非粘合柔性立管截面特性的理论计算及BSR区域的疲劳分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋油气开发持续向深水推进,非粘合柔性软管的应用越来越广泛。与传统钢管相比,尤其当管体需要承受较大的弯曲变形时,柔性软管有着诸多优点。然而由于自身结构的复杂性,要确定其力学特性和结构响应从来都非易事。螺旋层的存在为此引入了诸多的不确定性,特别是对于弯曲响应。当用作海洋立管时,其与浮式平台的连接部位由于受到动力载荷的作用,极易发生过度弯曲或疲劳失效。弯曲刚度加强件(Bend Stiffener, BSR)则为其提供了一个弯曲刚度的过渡区域,以保证柔性立管的安全。
     本文的主要任务是建立相应的理论模型来分析柔性立管-BSR这一系统的力学特性和结构响应,主要包括柔性立管的截面分析和BSR的非线性响应分析。此外,柔性立管的疲劳分析也是本文一个重要的研究内容。
     非粘合柔性软管的截面分析可以分为轴对称响应分析和弯曲响应分析。本文建立了柔性软管在轴向力、扭矩以及内外压等轴对称载荷作用下的响应分析模型。首先基于能量法推导出软管各层的平衡方程并写成矩阵形式,得到其刚度矩阵;然后将各层刚度矩阵进行组装并考虑边界条件得到总刚度矩阵;进而通过迭代求解出所有变量。该模型可自行判断各层之间可能发生的分离并相应调整层间的接触压力,因而可以考虑轴向刚度与扭转刚度之间的耦合以及载荷施加的方向。Rough Bore型和Smooth Bore型的差别也通过调整载荷向量的方式进行了考虑。
     通过将各层的弯曲响应函数相加,建立了柔性软管的弯曲响应分析模型。对于螺旋层,通过将其模拟为等效的圆管,推导出无滑移和完全滑移之间这一过渡段的弯矩-曲率关系以及弯曲刚度-曲率关系的显式表达,成功模拟了过渡段的非线性弯曲行为。正确考虑了螺旋条带局部弯曲和扭转的贡献,结果表明其对完全滑移刚度有较大影响,应在弯曲分析时予以考虑。此外,对初始接触压力的重要性也进行了讨论。该模型显式地描述了循环弯曲时柔性软管的弯曲迟滞行为。
     截面分析的理论计算均与现有文献中实验测试的结果进行了比较,二者吻合良好。
     给出一种BSR的锥形设计方法,并推导出其尖部转角的解析表达式。建立了柔性立管-BSR系统的非线性响应分析模型,首次同时考虑了几何非线性、材料非线性以及柔性立管非线性的弯矩-曲率关系等非线性因素。此外,给出一种确定BSR截面弯矩-曲率关系的理论方法,大大简化了其本构关系的计算。
     柔性立管的疲劳性能一直是设计时需要考虑的重要因素之一,立管与浮式平台的连接部位则是一个容易发生疲劳失效的危险区域。基于Longuet-Higgins分布将表征长期海况的波浪散布图分解为单个规则波的散布图,以此进行柔性立管的疲劳分析,并与随机波法的计算结果进行了比较。结果表明:波浪散布图的离散应充分考虑系统响应的影响;若将波浪散布图离散得较为理想,则采用规则波法计算得到的疲劳寿命将和随机波法的结果较为接近。此外,通过参数敏感性分析讨论了诸多重要因素对疲劳寿命的影响。
As the offshore industry advances into deeper waters and harsher environments, the use of unbonded flexible pipes becomes increasingly essential. In many applications where high levels of bending deformations are expected flexible pipes have a distinct advantage over the conventional steel pipes. However, determination of various mechanical characteristics of flexible pipes has never been an easy task due to their complex structure. The presence of helical elements in a flexible pipe multilayered structure raises many uncertainties mainly associated with bending behavior. When flexible pipes are used as risers the upper connection of the riser to the floating production platform is highly affected by cyclic operational loadings and is recognized as one of the most vulnerable parts to failure from excessive bending or from accumulation of fatigue damage. Bend stiffeners (BSRs) are designed for the integrity of flexible risers, providing a gradual stiffness transition at the riser-vessel interface.
     The objective of this thesis is to build analytical models to predict the structural behavior of the riser-BSR system, which involves cross-sectional analysis of the riser and non-linear analysis of the BSR. In addition, fatigue analysis of flexible risers is also an important issue of this work.
     The analysis of an unbonded flexible pipe cross-section can be divided into axisymmetric and flexural or bending analysis. Theoretical model is developed for analyzing the response of flexible pipes to combined axisymmetric loads including axial force, torque and internal/external pressures. Equilibrium equations for flexible pipe components are derived and put into a matrix form based on energy approaches. A comprehensive guide for assembling the flexible pipe stiffness matrix is described. Equations for boundary conditions are incorporated into the stiffness matrix and with the help of small iterations the global equilibrium of the entire pipe can be achieved. The procedure automatically detects the tendency of layer separation and adjusts the interlayer contact pressures appropriately. Prediction of gap formations allows the model to account for coupling between the axial and torsional stiffnesses and the direction of load. The difference in construction of rough and smooth bore pipes is also accounted for using a rearranged load vector.
     In bending, a flexural model is developed separately by superimposing the bending moment functions for each layer. The transition path from the upper (No-Slip) bound to the lower (Full-Slip) bound stiffness of the helical layer is modeled, by treating the helical layer as an equivalent thin tube. Explicit formulations are derived which describe the bending moment-curvature and the bending stiffness-curvature relationships within the transition mode. The influence of local bending and torsion of individual helical elements on the bending behavior of the entire pipe is evaluated. The findings imply that this local behavior significantly influences the full-slip bending stiffness and should be included in the bending analysis. The importance of the initial interlayer pressures is also investigated. The model explicitly determines the bending hysteresis in a pipe undergoing cyclic bending.
     In the cross-sectional analysis, wherever possible, theoretical results are compared with experimental data from the available literature and encouraging correlations are found.
     A methodology for the BSR taper design is outlined. The exact expression of the angle at the tip of the BSR required for the design is derived. In the analysis of the riser-BSR system, the formulation is extended taking non-linear properties into account both for the BSR material and for the flexible pipe bending behavior. An analytical procedure is also presented to calculate the bending moment versus curvature relationship for each BSR cross-section, which renders the prediction of the constitutive model much simpler.
     Fatigue performance of flexible risers is an important design consideration. The top of the riser including the BSR is recognized as a critical region to fatigue failure. The Longuet-Higgins distribution is employed to decompose the wave scatter diagram into an individual regular wave scatter diagram, based on which various analyses are performed to estimate the fatigue life of a flexible riser. The resulting result is compared with that obtained from the stochastic analyses and rainflow counting technique. Comparative analysis shows that the system response should be fully considered in the decomposition process of sea states. Provided that the regular wave bin discretization is performed well, the predicted fatigue life from this method will generally agree well with that from the equivalent rainflow analysis. A parametric study is also conducted to assess the importance of several main aspects in the fatigue response of flexible risers.
引文
[1]Delormel F. Expansion in Subsea Worldwide[EB/OL]. [2012-09-06]. http://www.technip.com/sites/default/files/technip/lightbox/attachments/6_Expansion%20in%20 Subsea%20Worldwide.pdf.
    [2]Braestrup M W, Andersen J B, Andersen L W, et al. Design and Installation of Marine Pipelines[M]. Oxford:Blackwell Science Ltd,2005.
    [3]Combined Operations. PLUTO Pipeline[EB/OL]. [2012-09-06]. http://www.combinedops.com/pluto.htm#~Correspondence~
    [4]American Petroleum Institute. API RP 17B, Recommended Practice for Flexible Pipe[S]. Washington DC:API Publishing Services.2008.
    [5]Feret J J, Bournazel C L. Calculation of Stresses and Slip in Structural Layers of Unbonded Flexible Pipes[J]. Journal of Offshore Mechanics and Arctic Engineering,1987,109(3):263-269.
    [6]Technip. Flexible Pipe[EB/OL]. [2012-09-06]. http://www.technip.com/sites/default/files/technip/publications/attachments/FlexiblePipe_jan201 2_0.pdf.
    [7]NKT Flexibles. Advantages of Flexible Pipes[EB/OL]. [2012-09-06]. http://www.nktflexibles.com/en/Products+and+Solutions/Advantages+of+Flexible+Pipes.htm.
    [8]American Petroleum Institute. API SPEC 17J, Specification for Unbonded Flexible Pipe[S]. Washington DC:API Publishing Services,2008.
    [9]Goto Y, Okamoto T, Araki M, et al. Analytical Study of the Mechanical Strength of Flexible Pipes[J]. Journal of Offshore Mechanics and Arctic Engineering,1987,109(3):249-253.
    [10]McNamara J F. Harte A M. Three-Dimensional Analytical Simulation of Flexible Pipe Wall Structure[J]. Journal of Offshore Mechanics and Arctic Engineering,1992,114(2):69-75.
    [11]Harte A M, McNamara J F. Modeling Procedures for the Stress Analysis of Flexible Pipe Cross Sections[J]. Journal of Offshore Mechanics and Arctic Engineering,1993,115(1):46-51.
    [12]Witz J A, Tan Z. On the Axial-Torsional Structural Behaviour of Flexible Pipes, Umbilicals and Marine Cables[J]. Marine Structures,1992,5(2-3):205-227.
    [13]Love A E H. A Treatise on the Mathematical Theory of Elasticity[M]. Fourth Edition. New York: Dover Publications,1944.
    [14]Claydon P, Cook G., Brown P, et al. A Theoretical Approach to Prediction of Service Life of Unbonded Flexible Pipes under Dynamic Loading Conditions[J]. Marine Structures,1992, 5(5):399-429.
    [15]李智博.非粘合型挠性管局部结构特性的计算研究[D]:(硕士学位论文).天津:天津大学建筑工程学院,2010.
    [16]Li Z, Xu H, Zhang G. Calculation Methods of the Local Structure Behavior of Unbonded Flexible Pipes[J]. Advanced Materials Research,2013,658:481-486.
    [17]Ramos R Jr., Pesce C P, Martins C A. A Comparative Analysis Between Analytical and FE-Based Models for Flexible Pipes Subjected to Axisymmetric Loads[C]. Proceedings of the 10th International Offshore and Polar Engineering Conference, Seattle,2000:80-88.
    [18]Custodio A B, Vaz M A. A Nonlinear Formulation for the Axisymmetric Response of Umbilical Cables and Flexible Pipes[J]. Applied Ocean Research,2002,24(1):21-29.
    [19]Sodahl N, Skeie G, Steinkjer O, et al. Efficient Fatigue Analysis of Helix Elements in Umbilicals and Flexible Risers[C]. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai,2010:1029-1037.
    [20]Skeie G, Sodahl N, Steinkjer O. Efficient Fatigue Analysis of Helix Elements in Umbilicals and Flexible Risers:Theory and Applications[J]. Journal of Applied Mathematics,2012, Volume 2012, Article ID 246812,22 Pages.
    [21]Yue Q, Lu Q, Yan J, et al. Tension Behavior Prediction of Flexible Pipelines in Shallow Water[J]. Ocean Engineering,2013,58:201-207.
    [22]Witz J A, Tan Z. On the Flexural Structural Behaviour of Flexible Pipes, Umbilicals and Marine Cables[J]. Marine Structures,1992,5(2-3):229-249.
    [23]Ramos R Jr., Pesce C P. A Review on the Flexural Structural Behaviour of Flexible Risers[C]. Proc. of the 3rd Workshop on Subsea Pipelines, Rio de Janeiro,2002:15 Pages.
    [24]Out J M M, von Morgen B J. Slippage of Helical Reinforcing on a Bent Cylinder[J]. Engineering Structures,1997,19(6):507-515.
    [25]Kebadze E, Kraincanic I. Non-Linear Bending Behaviour of Offshore Flexible Pipes[C]. Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest, 1999:226-233.
    [26]Kraincanic I, Kebadze E. Slip Initiation and Progression in Helical Armouring Layers of Unbonded Flexible Pipes and Its Effect on Pipe Bending Behaviour[J]. Journal of Strain Analysis,2001,36(3):265-275.
    [27]Kebadze E. Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections[D]:(PhD Thesis). London:South Bank University,2000.
    [28]Leroy J M, Estrier P. Calculation of Stresses and Slips in Helical Layers of Dynamically Bent Flexible Pipes[J]. Oil & Gas Science and Technology,2001,56(6):545-554.
    [29]Ramos R Jr., Pesce C P, Martins C A. A New Analytical Expression to Estimate the Bending Stiffness of Flexible Risers[C]. Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun,2003:513-522.
    [30]Ramos R Jr., Pesce C P. A Consistent Analytical Model to Predict the Structural Behavior of Flexible Risers Subjected to Combined Loads[J]. Journal of Offshore Mechanics and Arctic Engineering,2004,126(2):141-146.
    [31]Pesce C P, Ramos R Jr., da Silveira L M Y, et al. Structural Behavior of Umbilicals-Part I: Mathematical Modeling[C]. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai,2010:871-880.
    [32]Tan Z, Case M, Sheldrake T. Higher Order Effects on Bending of Helical Armor Wire inside an Unbonded Flexible Pipe[C]. Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, Halkidiki,2005:447-455.
    [33]Zhang Y, Qiu L. Numerical Model to Simulate Tensile Wire Behavior in Unbonded Flexible Pipe during Bending[C]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego,2007:17-29.
    [34]Saevik S. Comparison between Theoretical and Experimental Flexible Pipe Bending Stresses[C]. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai,2010:395-402.
    [35]Saevik S. Theoretical and Experimental Studies of Stresses in Flexible Pipes[J]. Computers and Structures,2011,89(23-24):2273-2291.
    [36]Saevik S. A Method for Analysing Stresses and Slip in Flexible Pipe Armouring Tendons at Bending Gradients[C]. International Seminar on Flexible Pipe Technology, Trondheim, 1992:55-82.
    [37]Tan Z, Witz J A, Lyons G J, et al. On the Influence of Internal Slip between Component Layers on the Dynamic Response of Unbonded Flexible Pipe[C]. Proceedings of the 10th International Conference on Offshore Mechanics and Arctic Engineering, Stavanger,1991:563-569.
    [38]Saevik S. A Finite Element Model for Predicting Stresses and Slip in Flexible Pipe Armouring Tendons[J]. Computers and Structures,1993,46(2):219-230.
    [39]Mclver D B. A Method of Modelling the Detailed Component and Overall Structural Behaviour of Flexible Pipe Sections[J]. Engineering Structures,1995,17(4):254-266.
    [40]Lotveit S A, Bjaerum R. Second Generation Analysis Tool for Flexible Pipes[C]. Proceedings of the 2nd European Conference on Flexible Pipes, Umbilicals and Marine Cables-Structural Mechanics and Testing, London,1995:Chapter 14.
    [41]Saevik S, Giertsen E, Olsen G P. A New Method for Calculating Stresses in Flexible Pipe Tensile Armours[C]. Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering, Lisboa,1998:8 Pages.
    [42]Saevik S, Bruaseth S. Theoretical and Experimental Studies of the Axisymmetric Behaviour of Complex Umbilical Cross-Sections[J]. Applied Ocean Research,2005.27(2):97-106.
    [43]Saevik S, Gjosteen J K O. Strength Analysis Modelling of Flexible Umbilical Members for Marine Structures[J]. Journal of Applied Mathematics,2012, Volume 2012, Article ID 985349, 18 Pages.
    [44]de Sousa J R M, Ellwanger G B, Lima E C P, et al. Local Mechanical Behaviour of Flexible Pipes Subjected to Installation Loads[C]. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering. Rio de Janeiro,2001:9 Pages.
    [45]Ribeiro E J B, de Sousa J R M, Ellwanger G B, et al. On the Tension-Compression Behaviour of Flexible Risers[C]. Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu,2003:105-112.
    [46]de Sousa J R M, Pinho A N, Ellwanger G B, et al. Numerical Analysis of a Flexible Pipe with Damaged Tensile Armor Wires[C]. Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu,2009:829-839.
    [47]de Sousa J R M, Magluta C, Roitman N, et al. On the Response of Flexible Risers to Loads Imposed by Hydraulic Cbllars[J]. Applied Ocean Research,2009,31(3):157-170.
    [48]Merino H E M, de Sousa J R M, Magluta C, et al. Numerical and Experimental Study of a Flexible Pipe under Torsion[C]. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai,2010:911-922.
    [49]de Sousa J R M, Viero P F, Magluta C, et al. An Experimental and Numerical Study on the Axial Compression Response of Flexible Pipes[J]. Journal of Offshore Mechanics and Arctic Engineering,2012,134(3):031703 (12 Pages).
    [50]Zhang W, Tuohy J. Application of Finite Element Modelling in the Qualification of Large Diameter Unbonded Flexible Risers[C]. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo,2002:425-433.
    [51]Bahtui A, Bahai H, Alfano G. A Finite Element Analysis for Unbonded Flexible Risers under Axial Tension[C]. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril,2008:529-534.
    [52]Bahtui A, Bahai H, Alfano G. A Finite Element Analysis for Unbonded Flexible Risers under Torsion[J]. Journal of Offshore Mechanics and Arctic Engineering,2008,130(4):041301 (4 Pages).
    [53]Bahtui A, Bahai H, Alfano G. Numerical and Analytical Modeling of Unbonded Flexible Risers[J]. Journal of Offshore Mechanics and Arctic Engineering,2009,131(2):021401 (13 Pages).
    [54]Bahtui A. Development of a Constitutive Model to Simulate Unbonded Flexible Riser Pipe Elements[D]:(PhD Thesis). London:Department of Mechanical Engineering, Brunel University, 2008.
    [55]Vaz M A, Rizzo N A S. A Finite Element Model for Flexible Pipe Armor Wire Instability[J]. Marine Structures,2011,24(3):275-291.
    [56]Perdrizet T, Leroy J M, Barbin N, et al. Stresses in Armour Layers of Flexible Pipes: Comparison of Abaqus Models[C].2011 SIMULIA Customer Conference, Barcelona,2011:14 Pages.
    [57]曾季芳.海洋复合材料柔性管的力学性能和优化设计[D]:(硕士学位论文).大连:大连理工大学工程力学系,2009.
    [58]陈耕.海洋非粘结柔性管线的横截面力学性能分析[D]:(硕士学位论文).哈尔滨:哈尔滨工程大学船舶工程学院,2011.
    [59]孙丽萍,周佳.ABAQUS二次开发在海洋柔性立管设计分析中的应用[J].船舶工程,2011,33(6):88-91.
    [60]Wang W, Chen G. Analytical and Numerical Modeling for Flexible Pipes[J]. China Ocean Engineering,2011,25(4):737-746.
    [61]栾林昌.非粘合柔性立管力学性能研究[D]:(硕士学位论文).大连:大连理工大学船舶工程学院,2011.
    [62]徐慧,张彩莹,罗延生,等.海上漂浮输油软管拉伸与弯曲力学特性[J].油气储运,2012,31(4):279-282.
    [63]周佳.无粘结柔性立管的非线性迟滞特性研究[D]:(硕士学位论文).哈尔滨:哈尔滨工程大学船舶工程学院,2012.
    [64]黄一,左亚东,张崎,等.非粘合柔性立管局部结构特性数值模拟分析[C].纪念辛一心先生诞辰100周年暨2012年船舶学术会议,浙江绍兴,2012:140-150.
    [65]姜豪,杨和振,刘昊.深海非粘结柔性立管简化模型数值分析及实验研究[J].中国舰船研究,2013,8(1):64-72.
    [66]Witz J A. A Case Study in the Cross-Section Analysis of Flexible Risers[J]. Marine Structures, 1996,9(9):885-904.
    [67]Bech A, Skallerud B, Sodahl N. Structural Damping in Design Analysis of Flexible Risers[C]. Proceedings of the 1st European Conference on Flexible Pipes, Umbilicals and Marine Cables, London,1992:Chapter 12.
    [68]Berge S, Engseth A, Fylling I, et al. Handbook on Design and Operation of Flexible Pipes, STF70 A92006[R]. Trondheim:SINTEF,1992.
    [69]Magluta C, Roitman N, Viero P F, et al. Experimental Estimation of Physical Properties of a Flexible Riser[C]. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro.2001:9 Pages.
    [70]Troina L M B, Rosa L F L, Viero P F, et al. An Experimental Investigation on the Bending Behaviour of Flexible Pipes[C]. Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun,2003:637-645.
    [71]Saevik S. Berge S. Fatigue Testing and Theoretical Studies of Two 4 in Flexible Pipes[J]. Engineering Structures,1995,17(4):276-292.
    [72]Tuohy J, Kalman M, Chen B, et al.Qualification of a 15-inch ID Flexible Riser for Export Oil & Gas Service[C]. Proceedings of the 3rd European Conference on Flexible Pipes, Umbilicals and Marine Cables-Materials Utilisation for Cyclic and Thermal Loading, London,1999:Chapter 9.
    [73]Vaz M A, Aguiar L A D, Estefen S F, et al. Experimental Determination of Axial, Torsional and Bending Stiffness of Umbilical Cables[C]. Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering, Lisbon,1998:7 Pages.
    [74]Saevik S, Igland R T. Calibration of a Flexible Pipe Tensile Armour Stress Model Based on Fibre Optic Monitoring[C]. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo,2002:53-58.
    [75]郑杰馨.海洋非粘结性柔性管设计和分析的验证实验研究[D]:(硕士学位论文).大连:大连理工大学工程力学系,2010.
    [76]席勇辉.海洋柔性管缆疲劳半物理仿真试验研究[D]:(硕士学位论文).大连:大连理工大学工程力学系,2012.
    [77]Boef W J C, Out J M M. Analysis of a Flexible-Riser Top Connection with Bend Restrictor[C]. Proceedings of the 22nd Annual Offshore Technology Conference,1990:131-142.
    [78]Lane M, Mcnamara J F, Gibson R, et al. Bend Stiffeners for Flexible Risers[C]. Proceedings of the 27th Annual Offshore Technology Conference,1995:345-353.
    [79]Vaz M A, de Lemos C A D. Non-Linear Analysis of Bend Stiffeners[J]. Marine Systems & Ocean Technology,2004, 1(1):25-31.
    [80]Vaz M A, de Lemos C A D. Geometrical and Material Non-Linear Formulation for Bend Stiffeners[C]. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver,2004:201-206.
    [81]Vaz M A, de Lemos C A D, Caire M. A Nonlinear Analysis Formulation for Bend Stiffeners[J]. Journal of Ship Research,2007,51(3):250-258.
    [82]Caire M, Vaz M A. The Effect of Flexible Pipe Non-Linear Bending Stiffness Behavior on Bend Stiffener Analysis[C]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego,2007:103-109.
    [83]Caire M, Vaz M A, de Lemos C A D. Viscoelastic Analysis of Bend Stiffeners[C]. Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, Halkidiki, 2005:531-538.
    [84]Demanze F, Hanonge D, Chalumeau A, et al. Fatigue Life Analysis of Polyurethane Bending Stiffeners[C]. Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, Halkidiki,2005:261-267.
    [85]de Souza J R, Ramos R Jr.. Bending Stiffeners:A Parametric Structural Analysis[C]. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril,2008:165-174.
    [86]Smith R. Bending Stiffeners for Extreme and Fatigue Loading of Unbonded Flexible Risers[C]. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril,2008:405-413.
    [87]Tanaka R L, da Silveira L M Y, Novaes J P Z, et al. Bending Stiffener Design through Structural Optimization[C]. Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu,2009:411-418.
    [88]Bazan F A V, de Lima E C P, de Siqueira M Q, et al. A Methodology for Structural Analysis and Optimization of Riser Connection Joints[J]. Applied Ocean Research,2011,33(4):344-365.
    [89]Tong D J, Low Y M. Nonlinear Bend Stiffener Analysis Using a Simple Formulation and Finite Element Method[J]. China Ocean Engineering,2011,25(4):577-590.
    [90]李彤,李鹏,张鸿凯,等.柔性立管防弯器的设计[J].中国造船,2010,51(A02):168-173.
    [91]李博.海洋动态柔性立管附件设计与分析[D]:(硕士学位论文).大连:大连理工大学工程力学系,2011.
    [92]Campbell M. The Complexities of Fatigue Analysis for Deepwater Risers[C]. Proceedings of the 2nd International Deepwater Pipeline Technology Conference, New Orleans,1999:13 Pages.
    [93]Zhang Y, Chen B, Qiu L, et al. State of the Art Analytical Tools Improve Optimization of Unbonded Flexible Pipes for Deepwater Environments[C]. Proceedings of the 35th Annual Offshore Technology Conference,2003:10 Pages.
    [94]Doynov K, Nilsen-Aas C, Haakonsen R, et al. Methodology for Calculating Irregular Wave Stress Time Histories of Tensile Wires in Flexible Risers[C]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, 2007:91-101.
    [95]Chen M. Fatigue Analysis of Flexible Pipes Using Alternative Element Types and Bend Stiffener Data[D]:(MSc Thesis). Trondheim:Department of Marine Technology, Norwegian University of Science and Technology,2011.
    [96]Grealish F, Smith R, Zimmerman J. New Industry Guidelines for Fatigue Analysis of Unbonded Flexible Risers[C]. Proceedings of the 38th Annual Offshore Technology Conference,2006:12 Pages.
    [97]Tan Z, Quiggin P, Sheldrake T. Time Domain Simulation of the 3D Bending Hysteresis Behavior of an Unbonded Flexible Riser[J]. Journal of Offshore Mechanics and Arctic Engineering,2009,131 (3):031301 (8 Pages).
    [98]Smith R, Carr T, Lane M. Computational Tool for the Dynamic Analysis of Flexible Risers Incorporating Bending Hysteresis[C]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego,2007:241-248.
    [99]O'Brien P. Current Riser & Subsea Technology Issues being Addressed by MCS[EB/OL]. [2012-10-19]. http://www.subseauk.com/documents/PatrickOBrien-MCS.ppt.
    [100]Smith R, O'Brien P, O'Sullivan T, et al. Fatigue Analysis of Unbonded Flexible Risers with Irregular Seas and Hysteresis[C]. Proceedings of the 39th Annual Offshore Technology Conference,2007:8 Pages.
    [101]Anderson T R, Skar J I. Gas and Water Permeation in Flexible Pipes[C]. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo,2002:7-14.
    [102]Last S, Groves S, Rigaud J, et al. Comparison of Models to Predict the Annulus Conditions of Flexible Pipe[C]. Proceedings of the 34th Annual Offshore Technology Conference,2002:10 Pages.
    [103]Taravel-Condat C, Guichard M. Martin J. MOLDITM:A Fluid Permeation Model to Calculate the Annulus Composition in Flexible Pipes:Validation with Medium Scale Tests, Full Scale Tests and Field Cases[C]. Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun.2003:627-636.
    [104]Anderson T R. Corrison Fatigue of Steel Armours in Flexible Risers[C]. Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo,2002:1-6.
    [105]Smith R J, Stoica V, O'Brien P J. Fatigue Design of Flexible Risers with a Non-Dry Annulus[C]. Proceedings of the 40th Annual Offshore Technology Conference,2008:10 Pages.
    [106]Lanteigne J. Theoretical Estimation of the Response of Helically Armored Cables to Tension, Torsion, and Bending[J]. Journal of Applied Mechanics,1985,52(2):423-431.
    [107]Sparks C P. Fundamentals of Marine Riser Mechanics:Basic Principles and Simplified Analyses[M]. Tulsa:Penn Well Corporation,2007.
    [108]LeClair R A, Costello G A. Axial, Bending and Torsional Loading of a Strand with Friction[J]. Journal of Offshore Mechanics and Arctic Engineering,1988,110(1):38-42.
    [109]Ramsey H. A Theory of Thin Rods with Application to Helical Constituent Wires in Cables[J]. International Journal of Mechanical Sciences,1988,30(8):559-570.
    [110]Wempner G. Mechanics of Solids with Applications to Thin Bodies[M]. Rockville:Sijthoff and Noordhoff International Publishers,1981.
    [111]梅向明,黄敬之.微分几何[M].第四版.北京:高等教育出版社,2008.
    [112]Thorsen M J. Capacity of Deep Water Flexible Risers[D]:(MSc Thesis). Trondheim: Department of Marine Technology, Norwegian University of Science and Technology,2011.
    [113]Feret J, Leroy J M, Estrler P. Calculation of Stresses and Slips in Flexible Armour Layers with Layers Interaction[C]. Proceedings of the 14th International Conference on Offshore Mechanics and Arctic Engineering, Copenhagen,1995:469-474.
    [114]Leroy J M, Perdrizet T, Corre V, et al. Stress Assessment in Armour Layers Of Flexible Risers[C]. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai,2010:951-960.
    [115]Chryssanthopoulos M K, Low Y M. A Method for Predicting the Flexural Response of Tubular Members with Non-Linear Stress-Strain Characteristics[J]. Journal of Constructional Steel Research,2001,57(11):1197-1246.
    [116]Caire M. Analysis of Bend Stiffeners[D]:(MSc Thesis). Rio de Janeiro:Department of Ocean Engineering, Federal University of Rio de Janeiro,2005. (In Portuguese)
    [117]Shampine L F, Kierzenka J, Reichelt M W. Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c [EB/OL].2000[2012-11-23]. Available from: http://www.mathworks.com.
    [118]Meniconi L C M. Avaliacao da Vida a Fadiga dos Enrijecedores dos Risers Flexiveis do FPSO Petrobras 33, Technical Communication No.:137/99[R]. Rio de Janeiro:Petrobras R&D Center, 1999. (in Portuguese)
    [119]Martins C A, Pesce C P. A Simplified Procedure to Assess the Fatigue-Life of Flexible Risers[C]. Proceedings of the 12th International Offshore and Polar Engineering Conference, Kitakyushu,2002:179-186.
    [120]ASTM International. ASTM E1049-85(2011)el, Standard Practices for Cycle Counting in Fatigue Analysis[S]. West Conshohocken:ASTM International,2011.
    [121]de Sousa J R M, de Sousa F J M, de Siqueira M Q, et al. A Theoretical Approach to Predict the Fatigue Life of Flexible Pipes[J]. Journal of Applied Mathematics,2012, Volume 2012, Article ID 983819,29 Pages.
    [122]Steinkjer O, Sodahl N, Grytoyr G. Methodology for Time Domain Fatigue Life Assessment of Risers and Umbilicals[C]. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai,2010:177-184.
    [123]董磊磊,张崎,黄一.基于时域缩放的深水立管波致疲劳分析[J].华南理工大学学报(自然科学版),2013,41(4):127-131+141.
    [124]Longuet-Higgins M S. On the Joint Distribution of Wave Periods and Amplitudes in a Random Wave Field[C]. Proceedings of the Royal Society of London Series A 389, London, 1983:241-258.
    [125]Barltrop N D P, Adams A J. Dynamics of Fixed Marine Structures[M]. Third Edition. Oxford: Butterworth-Heinemann Ltd,1991.
    [126]Sheehan J M, Grealish F W, Harte A M, et al. Characterizing the Wave Environment in the Fatigue Analysis of Flexible Risers[J]. Journal of Offshore Mechanics and Arctic Engineering, 2006,128(2):108-118.
    []27]董磊磊,张崎,黄一.深水立管波致疲劳分析的确定性方法[J].中国造船,2011,52(4):109-117.
    [128]董磊磊,张崎,黄一.基于Longuet-Higgins分布的深水立管疲劳分析[J].华中科技大学学报(自然科学版),2012,40(5):41-45.
    [129]Dong L L, Huang Y, Zhang Q. Computationally Efficient Approaches to Fatigue Analysis of Deepwater Risers[J]. Journal of Shanghai Jiaotong University (Science). (Accepted)
    [130]Det Norske Veritas. DNV RP C203, Fatigue Design of Offshore Steel Structures[S]. Hovik: Det Norske Veritas,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700