可展桁架的结构设计及动力学分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可展桁架结构是近些年发展起来的一种新型折叠结构体系,在航空航天,机械工程和日常生活中都有广泛地应用。本文对可展桁架的结构设计和动力学分析进行了深入系统的研究。
     首先,结合车载式自动遮阳装置支撑结构的功能要求、应用环境需求分析结果以及现有可展桁架结构型式的特性对比,选定在剪式单元可展开折叠机构的运动机理上进行改进设计,并提出基本运动准则和约束条件,完成抛物面型和圆柱面型两种可展桁架的赋形设计,同时通过ADAMS仿真软件实现圆柱面可展桁架的运动仿真,验证几何设计和运动的可行性。按照本文的设计原理,可进一步实现可展桁架按任意曲线赋形,丰富了多连杆折叠机构的结构形式。
     其次,采用有限单元法建立圆柱面可展桁架展开状态下的有限元模型,并通过模态分析掌握了铰接杆、支撑轴截面尺寸变化和等效集中质量变化对结构整体模态和度的影响,同时结合可展桁架结构的实际应用环境完成强风载荷的分析。并以上述的分析结果为依据,选择铰接圆管外径和壁厚为优化设计参数,建立数学优化模型,再利用ANSYS软件进行圆柱面可展桁架的截面尺寸优化设计,以获得满足最佳设计要求的截面尺寸参数。
     然后,针对圆柱面可展桁架的结构特点,应用多体系统动力学理论的拉格朗日方法建立系统动力学方程,通过运动求解分析其动力特性,得出驱动力模式与桁架系统运动的关系,并通过ADAMS动力学分析软件验证上述方法的正确性。最后结合虚拟样机技术和有限元技术将可展桁架中的关键铰接杆柔性化,简单、方便地实现了柔耦合动力学仿真求解,分析柔性铰接杆对可展桁架运动的影响,避免了传统方式的繁琐推导和复杂计算。
     最后,基于上述工作的基础,本文完成了圆柱面可展桁架的1:1实物样机试制,并通过收合实验,验证赋形设计理论的正确性和运动的可行性。
The deployable truss mechanism is a new type folding architecture developed in the recent several years. It's widely used in a lot of fields, such as aerospace, mechanical engineering and daily life etc. Structural design and dynamic analysis have been studied systematically for deployable truss mechanism in this dissertation.
     Firstly, according to the functional requirements of supporting structure used in an automatic sun-shading device of automobile, such as demand analysis of application environment and characteristics contrast of the currently available deployable truss, the paper indicated a new design and moving norms and completed the improve design based on deployable scissor truss which realized the parabola and cylinder shaping of mechanism. And it simulated the motion of mechanism by the aid of ADAMS software which validated the feasibility of geometric design. Following the design principle in the thesis, it can be further realized to get an arbitrary curve shaping and enriched the forms of the multi-link folding structure.
     Secondly, it was established that the finite element model of the deployable cylinder truss structure while unfolding and researched on what affect the cross-section size changes of hinged rod and supporting axes and the equivalent lumped mass change have on the stiffness and model of the truss with the help of model analysis, simultaneously, it accomplished the strong wind load analysis under the environment of practical application. Eventually, according to the results of above analysis, it made the diameter and wall thickness of the hinged rod as the optimization design parameters and built up the mathematical optimization model, what's more, with the help of ANSYS, it realized the optimization design of deployable cylinder truss and received the best design parameters
     Thirdly, due to be dead against the structural characteristics of the deployable cylinder truss, the paper set up the dynamic equation of the model based on Lagrange equation in the multi-body system dynamic theory, by calculating equation and analyzing the dynamic characteristics, it obtained the relationship between the driving force and the movement of the truss system, further, the correctness of the above theory was verified through the application of ADAMS. At last, by combining of the virtual prototyping technology and finite element technique, the thesis successfully made the key rigid- rod as flexible and fulfilled the rigid-flexible coupling dynamic simulation simply and easily, which can analyze the impact of flexible rod during the movement, besides, that can avoid the tedious derivations and complex calculations in traditional method
     Finally, based on the above research, the paper set up a physical prototype of deployable cylinder truss by 1:1 ratio and verifies the correctness of shaping design theory and feasibility of the movement through a lot of experiments.
引文
[1]F.Escrig.Expandable space structures[J].International Journal of Space Structures,1985,16(2):79-91.
    [2]F.Escrig.Valearcel J.P.Geometry of expandable space structures[J].International Journal of Space Structures 1993,8(1/2):71-84.
    [3]S.Pellegrino.Structural Computations with the Singular Value Decomposition of the Equilibrium Matrix[J].Solids & Structures,1993,30(8):30 25-3035.
    [4]S.Pellegrino.Matrix Analysis of Statically And Kinetically Indeterminate Frameworks[J].Solids & Structures,1986,22(4):409-428.
    [5]S.Pellegrino.Reduction of Equilibrium,Compatibility And Flexibility Matrices In The Force Method[J].For Numer..Meth.In Engrg,1992,35(1):1219-1236.
    [6]S.Pellegrino.Solution of Equilibrium Equations In The Force Method:Compact Band Scheme For Indeterminate Linear System[J].Computer& Structures,1990,37(5):74 3-751.
    [7]Calladine R,Pelleghno S.First order infinitesimal mechanisms[J].International Journal of Solids and Structures,1991,27(4):505-515.
    [8]Massood M.A cost saving berthing verification of ISS truss segment -to-segment attach system[A].Virginia,44th AIAA/ASEM/ASCE/AHS Structure,Structural Dynamics and Materials Conference[C],Norfolk,2003,23(20):1-9.
    [9]R E Freeland.Survey of Deployable Antenna Concepts-Large Space Antenna Systems Technology[Z],N ASA-2269,PartⅠ,2005:381-421.
    [10]Martin M,Mikulas J,Harold G.Advances In Structural Concepts-Large Space Antenna Systems Technology[J].N ASA CP-2269 Part Ⅰ:N ASA Langley Research Center,NoN.30-Dec.3,2007.
    [11]Gantes C J,Konitopoulou E.Geometric design of arbitrarily curved bi-stable deployable arches with discrete joint size[J].International Journal of Solids and Structures,2004,41(20):5517-5540.
    [12]TRW.Inc.TRW-built AstroMesh reflector deployed aboard Thuraa spacecraft[DB/OL].http://www.trw.com(5 December 2000).
    [13]THOMSON.M.The Astrometry Deployable Reflector[A].In Proceeding of the fifth International Mobile Satellite Conference[C].UK:IEEE Network,2005,13(10):18-24.
    [14]Hollaway L,thorne A,Sparry D.Large space structures-their implications and requirements[J].Journal of Space Structures,1991,6(10):1-10.
    [15]侯国勇.桁架式展开结构设计、分析及试验[D].浙江大学,2008.
    [16]杨玉龙.空间展开桁架结构设计理论与热控制研究[D].浙江大学,2007.
    [17]张京街,关富玲.大型切割旋转抛物面展开结构的设计[J].工程设计学报,2001(1):46-52.
    [18]关富玲,汪有伟,杨超辉.新型折叠卷收式反射阵天线的设计与制作[J].工程设计学报,2004(7):37-43.
    [19]朱海涛.折叠结构的理论分析与试验研究[D].天津大学,2007.
    [20]陈向阳,关富玲.六棱柱单元可展天线结构设计[J].空间结构,2001(1):67-74.
    [21]张京街,关富玲.弹簧驱动空间可展桁架结构设计与分析理论研究[D].浙江大学,2001.
    [22]王勇.基于微粒群算法的桁架结构优化设计[D].同济大学,2008.3.
    [23]章静.空间弯曲管桁架体系的结构动力性能分析[D].同济大学,2005.
    [24]王勖成.有限单元法[M].北京:清华大学出版社 2002.
    [25]蒋秀根,剧锦三,张丽莉.考虑桁架度的温室结构风载荷效应分析方法[J].中国农业大学报,2005,12(6):37-45.
    [26]肖为明,孙连宏,柴明.空间桁架的几何稳定性、传力路线及受力敏感度分析[J].工业建筑,2008,10(9):97-105.
    [27]谭全芹,陈赓超,李小平.大型网状可展开天线模态分析[J].飞行器测控学报,2005,7(4):21-26.
    [28]Hoker.W.W,Margulies.G.The Dynamics Attitude Equations For An N -Body Satellite[J].Astronautical Science.1965,12(4):123-128.
    [29]Likins.P.W.Finite Element Appendage Equation for Hybrid Coordinate Dynamic Analysis [J].Solids and tructures.1972,3(8):709-731.
    [30]Likins.P.W.Dynamic Analysis of System of Hinge-connected Rigid Bodies With Nonrigid Appendages[J].Solids and Structures.1973,9(12):1473-1487.
    [31]Ando Kazuhide,Mitsugi Jin,Senbokuya Yurni.Analyses of cable-membrane Structure combined with deployable truss[J].Computers and Structures,2000,74(1):21-39.
    [32]R.Serban,D.NegltF,.A.Pro and E.J.Haug,A topology based approach for exploiting sparsity in multi-body dynamics in Cartesian formulation[J].Mechanics of Structures and Machines,2005,4(25):379-396.
    [33]刘银虎.空间可展开桁架展开动力学分析及其仿真程序设计[D].浙江工业大学,2003.
    [34]陈务军.空间展开桁架结构设计原理与展开动力学分析理论研究[D].浙江大学,1998.8.
    [35]Grantes C.Structural Analysis and Design of Deployable Structures[J].Computer&Structures,1989,4(32):661-669.
    [36]Kawaguichi K.,Hangai Y.Analysis of stabilizing paths and stability of kinematically indeterminate frameworks[C].Proceeding of the 3~(rd) Summer colloquium on shell and Spatial Structures,1990,23(3):195-204.
    [37]赵孟良,吴开成,关富玲.空间可展桁架结构动力学分析[J].浙江大学学报:工学版,2005,39(11):1669-1674.
    [38]赵孟良,关富玲.考虑摩擦的周边桁架式可展开天线动力学分析[J].空间科学学报,2006,26(3):220-226.
    [39]关富玲,张惠峰,韩克良.二维可展板壳结构展开过程分析[J].工业设计学报,2008,5(1):97-101.
    [40]芦丹,吴鑫,张彦斌.结合连续法与数值图谱法的四杆机构连杆轨迹的尺寸综合[J].机械设计,2004,21(10):43-45.
    [41]王知行,吴群波,李建生.用连杆转角曲线法实现四杆机构轨迹综合及其多解评价的 研究[J].机械设计,1997,6(14):5-8.
    [42]刘毅,张君彩,高慧琴.圆弧或直线轨迹连杆机构设计的新方法[J].机械设计与制造,2006,27(2):27-29.
    [43]皱惠君,高峰.现代机构学进展[M].北京:高等教育出版社,2006:341-348.
    [44]胡晓珍,陈忠维.基于MATLAB/FLSOVE函数的四连杆机构运动轨迹仿真[J].制造业信息化,2007,41(2):44-45.
    [45]李增.ADAMAS入门详解与实例分析[M].国防工业出版社,2006.
    [46]龚曙光.ANSYS工程应用实例解析[M].机械工业出版社,2003.
    [47]段进,倪栋,王国业.ANSYS10.0结构分析从入门到精通[M].兵器工业出版社,2006.
    [48]黄本才,汪丛军.结构抗风分析原理及应用[M].同济大学出版社,2008.
    [49]张策.机械动力学[M].高等教育出版社,2007.
    [50]谢传峰,王琪.程耀.动力学[M].高等教育出版社,2003.
    [51]Dheeman Basu,Sashitava Ghosal.Singularity Analysis of Platforms type Multi-Loop Spatial Mechanisms[J].Mech.Mach.Theory.2003,32(3):357-389.
    [52]Miguel Abgel Serna,Rafeal Aviles.Dynamic Analysis Of Plane Mechanisms With Lower Pairs In Basic Coordinates[J].Mechanism and machine,2004,17(6):342-354.
    [53]Travis Langbecker.Kinematics Analysis of Deployable Scissor Structures[J].International Journal of Space Structures,1999,14(1):125-134.
    [54]张德丰.MATLAB数值分析与应用[M].国防工业出版社,2006.
    [55]陈杰.MATLAB宝典[M].电子工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700