3. A novel hybrid resist for UV-NIL was precisely designed, and the radical-mediated thiol-yne step-growth photopolymerizations are utilized to form highly cross-linked polymer networks. The resist is comprised of mercaptopropyl and Octyl group bifunctional polyhedral oligomeric silsesquioxane (POSS-SH-OA), diluted crosslinker difunctional alkyne. The obtained hybrid resists possess numerous desirable characteristics for UV-NIL, such as great coatability, high thermal stability, hydrophobicity (water contact angle > 90 ), low bulk volumetric shrinkage (0.8~4.8%), and excellent dry etch resistance. In particular, the process of thiol-yne system allows the resists to be solidi ed within seconds under UV exposure at room temperature, Furthermore, due to excellent oxygen etch resistance of the etch barrier material, the final height of the transfer pattern is about 3 times more than that of the original NIL pattern.
     4. We designed a novel photo-reversible resist for UV-NIL which is comprised of a photo-reversible cross-linker (2-[(4-methyl-2-oxo-2h-1-benzo- pyran-7-yl)oxy] ethyl ester, AHEMC). Under exposure of 365 nm UV-light, this photo-reversible resist can form crosslinked network via radical polymerization of acrylate groups and photodimerization of coumarin moieties. The formed polymer networks containing coumarin dimer moieties could be degraded via illumination of point light source (254 nm). The reversibility of crosslinked system was helpful to refresh mold easily and release the adhered curing resist at room temperature.
引文
[1] Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 1995, 67, 3114-3116
    [2] Chou S Y, Krauss P R, Zhang W, Guo L, Zhuang L. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 1997, 15, 2897-2904
    [3] MIT Technology Review, ''10 emerging technologies that will change the world,'' MIT Technology Review, Feb. 2003
    [4] Whitesides G M, Ostuni E, Takayama S, Jiang X, Ingber D E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3, 335-73
    [5] Nomura S, Ojima H, Ohyabu Y, Kuwabara K, Miyauchi A, Uemura T. Cell Culture on Nanopillar Sheet: Study of HeLa Cells on Nanopillar Sheet. Japn. J. Appl. Phys. 2005, 44, L1184-L1186
    [6] Karp J M, Yeh J, Enga G, Fukuda J, Blumling J, Suh K Y, Cheng J J, Mahdavi A, Borenstein J, Langer R, Khademhosseini A. Controlling size, shape and homogeneity of embryoid bodies using poly(ethyleneglycol) microwells. Lab Chip 2007, 7, 786-794
    [7] Fukuda J, Khademhosseini A, Yeoa Y, Yang X Y, Yeha J, Enga G, Blumlinga J, Wang C F, Kohane D S, Langer R. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 2006, 27, 5259-5267
    [8] Li M T, Wang J, Zhuang L, Chou S Y. Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography. Appl. Phys. Lett. 2000, 76(6), 673-675
    [9]Resnick D J, Schmid G, Miller M, Doyle G, Jones C, LaBrake D.Step and flash imprint lithography template fabrication for emerging market applications. Proc. SPIE. 2007, 6607, 66070T
    [10] Semiconductor Ind. Assoc. International Roadmap for Semiconductors (ITRS)
    [11] Colburn M, Johnson S, Stewart M, Damle S, Bailey T C, et al. Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE. 1999, 3676, 379-389
    [12] Stewart M D, Johnson S C, Sreenivasan S V, Resnick D J, Willson C G. Nanofabrication with step and flash imprint lithography. J. Microlithogr. Microfabr. Microsyst. 2005, 4, 011002
    [13] Resnick D J. Imprint lithography. In Microlithography Science and Technology, ed. B W Smith, K Suzuki, 2007, pp. 465-499. NewYork: CRC Press
    [14] Liao W C, Hsu S L C. A novel liquid thermal polymerization resist for nanoimprint lithography with low shrinkage and high flow ability. Nanotechnology 2007, 18, 065303
    [15] Bogdanski N, Wissen M, Moellenbeck S, Scheer H C. Polymers below the critical molecular weight for thermal imprint lithography. Microelectron. Eng. 2008, 85, 825-829
    [16] Hirai Y, Yoshida S, Takagi N. Defect analysis in thermal nanoimprint lithography. J. Vac. Sci. Technol. B. 2003, 21, 2765-2770
    [17] Vogler M, Wiedenberg S, Mühlberger M, Bergmair I, Glinsner T, Schmidt H, Kley E B, Grützner G. Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography. Microelectron. Eng. 2007, 84, 984-988
    [18] Otto M, Bender M, Hadam B, Spangenberg B, Kurz H. Characterization and application of a UV-based imprint technique. Microelectron. Eng. 2001, 57-58, 361-366
    [19] Fuchs A, Bender M, Plachetka U, Kock L, Koo N, Wahlbrink T, Kurz H. Lithography potentials of UV-nanoimprint. Curr. Appl. Phys. 2008, 8, 669-674
    [20] Kumar A, Biebuyck H A, Whitesides G M. Patterning self-assembled monolayers: applications in materials science. Langmuir 1994, 10, 1498-1511
    [21] Gates B D, Xu Q, Stewart M, Ryan D, Willson C G, Whitesides G M. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 2005,105, 1171-1196
    [22] Gates B D. Nanofabrication with molds and stamps. Mater. Today 2005, 8, 44-49
    [23] . . . 2008, 26, 148-156
    [24] . . . 2009, 10, 47-52
    [25] Kim E K, Stewart M D, Wu K, Palmieri F L, Dickey M D, Ekerdt J G, Willson C G. Vinyl ether formulations for step and flash imprint lithography. J. Vac. Sci. Technol. B 2005, 23(6), 2967-2971
    [26] Schmitt H, Frey L, Ryssel H, Rommel M, Lehrer C. UV nanoimprint materials: Surface energies, residual layers, and imprint quality. J. Vac. Sci. Technol. B 2007, 25, 785-790
    [27] Gokan H, Esho S, Onishi Y. Dry etch resistance of organicmaterials. J. Electreochem Soc. 1983, 130(1), 143-146
    [28] Wang J J, Deng X G, Chen L. Free-space nano-optical devides and integration: Design, fabrication, and manufacturing. Bell Labs Technical Journal. 2005, 10(3), 107-127
    [29] Lee H, Hong S, Yang K. Fabriation of 100 nm metal lines on flexible plastic substrate using ultravillet curing nanoimprint lithography. Appl. Phys. Lett. 2006, 88, 1431121-1431123
    [30] Johnson S C. Step and flash imprint lithography: Materials and process development (Doctoral dissertation) Austin: The University of Texas, 2005
    [31] Jung G Y, Ganapathiappan S,Ohlberg D A A, Olynick D L, Chen Y, Tong W M, Williams R S. Fabrication of a 34×34 Crossbar Structure at 50 nm Half-pitch by UV-based Nanoimprint Lithography. Nano Lett. 2004, 4, 1225-1229
    [32] Vogler M. Low viscosity and fast curing polymer systerm for UV basded nanoimprint lithography and its processing. Prpc. SPIE. 2007, 6517, 651727
    [33] Murata N, Nishi S, Hosono S. UV-Curable Transparent Adhesives for Fabricating Precision Optical Components. J . Adhesion. 1996, 59, 39-50
    [34] Karrer P, Corbel S, Ander C J, et al. Shrinkage effects in photopolymerizable resins containing filling agents: Application to StereoPhotoLithography. J. Poly. Chem. Ed. 1992, 30, 2715-2723
    [35] Reuther F, Pfeiffer K, Fink M, Grützner G, Schulz H. Mix and match of nanoimprint and UV lithography. Proc. SPIE. 2001, 4343, 802-809
    [36] Guo L J. Nanoimprint and its application. Proc. SPIE. 2005, 5734, 53-64
    [37] Wissen M, Bogdanski N,Scheer H C, Bitz A, Ahrens G, Gruetzner G. Implication of the light polarisation for UV curing of prepatterned resists. Microelectron. Eng. 2005, 78-79, 659-664
    [38] Pfeiffer K, Reuther F, Fink M, Gruetzner G, Carlberg P, Maximov I. A comparison of thermally and photochemically cross-linked polymers for nanoimprinting. Microelectron. Eng. 2003, 67-68, 266-273
    [39] Schuster C, Kubenz M, Reuther F, Fink M, Gruetzner G. Mr-NIL 6000-New epoxy-based curing resist for efficient processing in combined thermal and UV nanoimprint lithography. Proc. SPIE. 2007, 6517, 65172B-1
    [40] Kim E K, Ekerdt J G, Willson C G. Importance of evaporation in the design of materials for step and flash imprint lithography. J. Vac. Sci. Technol. B 2005, 23(4), 1515-1520
    [41] Hagberg E C, Malkoch M, Ling Y B, Hawker C J, Carter K R. Effects of Modulus and SurfaceChemistry of Thiol-Ene Photopolymers in Nanoimprinting. Nano Lett., 2007, 70, 233-237
    [42] Chandra D, Crosby A J. Self-Wrinkling of UV-Cured Polymer Films. Adv. Mater. 2011, 23, 3441-3445
    [43] Campos L M, Meinel I, Guino R G, Schierhorn M, Gupta N, Stucky G D, Hawker C J. Highly Versatile and Robust Materials for SoftImprint Lithography Based on Thiol-ene Click Chemistry. Adv. Mater. 2008, 20, 3728-3733
    [44] Campos L M, Truong T T, Shim D E, Dimitriou M D, Shir D, Meinel I, Gerbec J A, Hahn H T, Rogers J A, Hawker C J. Applications of Photocurable PMMS Thiol-Ene Stamps in Soft Lithography. Chem. Mater. 2009, 21, 5319-5326.
    [45] Choi J H, Lee S W, Jeong J H, Choi D G, Lee E S. Direct imprint of conductive silver patterns using nanosilver particles and UV curable resin. Microelectron. Eng. 2009, 86, 622-627
    [46] Wang P T, Guo J B, Wang H H, Zhang Y, Wei J. Functionalized Multi-Walled Carbon Nanotubes Filled Ultraviolet Curable Resin Nanocomposites and Their Applications for Nanoimprint Lithography. J. Phys. Chem. C, 2009, 113 (19), 8118-8123
    [47] Kudo S, Nagase K, Kubo S, Sugihara O, Nakagawa M. Optically Transparent and Refractive Index-Tunable ZrO2/Photopolymer Composites Designed for Ultraviolet Nanoimprinting. Jpn. J. Appl. Phys. 2011, 50, 06GK12-1
    [48] Ingrosso C, Panniello A M, Comparelli R, Curri M L, Striccoli M. Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication. Materials 2010, 3, 1316-1352
    [49] Tamborra M, Striccoli M, Curri M L, Torres C M S, Agostiano A, et al. Nanocrystal-Based Luminescent Composites for Nanoimprinting Lithography. Small 2007, 3, 822-828
    [50] Kim W S, Kima K S, Kimb Y C, Bae B S. Thermo wetting embossing nanoimprinting of the organic-inorganic hybrid materials. Thin Solid Films 2005, 476, 181-184
    [51] Kim W S, Kima K S, Kimb Y C, Bae B S. Nanopatterning of photoniccrystals with a photocurable silica-titania organic-inorganic hybrid material by a UV-based nanoimprint technique. J. Mater. Chem. 2005, 15, 4535-4539
    [52] Lee B K, Hong L Y, Lee H Y, Kim D P, Kawai T. Replica Mold for Nanoimprint Lithography froma Novel Hybrid Resin. Langmuir 2009, 25, 11768-11776
    [53] Kim J H, Kim M, Lee M J, Lee J S, Shin K, Kim Y S. Low-Cost Fabrication of Transparent Hard Replica Molds for Imprinting Lithography. Adv. Mater. 2009, 21, 4050-4053
    [54] Lee B K, Cha N G, Hong L Y, Kim D P, Tanaka H, Lee H Y, Kawai T. Photocurable Silsesquioxane-Based Formulations as Versatile Resins for Nanoimprint Lithography. Langmuir 2010, 26 (18), 14915-14922
    [55] Chao B H, Palmieri F, Jen W L, Michael D H M, Willson C G, Owens J, Berger R, Sotoodeh K, Wilks B, Pham J, Carpio R, Belle E L, Wetzel J. Dual damascene BEOL processing using multilevel step and flash imprint lithography. Proc. SPIE. 2008, 6921, 69210C.
    [56] Hao J J, Lin M W, Palmieri F, Nishimura Y, Chao H L, Stewart M D, Collins A, Jen K, Willson C G. Photocurable Silicon-based Materials for Imprinting Lithography. Proc. SPIE. 2007, 6517.2, 651729.1-651729.9
    [57] Jen W L K. Materials and Processes for Advanced Lithography Applications (Doctoral dissertation). The University of Texas Libraries. 2009, chapter 4, pp: 105-115
    [58] Pina H C, Fu P F, Guo L J. Easy duplication of stamps using UV-cured fluoro-silsesquioxane for nanoimprint lithography. J. Vac. Sci. Technol. B 2008, 26(6), 2426-2429
    [59] Pina H C, Fu P F, Guo L J. High-Resolution Functional Epoxy silsesquioxane-Based Patterning Layers for Large-Area Nanoimprinting. ACS Nano. 2010, 4(8), 4776-4784
    [60] Gourgona C, Béduera A, Landisb S, Perreta C, Chaixb N, Gereigea I. Low temperature direct imprint of polyhedral oligomeric silsesquioxane (POSS) resist. Microelectron. Eng. 2011, 88, 1997-1999
    [61] Ro H W, Popova V, Chen L, Forster A M, Ding Y F, Alvine K J, Krug D J, Laine R M, Soles C L. Cubic Silsesquioxanes as a Green, High-Performance Mold Material for Nanoimprint Lithography. Adv. Mater. 2011, 23, 414-420
    [62] Simon Y C, Moran I W, Carter K R, Coughlin E B. Silylcarborane Acrylate Nanoimprint Lithography Resists. ACS. Appl. Mater & Inter. 2009, 1, 1887-1892
    [63] Kim Y S, Lee H H, Hammond P T. High density nanostructure transfer in soft molding using polyurethane acrylate molds and polyelectrolyte multilayers. Nanotechnology 2003, 14, 1140-1144
    [64] Lee N Y, Lim J R, Lee M J, Park S, Kim Y S, Multilayer transfer printing on microreservoir-patterned substrate employing hydrophilic composite mold for selective immobilization of biomolecules. Langmuir 2006, 22, 7689-7694
    [65] Csucs G, Kunzler T, Feldman K, Robin F, Spencer N D. Microcontact printing of macromolecules with submicrometer resolution by means of polyolefin stamps. Langmuir 2003, 19, 6104-6109
    [66] Lee J N, Park C, Whitesides G M. Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544-6554
    [67] Rolland J P, Hagberg E C, Denison G M, Carter K R, Simone J M. High-Resolution Soft Lithography: Enabling Materials for Nanotechnologies. Angew. Chem., Int. Ed. 2004, 43, 5796-5799
    [68] Kumar A, Whitesides G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol‘‘ink’’followed by chemical etching. Appl. Phys. Lett. 1993, 63, 2002-2004
    [69] Ge H X, Wu W, Li Z. Y, Jung G. Y, Olynick D, Chen Y F, Liddle J A, Wang S Y, Williams R S. Cross-linked Polymer Replica of a Nanoimprint Mold at 30 nm Half-pitch. Nano Lett. 2005, 5, 179-182
    [70] Yoo P J, Choi S. J, Kim J H, Suh D, Baek S J, Kim T W, Lee H H. Unconventional patterning with a modulus-tunable mold: From imprinting to microcontact printing. Chem. Mater. 2004, 16, 5000-5005
    [71] Khang D Y, Kang H, Kim T I, Lee H H. Low-pressure nanoimprint lithography. Nano Lett. 2004, 4, 633-637
    [72] Khang D Y, Lee, H. H. Sub-100 nm patterning with an amorphous fluoropolymer mold. Langmuir 2004, 20, 2445-2448
    [73] Choi D G, Jeong J H, Sim Y S, Lee E S, Kim W S, Bae B S. Fluorinated Organic Inorganic Hybrid Mold as a New Stamp for Nanoimprint and Soft Lithography. Langmuir 2005, 21, 9390-9392
    [74] Kim W S, Jin J H, Bae B S. Low adhesive force of fluorinated sol-gel hybrid materials for easy de-moulding in a UV-based nanoimprint process. Nanotechnology 2006, 17, 1212-1216
    [75] Williams S S, Retterer S, Lopez R, Ruiz R, Samulski E T, DeSimone J M. High-Resolution PFPE-based Molding Techniques for Nanofabrication of High-Pattern Density, Sub-20nm Features:A Fundamental Materials Approach. Nano Lett. 2010, 10, 1421-1428
    [76] Park S, Park H H, Han O H, Chae S A, Lee D, Kim D P. Non-sticky silicate replica mold by phaseconversion approach for nanoimprint lithography applications. J. Mater. Chem. 2010, 20, 9962-9967
    [77] Lee B K, Cho H, Chung B H. Nonstick, Modulus-Tunable and Gas-Permeable Replicas for Mold-Based, High-Resolution Nanolithography. Adv. Funct. Mater. 2011, 21, 3681-3689
    [78] Resnick P R, Buck W H, Hougham G, Cassidy P E, Johns K, Davidson T. Fluoropolymers: Properties, vol.2, Kluwer Academic, New York, 1999
    [79] Khang D Y, Kang H, Kim T I, Lee H H. Low-Pressure Nanoimprint Lithography. Nano Lett. 2004, 4, 633-637
    [80] Schift H, Saxer S, Park S, Padeste C, Pieles U, Gobrecht J. Controlled co-evaporation of silanes for nanoimprint stamps. Nanotechnology 2005, 16, S171-S175
    [81] Kim J Y, Choi D G, Jeong J H, Lee E S. UV-curable nanoimprint resin with enhanced anti-sticking property. Appl. Surf. Sci. 2008, 254, 4793-4796
    [82] Kawaguchi Y, Nonaka F, Sanada Y. Fluorinated materials for UV nanoimprint lithography. Microelectron. Eng. 2007, 84, 973-976
    [83] Palmieri F, Adams J, Long B, Heath W, Tsiartas P, Willson C G. Design of Reversible Cross-Linkers for Step and Flash Imprint Lithography Imprint Resists. ACS Nano. 2007, 1, 307-312
    [84] Heath W H, Palmieri F, Adams J R, Long B K, Willson C G. Degradable Cross-Linkers and Strippable Imaging Materials for Step-and-Flash Imprint Lithography. Macromolecules 2008, 41, 719-726
    [85] Matsukawa D, Wakayama H, Mitsukura K, Okamura H, Hirai Y, Shirai M. A UV curable resin with reworkable properties: application to imprint lithography. J. Mater. Chem. 2009, 19, 4085-4087
    [86] Law W L, Hill R H. Synthesis and characterization of photochemically produced thin films of CeO2 films by photoresist-free lithography. Materials Research Bulletin, 1998, 33, 69-80
    [87] Park H H, Zhang X, Lee S W, Jeong D J, Hill R H, Jeong J H, et al. Photo-induced hybrid nanopatterning of titanium dioxide via direct imprint lithography. J. Mater. Chem. 2010, 20, 1921-1926
    [88] Park H H, Zhang X, Lee S W, Jeong D J, Hill R H, Jeong J H, et al. Optical characterization of anatase TiO2 films patterned by direct ultraviolet-assisted nanoimprint lithography. Microelectron. Eng. 2011, 88, 923-928
    [89] Park H H, Zhang X, Lee S W, Jeong D J, Hill R H, Jeong J H, et al. Facile nanopatterning ofzirconium dioxide films via directul traviolet-assisted nanoimprint lithography. J. Mater. Chem. 2011, 21, 657-662
    [90] Behl M, Seekamp J, Zankovych S, Torres C M S, Zentel R, Ahipelto J. Towards Plastic Electronics: Patterning Semiconducting Polymers by Nanoimprint Lithography. Adv. Mater. 2002, 14, 588-591
    [91] Austin Ml D, Chou S Y. Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography. Appl. Phys. Lett. 2002, 81, 4431-4433
    [92] Qin Y, Hlaing H, Ocko B, Black C, Grubbs R B. UV Crosslinkable Polythiophene for Nano-imprinting and Photolithography Toward Ordered Bulk Heterojunction in Organic Photovoltaics. Gordon Research Conference-Electronic Processes in Organic Materials. 2010, BNL-93827-2010-CP
    [93] Werne T A V, Germack D S, Hagberg E C, Sheares V V, Hawker C J, Carter K R.. A Versatile Method for Tuning the Chemistry and Size of Nanoscopic Features by Living Free Radical Polymerization. J. Am. Chem. Soc. 2003, 125, 3831-3838
    [94] Ofir Y, Moran I W, Subramani C, Carter K R, Rotello V M. Adv. Mater. 2010, 22, 3608-3614
    [95] Subramani C, Ofir Y, Patra D, ordan B J J,Moran I W, Park M Y H, Carter K R, Rotello V M. Nanoimprinted Polyethyleneimine: A Multimodal Template for Nanoparticle Assembly and Immobilization. Adv. Funct. Mater. 2009, 19, 2937-2942
    [96] Khire V S, Yi Y W, Clark N, Bowman C N. Formation and Surface Modification of Nanopatterned Thiol-ene Substrates using Step and FlashImprint Lithography. Adv. Mater. 2008, 20, 3308-3313
    [1] Lee H, Hong S, Yang K. Fabriation of 100 nm metal lines on flexible plastic substrate usingultravillet curing nanoimprint lithography. Appl. Phys. Lett. 2006, 88, 1431121-1431123
    [2] Johnson S C. Step and flash imprint lithography: Materials and process development (Doctoral dissertation) Austin: The University of Texas, 2005
    [3] Jung G Y, Ganapathiappan S, Ohlberg D A A, Olynick D L, Chen Y, Tong W M, Williams R S. Fabrication of a 34×34 Crossbar Structure at 50 nm Half-pitch by UV-based Nanoimprint Lithography. Nano Lett. 2004, 4, 1225-1229
    [4] Kim E K, Stewart M D, Wu K, Palmieri F L, Dickey M D, Ekerdt J G, Willson C G. Vinyl ether formulations for step and flash imprint lithography. J. Vac. Sci. Technol. B 2005, 23(6), 2967-2971
    [5] Kim E K, Ekerdt J G, Willson C G. Importance of evaporation in the design of materials for step and flash imprint lithography. J. Vac. Sci. Technol. B 2005, 23(4), 1515-1520
    [6] Kim E K, Willson C G. Thermal analysis for step and flash imprint lithography during UV curing process. Microelectron. Eng. 2006, 83, 213-216
    [7] Chiou B, Khan S A. Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers. Macromolecules 1997, 30, 7322-7328
    [8] Lu H, Stansbury J W, Bowman C N. Investigations of step-growth thiol-ene polymerizations for novel dental restoratives. Dent. Mater. 2005, 21, 1129-1136
    [9] Morgan C R, Magnotta F, Ketley A D. Thiol/ene photocurable polymers. J. Polym. Sci. Part A. 1977, 15, 627- 645
    [10] Jacobine A F. In Radiation Curing in Polymer Science and Technology III: Polymerization Mechanisms; Fouassier J D, Rabek J F. Elsevier: London, 1993; Chapter 7, pp: 219-268
    [11] Duchateau R. Incompletely Condensed Silsesquioxanes: Versatile Tools in Developing Silica-Supported Olefin Polymerization Catalysts. Chem. Rev. 2002, 102, 3525-3542
    [12] Cordes D B, Lickiss P D, Rataboul F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110(4), 2081-173
    [13] Ro H W, Soles C L. Silsesquioxanes in nanoscale patterning applications. Mater. Today 2011, 14, 20-33
    [14] Lee B K, Cha N G, Hong L Y, Kim D P, Tanaka H, Lee H Y, Kawai T. Photocurable Silsesquioxane-Based Formulations as Versatile Resins for Nanoimprint Lithography. Langmuir 2010,26 (18), 14915-14922
    [15] Chao B H, Palmieri F, Jen W L, Michael D H M, Willson C G, Owens J, Berger R, Sotoodeh K, Wilks B, Pham J, Carpio R, Belle E L, Wetzel J. Dual damascene BEOL processing using multilevel step and flash imprint lithography. Proc. SPIE. 2008, 6921.1, 69210C
    [16] Hao J J, Lin M W, Palmieri F, Nishimura Y, Chao H L, Stewart M D, Collins A, Jen K, Willson C G. Photocurable Silicon-based Materials for Imprinting Lithography. Proc. SPIE. 2007, 6517, 651729.1-651729.9
    [17] Jen W L K. Materials and Processes for Advanced Lithography Applications (Doctoral dissertation). The University of Texas Libraries. 2009, chapter 4, pp: 105-115
    [18] Pina H C, Fu P F, Guo L J. Easy duplication of stamps using UV-cured fluoro-silsesquioxane for nanoimprint lithography. J. Vac. Sci. Technol. B 2008, 26(6), 2426-2429
    [19] Pina H C, Fu P F, Guo L J. High-Resolution Functional Epoxy silsesquioxane-Based Patterning Layers for Large-Area Nanoimprinting. ACS Nano. 2010, 4(8), 4776-4784
    [20] Gourgona C, Béduera A, Landisb S, Perreta C, Chaixb N, Gereigea I. Low temperature direct imprint of polyhedral oligomeric silsesquioxane (POSS) resist. Microelectron. Eng. 2011, 88, 1997-1999
    [21] Ro H W, Popova V, Chen L, Forster A M, Ding Y F, Alvine K J, Krug D J, Laine R M, Soles C L. Cubic Silsesquioxanes as a Green, High-Performance Mold Material for Nanoimprint Lithography. Adv. Mater. 2011, 23, 414-420
    [22] Fu J F, Shi L Y, Chen Y, Yuan S, Wu J, Liang X L, Zhong Q D. J. Appl. Polym. Sci, 2008, 109, 340–349
    [23] Wang C F, Chiou S F, Ko F H, Chen J K, Chou C T, Hua C F, Kuo S W, Chang F C. Polybenzoxazine as a mold-release agent for nanoimprint lithography. Langmuir 2007, 23, 5868-5871
    [24] Doraiswamy A, Ovsianikov A, Gittard S D, Monteiro-Riviere N A, Crombez R, Montalvo E, Shen W D, Chichkov B N, Narayan R J. Fabrication of Microneedles Using Two Photon Polymerization for Transdermal Delivery of Nanomaterials. J. Nanosci. Nanotechno. 2010, 10, 6305-6312
    [25] Cramer N B, Bowman C N. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time fourier transform infrared. J. Polym. Sci. Part A 2001, 39, 3311-3319
    [26] Khire V S, Yi Y W, Clark N, Bowman C N. Formation and Surface Modification of Nanopatterned Thiol-ene Substrates using Step and FlashImprint Lithography. Adv. Mater. 2008, 20, 3308-3313
    [27] Dodiuk K H, Maoz Y, Lizenboim K, Eppelbaum I, Zalsman B, Kenig, S. The effect of grafted caged silica (polyhedral oligomeric silesquioxanes) on the properties of dental composites and adhesives. J. Adhesion Sci. Technol. 2006, 20, 1401-1406
    [1] Truffier B D, Zelsmann M, Girolamo J D, Boussey J, Lombard C, Pépin D B. Chemical degradation of fluorinated antisticking treatments in UV nanoimprint lithography. Appl. Phys. Lett. 94, 2009, 044110-044113
    [2] Francone A, Iojoiu P C, Lombard C, Pépin D B, Boussey J, Zelsmann M. Impact of the resist properties on the antisticking layer degradation in UV nanoimprint lithography. J. Vac. Sci. Technol. B 28, 2010, C6M72-C6M76
    [3] Kirchner R, Teng L C, Lu B, Adolphi B, Fischer W J. Degradation of Perfluorotrichlorosilane Antisticking Layers: The Impacton Mold Cleaning, Ultraviolet-Nanoimprinting, and Bonded Ultraviolet-Nanoimprint Molds. Jpn. J. Appl. Phys. 2011, 50, 06GK13
    [4] Gates B D, Xu Q B, Stewart M, Ryan D, Willson C G, Whitesides G M. New Approaches to Nanofabrication:Molding, Printing, and Other Techniques. Chem. Rev. 2005, 105, 1171-1196
    [5] Rolland J P, Maynor B W, Euliss L E, Exner A E, Denison G M, DeSimone J M. Direct fabricationand harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 2005, 127, 10096-10100
    [6] Choi K M. Photopatternable silicon elastomers with enhanced mechanical properties for high-fidelity nanoresolution soft lithography. J. Phys. Chem. B 2005, 109, 21525-21531
    [7] Choi D G, Jeong J H, Sim Y S, Lee E S, Kim W S, Bae B S. Fluorinated Organic Inorganic Hybrid Mold as a New Stamp for Nanoimprint and Soft Lithography. Langmuir 2005, 21, 9390-9392
    [8] Kim W S, Jin J H, Bae B S. Low adhesive force of fluorinated sol-gel hybrid materials for easy de-moulding in a UV-based nanoimprint process. Nanotechnology 2006, 17, 1212-1216
    [9] Williams S S, Retterer S, Lopez R, Ruiz R, Samulski E T, DeSimone J M. High-Resolution PFPE-based Molding Techniques for Nanofabrication of High-Pattern Density, Sub-20nm Features:A Fundamental Materials Approach. Nano Lett. 2010, 10, 1421-1428
    [10] Park S, Park H H, Han O H, Chae S A, Lee D, Kim D P. Non-sticky silicate replica mold by phase conversion approach for nanoimprint lithography applications. J. Mater. Chem. 2010, 20, 9962-9967
    [11] Lee B K, Cho H, Chung B H. Nonstick, Modulus-Tunable and Gas-Permeable Replicas for Mold-Based, High-Resolution Nanolithography. Adv. Funct. Mater. 2011, 21, 3681-3689
    [12] Choi K M, Rogers J A. A photocurable poly (dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J. Am. Chem. Soc. 2003, 125, 4060-4061
    [13] Schmid H, Michel B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 2000, 33, 3042-3049
    [14] Odom T W, Love J C, Wolfe D B, Paul K E, Whitesides G M. Improved pattern transfer in soft lithography using composite stamps. Langmuir 2002, 18, 5314-5320
    [15] Cramer N B, Bowman C N. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time fourier transform infrared. J. Polym. Sci. Part A 2001, 39, 3311-3319
    [16] Lee B K, Hong L Y, Lee H Y, Kim D P, Kawai T. Replica Mold for Nanoimprint Lithography from a Novel Hybrid Resin. Langmuir 2009, 25, 11768-11776
    [17] Hernandez C P, Fu P F, Guo L J. Easy duplication of stamps using UV-cured fluoro-silsesquioxane for nanoimprint lithography. J. Vac. Sci. Technol. B 2008, 26, 2426-2430
    [18] Satoshi T. Step and Flash Imprint of Fluorinated Silicon-Containing Resist Materials forThree-Dimensional Nanofabrication. Jpn. J. Appl. Phys. 2010, 49, 071602-071607
    [19] Wissen M, Bogdanski N, Scheer H C, Bitz A, Ahrens G, Gruetzner G. Implication of the light polarisation for UV curing of prepatterned resists. Microelectron. Eng. 2005, 78-79, 659-664
    [20] Pfeiffer K, Reuther F, Fink M, Gruetzner G, Carlberg P, Maximov I. A comparison of thermally and photochemically cross-linked polymers for nanoimprinting. Microelectron. Eng. 2003, 67-68, 266-273
    [1] Chan J W, Zhou H, Hoyle C E, Lowe A B. Photopolymerization of Thiol-Alkynes: Polysulfide Networks. Chem. Mater. 2009, 21, 1579-1585
    [2]Fairbanks B D, Scott T F, Kloxin C J, Anseth K S, Bowman C N. Thiol-Yne Photopolymerizations: Novel Mechanism, Kinetics, and Step-Growth Formation of Highly Cross-Linked Networks. Macromolecules 2009, 42, 211-217
    [3] Hensarling R M, Doughty V A, Chan J W, Patton D L. "Clicking" Polymer Brushes with Thiol-yne Chemistry: Indoors and Out. J. Am. Chem. Soc. 2009, 131, 14673-14675
    [4] Konkolewicz D, Weale A G, Perrie S. Hyperbranched Polymers by Thiol-Yne Chemistry: From Small Molecules to Functional Polymers. J. Am. Chem. Soc. 2009, 131, 18075-18077
    [5] Chan J W, Shin J, Hoyle C E, Bowman C N, Lowe A B. Synthesis, Thiol-Yne ClickPhotopolymerization, and Physical Properties of Networks Derived from Novel Multifunctional Alkynes. Macromolecules 2010, 43, 4937-4942
    [6] Fairbanks B D, Sims E A, Anseth K S, Bowman C N. Reaction Rates and Mechanisms for Radical, Photoinitated Addition of Thiols to Alkynes, and Implications for Thiol-Yne Photopolymerizations and Click Reactions. Macromolecules 2010, 43, 4113-4119
    [7] Park H Y, Kloxin C J, Scott T F, Bowman C N. Stress Relaxation by Addition-Fragmentation Chain Transfer in Highly Cross-Linked Thiol-Yne Networks. Macromolecules 2010, 43, 10188-10190
    [8] Liu J Z, Lam J W Y, Jim C K W, Ng J C Y, Shi J B, Su H, Yeung K F, Hong Y N, Faisal M, Yu Y, Wong K S, Tang B Z. Thiol-Yne Click Polymerization: Regio- and Stereoselective Synthesis of Sulfur-Rich Acetylenic Polymers with Controllable Chain Conformations and Tunable Optical Properties. Macromolecules 2011, 44, 68-79
    [9] Lowe A B, Hoyleb C E, Bowman C N. Thiol-yne click chemistry: A powerful and versatile methodology formaterials synthesis. J. Mater. Chem. 2010, 20, 4745-4750
    [10] Ye S, Cramer N B, Smith I R, Voigt K R, Bowman C N. Reaction Kinetics and Reduced Shrinkage Stress of Thiol-Yne-Methacrylate and Thiol-Yne-Acrylate Ternary Systems. Macromolecules 2011,DOI:10.1021/ma2018809
    [10] Jerman I, Vuk A ?, Ko?elj M, Orel B, Kovac J. A Structural and Corrosion Study of Triethoxysilyl Functionalized POSS Coatings on AA2024 Alloy. Langmuir 2008, 24, 5029 -5037
    [11] Jerman I, Vuk A ?, Ko?elj M, Orel B. The effect of polyhedral oligomericsilsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Sol. Energy Mater. Sol. Cells. 2010, 94, 232-245
    [12] Zhang Y N, Wang G W, Huang J L. Synthesis of Macrocyclic Poly(ethyleneoxide) and Polystyrene via Glaser Coupling Reaction. Macromolecules 2010, 43, 10343-10347
    [13] Wang C F, Chiou S F, Ko F H, Chen J K, Chou C T, Hua C F, Kuo S W, Chang F C. Polybenzoxazine as a mold-release agent for nanoimprint lithography. Langmuir 2007, 23, 5868-5871.
    [14] Cordes D B, Lickiss P D, Rataboul F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110(4), 2081-173
    [15] Lin H, Wan X, Jiang X S, Wang Q W, Yin J. Nanoimprint Lithography (UV-NIL) hybrid photoresist based on thiol-ene system. Adv. Funct. Mater. 2011, 21, 2960-2967
    [1] Kannurpatti A R, Anseth, J W, Bowman C N. A study of the evolution of mechanical properties and structural heterogeneity of polymernetworks formed by photopolymerizations of multifunctional (meth) acrylates. Polymer 1998, 39, 2507-2513
    [2] Tsige M, Lorenz C D, Stevens M J. Effect of Cross-Linker Functionality on the Adhesion of Highly Cross-Linked Polymer Networks: A Molecular Dynamics Study of Epoxies. Macromolecules 2004, 37, 8466-8472
    [3] Lovestead T M, Berchtold K A, Bowman C N. An Investigation of Chain Length Dependent Termination and Reaction Diffusion Controlled Termination during the Free Radical Photopolymerization of Multivinyl Monomers. Macromolecules 2005, 38, 6374-6381
    [4] Colburn M, Suez I, More A, Willson C G. Characterization and modeling of volumetric and mechanical properties for step and flash imprint lithography photopolymers. J. Vac. Sci. Technol., B 2001, 19, 2685-2687
    [5] Dickey M D, Burns R L, Kim E K, Johnson S C, Stacey N A, Willson C G. Study of the kinetics of step and flash imprint lithography photopolymerization. AlChE J. 2005, 51, 2547-2555
    [6] Ruckenstein E, Zhang H. A novel breakable cross-linker and pH-responsive star-shaped and gel polymers. Macromolecules 1999, 32, 3979-3983
    [7] Gravert D J, Janda K D. Organic synthesis on soluble polymersupports: liquid-phase methodologies. Chem. Rev. 1997, 97 (2), 489-510
    [8] Palmieri F, Adams J, Long B, Heath W, Tsiartas P, Willson C G. Design of Reversible Cross-Linkers for Step and Flash Imprint Lithography Imprint Resists. ACS Nano. 2007, 1, 307-312
    [9] Heath W H, Palmieri F, Adams J R, Long B K, Willson C G. Degradable Cross-Linkers andStrippable Imaging Materials for Step-and-Flash Imprint Lithography. Macromolecules 2008, 41, 719-726
    [10] Matsukawa D, Wakayama H, Mitsukura K, Okamura H, Hirai Y, Shirai M. A UV curable resin with reworkable properties: application to imprint lithography. J. Mater. Chem. 2009, 19, 4085-4087
    [11] Guo Z X, Jiao T F, Liu M H. Effect of substituent position in coumarin derivatives on the interfacial assembly: Reversible photodimerization and supramolecular chirality. Langmuir 2007, 23, 1824-1829
    [12] Fujiwara M, Shiokawa K, Kawasaki N, Tanka Y. Photodimerization of Coumarin-Derived Pentacyclo [9.5. 1.13, 9.15, 15.17, 13] octasiloxane to Fabricate a Three-Dimensional Organic-Inorganic Hybrid Material. Adv. Funct. Mater. 2003, 13, 371-376
    [13] Muthuramu K, Ramamurthy V. Photodimerization of coumarin in aqueous and micellar media. J. Org. Chem. 1982, 47, 3976-3979
    [14] Ngai T, Wu C. Effect of Cross-Linking on Dynamics of Semidilute Copolymer Solutions: Poly (methyl methacrylate-co-7-acryloyloxy-4-methylcoumarin) in Chloroform. Macromolecules 2003, 36, 848-854
    [15] Gokan H, Esho S, Onishi Y. Dry etch resistance of organicmaterials. J. Electreochem Soc. 1983, 130(1), 143-146
    [16] Wang C F, Chiou S F, Ko F H, Chen J K, Chou C T, Hua C F, Kuo S W, Chang F C. Polybenzoxazine as a mold-release agent for nanoimprint lithography. Langmuir 2007, 23, 5868-5871
    [17] Chen Y, Geh J L. Copolymers derived from 7-acryloyloxy-4-methylcoumarin and acrylates: 1. Reversible photocrosslinking and photocleavage. Polymer 1996, 37(20), 4473-4480
    [18] Chen Y, Geh J L. Copolymers derived from 7-acryloyloxy-4-methylcoumarin and acrylates: 2. Reversible photocrosslinking and photocleavage. Polymer 1996, 37, 4481-4486
    [19] Dendukuri D, Panda P, Haghgooie R, Kim J M, Hatton T A, Doyle P S. Modeling of Oxygen-Inhibited Free Radical Photopolymerization in a PDMS Microfluidic Device. Macromolecules 2008, 41, 8547-8556

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700