自抗扰控制技术在轻型高压直流输电系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
VSC-HVDC输电技术因具有高度可控性的优点而在电力系统中得到越来越广泛的应用。与传统直流输电相比,它能够实现有功功率和无功功率的独立调节。本文利用自抗扰控制技术,对VSC-HVDC和VSC-MTDC换流器控制策略进行分析与研究。
     (1)介绍自抗扰控制技术的发展及其优点,在多阶及二阶自抗扰控制器的基础上,设计出实用性更强的一阶自抗扰控制器;
     (2)通过对电压源整流器工作原理及数学模型研究,建立了基于电压源换流器的连接双端有源网络的VSC-HVDC模型。为了减少控制器对系统数学模型的依赖性,利用自抗扰控制技术,设计出直接电流控制的外环定直流电压控制器、定有功功率控制器和定无功功率控制器,并对内环控制器采用最优控制函数,最终实现动态响应快、鲁棒性强、对外扰不敏感的控制目标。
     (3)建立三端VSC-MTDC模型,其中两端换流器连接有源网络,另一端连接无源网络。结合双端VSC-HVDC系统自抗扰控制器与主从式控制的方法,将该控制策略用于所建立的三端VSC-MTDC系统中,仿真结果表明控制策略的有效性。一阶自抗扰控制器具有设计过程简单、运算速度快、可靠性高的优点。通过对双端VSC-HVDC和三端VSC-MTDC系统进行数字仿真,验证了使用自抗扰控制器的直流输电系统在潮流反转、有功功率阶跃、无功功率阶跃、交流系统故障及直流电压下降时的有效性。
VSC-HVDC transmission technology possesses the advantages of high controllability and gets more and more widely used in electric power system. Compared with the traditional dc transmission, it is able to achieve the independent regulation of active power and reactive power.In this paper, on the basis of the Auto Disturbance Rejection technique, the VSC-HVDC and the VSC-MTDC converter control strategies have been analysised and researched.
     (1) Introduced the development Auto Disturbance Rejection technique and its advantages,on the basis of the multi-order and second-order Auto Disturbance Rejection Controller,designed a more useful ADRC of one-order.
     (2) Based on voltage source rectifier working principle and mathematical model research, constructted the model of double terminal VSC-HVDC. For reduce the dependence of the controller on the system mathematical model,designed a direct current controller of outer loop controller with the constant dc voltage,the active power controller and the reactive power controller, of the inner loop controller using optimal control function.Finally realizes the fast dynamic response, strong robustness and external disturbance not sensitive control objectives.
     (3) Three terminal VSC-MTDC model is set up, including two terminals connected to active networks and one terminal to passive network.Together with voltage margin control methods,ADRC is used on the system.
     The first-order ADRC have the advantages of simplely design process,fastly speed and highly reliability.Based on the result of digital simulation for double terminal VSC-HVDC and three terminal VSC-MTDC,verifyed the effectiveness of ADRC in power flow reversal step,active power step,reactive power step,ac system fault and dc voltage drop.
引文
[1]郑超.基于电压源换流器的高压直流输电系统数学建模与仿真分析[D].北京:中国电力科学研究院,2006.
    [2]赵畹君.高压直流输电技术[M].北京:中国电力出版社,2004.
    [3]刘洪波.新型直流输电的保护与控制策略研究[D].杭州:浙江大学,2003
    [4]陈谦.新型多端直流输电系统的运行与控制[D].南京:东南大学,2004.
    [5]袁旭峰.新型混合多端直流输电系统理论及其若干问题研究[D].武汉:华中科科技大学,2007.
    [6]Farhad Nozari, Hasmukh S.Patel. Power Electronics in Electric Utilities:HVDC Power Transmission System [J].Proceeding of the IEEE,1988,76(4):495-506.
    [7]刘洪涛,徐政.基于三电平电压源换流器的高压直流输电系统的控制策略研究[J].电工技术学报,2003,18(3):102-106
    [8]张桂斌,徐政,王广柱.基于VSC的直流输电系统的稳态建模及其非线性控制[J].中国电机工程学报,2002,22(1):17-22
    [9]周丹.基于电压源型换流器的多端直流输电系统控制仿真研究[D].武汉:华中科技大学,2008
    [10]胡兆庆.基于VSC的HVDC控制及其动态特性研究[D].武汉:华中科技大学,2005
    [11]从振.轻型高压直流输电控制策略研究[D].成都:西南交通大学.2010
    [12]金灵满.基于VSC的高压直流输电系统控制策略研究[D].长沙:湖南大学,2007
    [13]Boon-Teck Ooi, Xiao Wang.Voltage angle lock loop control of the boost type PWM converter for HVDC application.IEEE Trans.on Power Eleetronics.1990,5(2):229-235.
    [14]Xiao Wang, Boon-Teck Ooi. High voltage direct current transmission system based on voltage source converter.PESC'90 Record volume 1:325-332
    [15]Boon-Teck Ooi, Xiao Wang. Boost type PWM HVDC transmission system. IEEE Trans.on Power Delivery,1991,6(1):1557-1563.
    [16]张桂斌,徐政,王广柱.基于VSC的直流输电系统的稳态模型及非线性控制[J].中国电机工程学报,2002,22(1):17-22
    [17]陈谦,唐国庆,胡铭.采用dqo坐标的VSC-HVDC稳态模型与控制器设计[J].电力系统自动化,2004,28(16):6]-66
    [18]陈海荣,徐政.基于同步旋转坐标变换的VSC-HVDC暂态模型及其控制器[J].电工技术学报,2007,22(2):121-126.
    [19]邱大强,李群湛,马庆安,等.基于直接功率控制的VSC-HVDC系统换流控制器设计[J].高电压技术.2010.36(10):2600-2606
    [20]吴维鑫,王奔,李慧,等.电压源换流器高压直流输电系统的精确线性化变结构控制器设计[J].电网技术.2011.35(7):161-166
    [21]Ramadan H S, Siguerdidjane H, Petit M. A robust stabilizing nonlinear control design for VSC-HVDC system:a comparative study[C].IEEE International Conference on Industry Technology.Gippsland:IEEE,2009:1-6
    [22]Li Guangkai, Zhao Chengyong, Geng Ying. Research of nonlinear control strategy for VSC-HVDC system based on Lyapunov stability theory[C].Proceedings of Electric Utility Deregulation and Restructuring and Power Technologies. Nanjuing:IEEE,2008:2187-2191.
    [23]Ruihua Song.Chao Zheng. VSCs based HVDC and its control strategy[C].2005 IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific Dalian, China
    [24]史建立.轻型直流输电系统控制策略及仿真研究[D].南宁:广西大学.2009
    [25]周国梁,石新春,付超等VSC-HVDC离散模型及其不平衡控制策略[J].电工技术学报.2008.23(12):137-142
    [26]周国梁.基于电压源换流器的高压直流输电系统控制策略研究[D].北京:华北电力大学2009
    [27]Lindberg A., Larsson T. PWM and Control of Three Level Voltage Source Converters in all HVDC Back-to-Back Station. AC and DC Power Transmission[C],Sixth International.Conference on,1996.
    [28]Lindberg A., Lindberg L. High power voltage source converter control response at large AC voltage phase shifts[C]. Power Electronics and Drive Systems, Proceedings of 1995 International Conference on,1995:719.725.
    [29]王冠,蔡晔,张桂斌等.高压直流输电电压源换流器的等效模型及混合仿真技术[J].电网技术.2003.27(2):4-8
    [30]Nils Hrle,Kjell Eriksson,Asmund Maeland,et al.Electrical Supply for Off shore Installations Made Possible by Use of VSC Technology[A].CIGRE Session 2002[C/CD].Paris:CIGRE,2002,14-117.
    [31]Weixing Lu,Boon Teck Ooi.Multiterminal LVDC System for Optimal Acquisition of Power in Wind-farm using Induction Generators[C].IEEE Power Engineering Society Winter Meeting, Jan 2002,(2):719-724.
    [32]Naoto Nosaka,Yoshikazu Tsubota,Koji Matsukawa,et al.Simulation Studies on a Control and Protection Scheme for Hybrid Multi-terminal HVDC Systems[C].IEEE Power Engineering Society 1999 Winter Meeting,1998,(2):1079-1084.
    [33]Yuan X F, Cheng Shijie. Simulation study for a Hybrid Multi-terminal HVDC System.PES TD 2005/2006, May 21-24,2006
    [34]Zhao Z, Iravani M R. Application of GTO voltage-source inverter for tapping HVDC power[J].IEE Proc on Gener, Transm and Distrib,1994,141 (1):19-26.
    [35]Zhao Z, Iravani M R. Application of GTO voltage source inverter in a Hybrid HVDC link[J].IEEE Trans on Power Delivery,1994,9(1):369-377.
    [36]Naoto Nosaka, Yoshikazu Tsubota, Koji Matsukawa, et al. Simulation Studies on a Control and Protection Scheme for Hybrid Multi-terminal HVDC Systems[A].IEEE Power Engineering Society 1999 Winter Meeting,1998,(2):1079-1084
    [37]袁旭峰,文劲宇,程时杰.多端直流输电系统中的直流功率调制技术[J].电网技术,2007,31(14):57-61.
    [38]吴俊宏,艾芊.多端柔性直流输电系统在风电场中的应用[J].电网技术,2009,33(4):22-27.
    [39]Sobrinkkh K, Sorensen P L, Cristrensen P, et al. DC feeder for connection of a wind farm[C]. CIGRE Symposium, Kuala Lumpur, Malaysia,1999
    [40]韩京清.自抗扰控制技术[J].前沿科学,2007,1:24-31
    [41]韩京清.从PID技术到自抗扰控制技术[J].控制工程,2002,9(3):13-18
    [42]黄一,张文革.自抗扰控制器的发展[J].控制理论与应用,2002,19(4):485-492
    [43]韩京清.非线性PID控制器[J],自动化学报,1994 20(4):487-490
    [44]韩京清.一种新型控制器NLPID[J],控制与决策,1994 9(6):401-407
    [45]韩京清.利用非线性特性改进PID控制率[J],信息与控制,1995 24(6):356-363
    [46]韩京清.一类不确定对象的扩张状态观测器[J],控制与决策,1995 10(1):85-88
    [47]黄远灿,韩京清.扩张状态观测器用于连续系统辨识[J],控制与决策,1998 13(4):381-384
    [48]余涛,沈善德,李东海,等.高压直流输电系统自抗扰控制方法[J].电力系统自动化.2002.26(22):22-26
    [49]刘子建,吴敏,王春生,等.三相电压型PWM整流器自抗扰控制[J].信息与控制.2011.40(4):452-458
    [50]韩京清,王伟.非线性跟踪-微分器[J].系统科学与数学.1994.14(2):177-183
    [51]黄焕袍,万晖,韩京清.安排过渡过程是提高闭环系统“鲁棒性、适应性和稳定性”的一种有效方法[J].控制理论与应用.2001.18增刊:89-94
    [52]王新志.自抗扰控制技术研究及其在发电机励磁控制中的应用[D].天津:天津理工大学2007
    [53]韩京清.非线性状态误差反馈控制律-NLSEF[J]控制与决策.1995.10(3):221-225
    [54]邓卫华,张波,丘东元,卢至峰,胡宗波.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报.2005.25(7):97-102
    [55]刘星桥,胡建群,周丽.自抗扰控制器在三电机同步系统中的应用[J].中国电机工程学报.2010.30(12):80-85
    [56]王春山,孙秀霞,吴剑,朱建华.自抗扰控制器及其在发电机组同期并网控制中的应用研究[J].现代电子技术2003.2:61-63
    [57]孙亮,吴根忠.自抗扰控制器优化设计及其应用[J].电机与控制应用.2010.37(3):26-30
    [58]钟庆,吴捷,徐政.自抗扰控制器在并联型有源滤波器中的应用[J].电力系统自动化.2002.26(16):22-25
    [59]刘鸣,邵诚.异步电动机的自抗扰控制器及其参数整定.控制与决策[J],2003,18(5):540-544
    [60]胡婵娟,自抗扰控制在直接转矩控制系统中的应用研究[D].武汉:华中科技大学,2010
    [61]陈星.自抗扰控制器参数整定方法及其在热工过程中的应用[D].北京:清华大学,2008
    [62]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业山版社,2003
    [63]陈伟.三相电压型PWM整流器的直接功率控制技术研究与实现[D].武汉:华中科技大学,2009
    [64]Green A.W, Boys J.T, Gates G F.3-Phase voltage sourced reversible reetifier[J]. IEE Proceedings 1988,362-370
    [65]Lu Weixing, Control and applieation of multi-terminal HVDC based on voltage-sourece converter[D].Montreal, Canada: McGill University,2003.
    [66]TANG Weizhong, LASSETER R.H. An LVLDC industrial Power distribution system without central control unit[C].Proeeedings of 31th IEEE Annual Power Electronics Specialists Conferenee: Vol 2, June 18-23,2000, Galway, UK. Piseataway, NJ, USA:IEEE,2000:979-984.
    [67]文俊,张一工,韩民晓,等.轻型直流输电—一种新一代的HVDC技术[J].电网技术,2003,27(1):47-51
    [68]Jiebei Zhu, Campell Booth. Future Multi-Terminal HVDC Transmission System using Voltage Source Converter[J].UPEC:2010:1-6
    [69]Zhang Xiao-ping. Multiterminal Voltage-Sourced Converter-Based HVDC Models for Power Flow Analysis[J].IEEE Trans on Power System,2004,19(4):1877-1884
    [70]A Hammad, R Minghetti, J Hasler, D Goldsworthy. MODELLING OF THE PACIFIC INTERTIE 4-TERMINAL HVDC SCHEME IN EMTP. AC and DC Power Transmission,1991[C], International Conference on 362-367
    [71]Hongbo Jiang, Ake Ekstrom. Muti-terminal HVDC Systems in Urban Areas of Large Cities[J]. IEEE Transactions on Power Delivery.13(4):1278-1284
    [72]Jef Beerten, Dirk Van Hertem, Ronnie Belmans. VSC MTDC Systems with a Distributed DC Voltage Control-A Power Flow Approach[J].2011 IEEE Trondheim PowerTech:1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700