用户名: 密码: 验证码:
自由漂浮空间机器人多体动力学及目标捕获研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对太空探索的不断深入,自由漂浮空间机器人将发挥着越来越重要的作用,成为国内外学者研究的热点问题。由于自由漂浮空间机器人的基座处于自由漂浮状态,整个系统受到非完整约束,使得自由漂浮空间机器人对目标航天器的捕获变得十分困难,为了更好地设计控制系统与研究自由漂浮空间机器人的动态特性,有必要对自由漂浮空间机器人进行多体动力学研究。由于航天系统的特殊性,需要高效率的多体动力学建模与计算方法。本文以此为背景,重点研究了自由漂浮空间机器人及其扩展系统的多体动力学以及自由漂浮空间机器人目标捕获的方法,并提出了一种地面试验系统方案。下面对这几个方面进行详细的介绍:
     研究了基于空间算子代数(Spatial Operator Algreba, SOA)理论的高效率多体动力学建模方法,利用基于旋量形式的牛顿-欧拉递推运动学方程,使用序贯滤波和光滑化最优估计理论方法,对多体系统的广义质量矩阵进行矩阵分解,并且显式地表达了广义质量矩阵的逆矩阵,建立了通用的基于空间算子代数理论的多刚体系统的动力学方程以及正向动力学和反向动力学的高效率求解方法。该方法具有数学表达形式直观、计算高效和物理意义明确等优点。
     基于空间算子代数理论,对自由漂浮空间机器人的扩展系统进行多体动力学研究,建立了树形多体系统、欠驱动系统以及闭环系统的动力学方程。高效率的动力学方法为空间复杂多体系统的实时动力学仿真以及控制系统的建模分析提供了理论依据。研究了基于滑模变结构控制的欠驱动机器人控制算法,类比于广义质量矩阵的分块将控制系统进行分层,在只有主动控制输入的情况下,使得主动关节和被动关节都收敛到期望的状态。
     研究了柔性系统多体动力学问题。利用有限元技术,结合基于空间算子代数的多刚体动力学方法,建立了柔性体的多体动力学方程,研究了柔性多体系统的正向动力学和方向动力学高效率求解方法。
     基于双目立体视觉伺服方法,提出了自由漂浮空间机器人目标捕获的方法,编制了仿真软件。利用双目立体视觉系统测量目标体的空间位置姿态,反馈给机器人控制系统,根据机械臂的运动,利用高效率的实时动力学方法实现基座在仿真软件中的运动。通过仿真可以发现基于双目立体视觉伺服的自由漂浮空间机器人可以跟踪并达到目标体的位置,表明所提出的目标捕获方法是可行的。
     对航天器活动的可靠性和可行性分析,不仅需要理论上的验证,还需要实际地在地面进行物理试验验证。利用空间算子代数动力学建模和计算方法在实时动力学计算效率方面的优势,提出了一种混合式的地面试验平台的设计方案:将工业机器人的末端执行器与空间机器人的基座连接;根据空间机器人机械臂的运动,利用高效率的实时动力学方法计算基座的运动;将基座运动传递给地面用于模拟基座运动的6自由度工业机器人,以达到自由漂浮空间机器人基座在太空中真实运动状态的效果。该地面物理试验平台搭建完成后,就可以对自由漂浮空间机器人目标捕获的方法进行进一步的试验验证。
With the human beings explore the space deeply, the free-floating space robot will paly animportant role in space exploration, and becomes the hot issue for domestic and foreign scholars. Asthe base of the free-floating space robot in the state of free-floating, the entire system is under thenonholonomic constraint, which making the design of the control more difficult for the free-floatingspace robot capturing the target, so, it is necessary to study the multibody dynamics. Due to the natureof the space system, it requires high efficiency multibody dynamic modeling method. Therefore, thisthesis will focus on resolving some challenging problems, which include the rigid multibodydynamics of the free-floating space robot and expansion its sysytems, the flexible multibodydynamics of free-floating space robot, target capturing method and presents a ground test systemsolution. The main contributions of this thesis are as follows:
     The high efficiency of the multibody dynamics modeling algorithm based on spatial operatralgreba(SOA) is studied.. The recursive Newton-Euler kinematic equations on screw form for thespace robot are derived, and the techniques of the sequential filtering and smoothing methods inoptimal estimation theory are used to derive an innovation factorization and inverse of the generalizedmass matrix in explicit, and the multibody dynamic equatons for the general multibody dynamicsysytems, the high efficient soluations to the forward multibody dynamics problem and backwardmultibody dynamics problem algorithms are established. The SOA algorithm has a simple mathexpression, high compulational efficiency and clear physical understanding advantages.
     Based on spatial operator algreba theory, the multibody dynamics of expansion of thefree-floating space robot sysytems are studied, and the general dynamic equations for the treemultibody dynamic system, underactuated multibody dynamic system and close loop multibodydynamic system are established. The high efficient multibody dynamic modeling algorithm can beused for real time dynamic simulation for space systems. Based on sliding mode variable structurecontrol algorithm, analogise to the block generalized mass matrix, under the active control inputs theactive joints and passive joints both can convergence to desired state.
     The flexible multibody dynamic systems are studied. Using the technology of the finite elementmethod, combing with the rigid multibody dynamic method based on spatial operator algreba theory,the flexible multibody dynamic equations are established, and the high efficient dynamic computationalgorithms for forward and backward dynamic problems are proposed.
     Based on binocular stereo visual servo method, the target capturing method of the free-floatingspace robot is proposed, and the simulation software is designed. The binocular stereo vision systemis used to measure the position and posture of the target in base body coordinate, and feedback to therobot control system. According to the manpulator’s motion of the space robot compute the motion ofthe base body in the software by the high efficient reat-time dynamic computation algorithm. Formthe simulation software we could found that the target capturing method based on binocular stereovision of the free-floating space robot could implement the target tracking and capturing, indicatingthat the targrt capturing method is feasible.
     The reliability and feasibility of the spacecrafts Activities, not only need theory verification, butalso need the actual physical test on the ground. By the advantage of the real-time multibody dynamicalgorithm in modeling and computation efficiency, a hybrid ground test platform is proposed. Thebase of the free-floating space robot is connected to the end effector of the6degrees of freedomindustrial robot, according to the manipoulator’s motion of the space robot the base motion iscomputed by high efficient real-time dynamic algorithm, and then uses the industrial robot to simulatethe actual base motion to implement the real base motion in the space of the free-floating space robot.After the ground physical test platform is completed, target capturing method of the free-floatingspace robot could be by verified further experiments.
引文
1.杨毅,丁希仑.基于空间多面体向心机构的伸展臂设计研究.机械工程学报,2011,5(47):36-34.
    2.张春,王三民,袁茹.空间可展机构弹性动力学特性研究.机械科学与技术,2007,11(26):1479-1489.
    3.李团结,张琰,李涛.周边桁架可展天线展开过程动力学分析及控制.航空学报,2009,3(30):444-449.
    4. Settelmeyer E, Hartmann R, Landzettel K, et al. The Experimental Servicing Satellite-ESS.21thISTS ConferenceOmiya, Japan,1998:617-621.
    5.徐文福.空间机器人目标捕获的路径规划与实验研究,[博士学位论文].哈尔滨,哈尔滨工业大学,2007.
    6.程涛,孙汉旭,贾庆轩.非完整控制系统的发展现状及展望.中国机械工程,2006,8(17):438-444.
    7. Pushparaj Mani Pathak, R. Prasanth Kumar, Amalendu Mukherjee, A scheme for robusttrajectory control of space robots, Simulation Modelling Practice and Theory,2008:1337-1349
    8.洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999.
    9.刘云平.航天器多体系统姿态动力学与控制的研究,[博士学位论文].南京:南京航空航天大学,2009.
    10. A. Mishkin, Sojourner.An Insider’s View of the Mars Pathfinder Mission. Berkley Books, NewYork,2004.
    11. B Wilcox, T Nguyen. Sojourner on mars and lessons learned for future planetary rovers.28th Int.Conf. Env. Syst,1998.
    12. D L Akin, M L Minsky, E D Thiel, C. R. Curtzman. Space applications of automation, roboticsand machine intelligence systems (ARAMIS) phase II, NASA-CR-3734–3736,1983.
    13. James F A, Peter D S. The Development Test Flight of the Flight Telerobotic Servicer:DesignDescription and Lessons Learned. IEEE Transactions on Robotics and Automation,1993,9(3):664-674.
    14. Whelan D A, Adler E A, Wilson S B, et al. DARPA Orbital Express program: Effecting arevolution in space-based systems. Proceedings of SPIE-The International Society for OpticalEngineering,2000:48-5.
    15. K Yoshida. Engineering test satellite vii flight experiments for space robot dynamics and control:theories on laboratory test beds ten years ago, now in orbit. Int. J. Robot. Res.2003,22(5):321–335.
    16. M Oda. ETS-VII, space robot in-orbit experiment satellite. Proc.1996IEEE Int. Conf. Robot.Autom,1996:739–744.
    17. K Landzettel, A Albu-Schffer, C Preusche. Robotic On-Orbit Servicing-DLR's Experience andPerspective. Proceedings of the IEEE/RSJ Intl.Conference on Intelligent Robots and Systems,Beijing, China,2006:4587-4594.
    18. G.Hirzinger, K.Landzettel. DLR's robotics technologies for on-orbit servicing.AdvancedRobotics,2004,18(2):139-174.
    19. B.Sommer. Automation and Robotics in the German Program-Unmanned On-OrbitServicing(OOS) and the TECSAS Mission. Proc.of55th International Astronautical Congress,2004:2574-2583.
    20.何光彩.自由飞行空间机器人姿态控制研究,[博士学位论文].哈尔滨:哈尔滨工业大学,
    1999.
    21.黄献龙,梁斌,陈建新.EMR系统机器人运动学和工作空间的分析,控制工程.2000,3:1-6.
    22.黄献龙,梁斌,陈建新. EMR系统机器人运动学分析和求解.宇航学报,2001,22(2):18-25.
    23.顾晓勤,刘延柱.空间机械臂动力学与控制研究进展.力学进展,1997,27(4):457-463.
    24.孪楠,明爱国,赵锡芳,等.含有非驱动关节机器人的学习控制.机器人,2002,24(2):144-149.
    25. L Udawatta, K Watanabe, K Izumi. Control of three degrees of freedom underactuatedmanipulator using fuzzy based switching. Artificial Life Robotics,2004,8(2):153-158.
    26. G P He,Z Lu, F X Wang. Motion optimal control of underactuated redundant robot arm. Journalof Astronautics,2002,23(5):16-20.
    27. H Arai, K Tanie. Time scaling control of an underactuated manipulator,” Journal of Roboticssystems,1998,15(9).525-536.
    28. M Bargeman. Dynamics and control of underactuated manipulators, Ph.D.dissertation. Electricaland Computer Engineering of Carnegie Mellon University, Pittsburghers,1996.
    29. T. Laliberte, C M Gosselin. Simulation and design of underactuated mechanical hands, MechMachine Theory,1980,33(1/2):730-736
    30. Tieshi Zhao, Jian Dai. Dynamics and coupling actuation of elastic underactuated manipulators.Journal of Robotic Systems,2003,20(3):135-146
    31.郝建豹.三关节欠驱动体操机器人系统的控制研究,[硕士学位论文].杨凌:西北农林科技大学,2005.
    32.刘迎春,余跃庆,姜春福.冗余度机器人研究动向.机械设计与研究,2003,19(1):24-27.
    33. Woo-Keun Yoon, YuichiT Sumaki, Maseru Uchiyama. An Experimental Teleoperation Systemfor Dual-Arm Space Rbotics. Journal of Robotics and Mechatronics,2000:12-4.
    34. Arata Ejiri. Satellite Berthing Experiment with a Two-Armed Space Robot. Space SystemLaboratory Fujitsu Laboratories Ltd, Kawasaki, Japan.
    35. Woo-Keen Yoon, Yuichi Tsumaki, Masaru Uchiyama. An Experimental System for Dual-ArmRobot Teleoperationin Space with Concepts of Virtual Grip and Ball. Proceedings of the Ninthinternational Conference on Advanced Robotics, Tokyo, Japan,1999/10/25-27:225-230.
    36. Woo-Keen Yoon, Yuichi Tsumaki, Masaru Uchiyama. An Experimental Teleoperation Systemfor Dual-Arm Space Robotics. Journal of Robotics and Mechatronics,2000:12-4.
    37.王从庆,石宗坤.自由浮动空间双臂机器人抓持内力的优化控制.宇航学报,2006,27(1):16-20.
    38.陈立平.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005.
    39.田富洋.基于空间算子代数的机械多体系统高效动力学建模与实时仿真研究,[博士学位论文].南京:南京航空航天大学,2010.
    40.黄文虎,邵成勋.多柔体系统动力学.北京:科学出版社,1996.
    41.陆佑方.柔性多体系统动力学.北京:高等教育出版社,1996.
    42.贾书惠.刚体动力学.北京,高等教育出版社,1987.
    43.洪嘉振.计算多体系统动力学.高等教育出版社,1999.
    44.吴洪涛,熊有伦.机械工程中的多体系统动力学问题.中国机械工程,2000,11(6):608-611.
    45.方喜峰,吴洪涛,刘云平,等.基于空间算子代数理论计算多体系统动力学建模.机械工程学报,2008,(39):66-72.
    46.徐文福,刘宇,强文义,等.自由漂浮空间机器人的笛卡尔连续路径规划,控制与决策,23(3),2008:278-287.
    47. Z Vafa, S Dubowsky. On the dynamics of manipulators in space using the virtual manipulatorapproach. Proceedings of1987IEEE International Conference on Robotics and Automation,1987:579–585.
    48. E. Papadopoulos, S Dubowsky. On the nature of control algorithms for free-floating spacemanipulators. IEEE Transactions on Robotics and Automation7(6),1991:750–758
    49. Y Watanabe, Y Nakamura. A space robot of the center-of-mass invariant structure.Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,Victoria, BC, Canada,1998:1370–1375
    50. Yoji Umetani, Kazuya Yoshida. Resolved motion rate control of space manipulators withgeneralized jacobian matrix, IEEE Transactions on Robotics and Automation5(3),1989:303–314
    51. K. Yoshida. Engineering test satellite VII flight experiments for space robot dynamics andcontrol: theories on laboratory test beds ten years ago, now in orbit. International Journal ofRobotic Research,2003,22(5):321–335
    52. Y Yokokohji, T Toyoshima, T Yoshikawa. Efficient computational algorithms for trajectorycontrol of free-flying space robots with multiple arms. IEEE Transactions on Robotics andAutomation9(5),1993:571–579
    53. Yoshihiko Nakamura, Ranjan Mukherjee. Non-holonomic path planning of space robots via abidirectional approach. EEE Transactions on Robotics and Automation,7(4),1991:500–514
    54. H L Alexander, R H Cannon Jr. An extended operational space control algorithm for satellitemanipulators. The Journal of the Astronautical Sciences,1990,38(4):473–486
    55. K Yoshida, D N Nenchev, M Uchiyama. Moving base robotics and reaction management control.G. Giralt, G. Hirzinger (Eds.), Robotics Research, The Seventh International Symposium,Springer Verlag,1996:101–109
    56. Woo-Keun Yoon, Toshihiko Goshozono, Hiroshi Kawabe, et al. Modelbased space robotteleoperation of ETS-VII manipulator. IEEE Transactions on Robotics and Automation,20(3),2004:602–612
    57. I Belousov, V Kartashev, D Okhotsimsky. Real time simulation of space robots on the virtualrobotic test-bed. Proc.7th Intern. Conf. on Advanced Robotics ICAR'95, Sant Feliu de Guixols,Spain, Sept.20-22,1995, pp.195-200.
    58. I. Belousov, Claudia Estevès, Jean-Paul Laumond, Etienne Ferré. Motion planning for the largespace manipulators with complicated dynamics. EEE/RSJ International Conference on IntelligentRobots and Systems,2005:2160–2166
    59. Jain A, G Rodriguez. Recursive Flexible Multibody System Dynamics using Spatial Operators.Journal of Guidance, Control and Dynamics,1992(15):1453-1466.
    60. Rodriguez G, Jain A, K Kreutz-Delgado. Spatial operator factorization and inversion of themanipulator mass matrix. IEEE Transactions on Robotics and Automation,1992,8(1):65-76.
    61. Jain A, Rodriguez G, Recursive Dynamics for Geared Robot Manipulators. Proceedings of the29th Conference on Decision and Control, TA-16-2,1990.
    62. Rodriguez G. Statistical mechanics models for motion and force planning. Proc. SPIE Conf.Intelligent Control Adaptive Syst.(Philadelphia, PA), Nov.1989.
    63.张福海,付宜利,王树国.一种笛卡尔空间的自由漂浮空间机器人的路径规划方法.机器人,2009,2(31):187-192.
    64. Li Chen, Xiaoteng Tang, Optimal motion planning of attitude control for space robot systemwith dual-arms. Proceedings of the Sixth World Congress on Intelligent Control and Automation,Dalian, China,2006:8858–8861.
    65. Feng Wang, Fuchun Sun, Huaping Liu. Space robot modeling and control considering the effectof orbital mechanics. First International Symposium on Systems and Control in Aerospace andAstronautics,2006:193–198.
    66.王从香,王从庆.自由浮动冗余度空间机器人的混沌识别与控制.宇航学报,4(30),2009:1531-1536.
    67.徐文福,詹文法,梁斌,等.自由漂浮空间机器人系统基座姿态调整路径规划方法的研究.机器人,2006,28(3):291-296.
    68.洪炳熔,李华忠.自由飞行空间机器人的关节驱动力矩求解算法.机器人,21(5),1999:328-334.
    69.薛力军,胡松华,梁斌,等.空间机器人分布式滑模变结构控制方法,控制工程,2009,16(2):234-238.
    70. Huang P F,Xu Y,Liang B.Dynamic Balance Control of Multiarm Free-Floating SpaceRobots[J].International Journal of Advanced Robotic Systems.2005,2(2):117-124.
    71. D N Nenchev, K Yoshida, P Vichitkulsawat, et al. Reaction null-space control of flexiblestructure mounted manipulator systems. IEEE Trans. Robot. Autom,1999,15(6):1011–1023.
    72. W C Dickson, R H Cannon. Experimental Results of Two Free-Flying Robots Capturing andManipulatinga Free-Flying Object. Proc.of the IEEE Intel. Conference on Intelligent Robots andSystems,1995:51-58.
    73. S K A grawal, M P Shelly. Dynamic Simulation and Choice of Generalized Coordinates for aFree-Floating Closed-Chain Planar Manipulator. Mech. Mach.Theory,1993,28(5):615-62.
    74. Carignan C R, Akin D L. The Reaction Stabilization of On-Orbit Robots. IEEE Control SystemsMagazine, Dec.2000:19-23.
    75. Menon C, Busolo S, Cocuzza S, et al. Issues and new solutions for testing free-flying robots.IAC-04-IAF-1.J.5,2004:1-11.
    76. Agrawal S K, Hirzinger G, Landzettel K, et al. A New Laboratory Simulator for Study of Motionof Free-floating Robots Relative to Space Targets. IEEE Transactions on Robotics andAutomation.1996,12(4):627-633.
    77. Dubowsky S,Durfee W,Corrigan T,et al.A Laboratory Testbed for Space Robotics:The VES II.Proceedings of IEEE conference of Robots and Systems,1994:1562-1569.
    78.肖尚彬.四元数方法及其应用.力学进展,1993,23(2):249-260.
    79.肖尚彬.四元数矩阵的乘法及其可易性.力学学报,1984,2,159-1630.
    80.工庆贵.四元数及其在空间机构位移分析中的应用.力学学报,1983,1,54-5.
    81.刘极峰.机器人技术基础.北京:高等教育出版社,2006.
    82. Paual R P, Shimano B E, Mayer G. Kinematic Control Equations for Simple Manipulator. IEEETrans, SMC,1981,11(6):449-455.
    83. Lec C S J, Ziegler M A. A Geometric Approach in Solving the Inverse Kinematics of PUMARobots. IEEE Trans. Aerospace and Electronic Systems,1984,20(6):695-706.
    84. Pieper D, Roth B. The Kinematics of Manipulators Under Computer Control. Proc. of the2ndInternational Congress on Theory of Machines and Mechanisms, Zakopane Poland,1969,2:159-169.
    85.熊有伦.机器人技术基础.武汉:华中科技大学出版社,1996.
    86.谢传锋.动力学.北京:高等教育出版社,2004.
    87. Guillermo R. Kalman filtering, smoothing, and recursive robot arm forward and inversedynamics. IEEE Journal of Robotics and Automation,1987,3(6):624-639.
    88. Bryson A, Frazier M. Smoothing for linear and nonlinear dynamical systems. Proc. OptimumSys. Synthesis Conf. U.S. Air Force Tech. Rept. ASD-TDR-63-119, Feb1963.
    89. Rodriguez G, Jain A, Kreutz-Delgado K. Spatial operator algebra for multibody systemdynamics. The Journal of the Astronautical Sciences,1992,40:27-50.
    90. Jain A, Rodriguez G. Recursive flexible multibody system dynamics using spatial operators.Journal of Guidance, Control, and Dynamics, November-December1992,15(6):1453-1466.
    91. Jain A. Unified formulation of dynamics for serial rigid multibody systems. Journal of Guidance,Control and Dynamics, May-June1991,4(3):531-542.
    92. Jain A, Rodriguez G. Recursive Dynamics for Geared Robot Manipulators. Proceedings of the29th Conference on Decision and Control, TA-16-2,1990.
    93. Rodriguez G. Statistical mechanics models for motion and force planning. Proc. SPIE Conf.Intelligent Control Adaptive Syst.(Philadelphia, PA), Nov.1989.
    94. John Ziegler. A Unifying Multibody Dynamics Algorithm, JPL Report,2005.
    95. SILVER D B. On the equivalence of Lagrangian and Newton-Euler dynamics for manipulators.The International Journal of Robotics Research,1982,1(2):118–128.
    96. Featherstone R, The calculation of robot dynamics using articulated-body inertias. Int. J. Robot.Res.1983,2(1),13-30.
    97. Featherstone R. Rigid Body Dyanmics Algorithms. Springer.2008, New York.
    98. Anderson K, Moore J B. Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ,1979.
    99. Jain A. Graph theoretic structure of multibody system spatial operators, the1st JointInternational Conference on Multibody Systems Dynamics, Lappeentanta, Finland,2010.
    100. Jain A. Graph theory root on spatial operator for kinematics and dynamics. IEEE InternationalConference on Robotics and Auotomation, Anchorage, Alaska,2010.
    101.王从庆,石宗坤.自由浮动空间双臂机器人抓持内力的优化控制.宇航学报,2006,27(1):16-20.
    102. Woong Kwon, Beom Hee Lee. A new optimal force distribution scheme of multiple cooperatingrobots using dual method. Journal of Intelligent and Robotic Systems,1998,21:301-326.
    103.刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    104. Jain A, Rodriguez G. An analysis of the kinematics and dynamics of underactuatedmanipulators.IEEE transactions on robotics and automation,1993,9(4):411-422.
    105.张淑琴.空间交会对接测量技术及工程应用.北京:中国科学出版社,2005.
    106.张广军.机器视觉.北京:科学出版社,2005.
    107. Bekir K, Serkan A. An improved approach to the solution of inverse kinematics problems forrobot manipulators. Engineering Applications of Artificial Intelligence,2000,13:159-164.
    108. Malis E, Chaumette F, Boudet S. Multi-cameras visual servoing. Proceedings of the IEEEInternational Conference on Robotics and Automation, ICRA’00,2000,4:3183–3188.
    109. Pretlove J, Parker, G. The development of a real-time stereo-visionsystem to aid robot guidancein carrying out a typical manufacturing task. Proceedings of the Internation Symposium ofRobotics Research, ISRR,1991:1–23.
    110.方勇纯.机器人视觉伺服研究综述.智能系统学报,2008,3(2):109-114.
    111.薛定宇,项龙江,司秉玉,等.视觉伺服分类及其动态过程.东北大学学报(自然科学版),2003,24(6):543-547.
    112.赵清杰,连广宇,孙增圻.机器人视觉伺服综述.控制与决策,2001,16(6):849—853.
    113.王麟琨,徐德,谭民.机器人视觉伺服研究进展.机器人.2004,26(3):277-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700