输电线路除冰机器人本体设计与越障动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对输电线路实施除冰是防止冰灾的有效途径。除冰机器人造价低,工作效率高,安全可靠,能够实现在线除冰作业,不影响电力的输送,是一项很有发展前景的课题。目前机器人在高压输电线路上的应用主要是线路巡检。而对线路除冰的应用还鲜有研究。本文对除冰机器人本体设计、越障规划、动力学分析等内容进行了深入的研究。主要研究内容如下:
     首先,在分析了输电线路结构和除冰作业要求的基础上,指出现有巡线机器人结构运用到除冰作业中的缺陷,设计了一种除冰机器人本体机构,并对其越障的动作进行了规划。通过运动学仿真,验证了动作规划的合理性。
     接下来,用Lagrange法建立了机器人的多体系统动力学模型,推导了机器人逆动力学方程的求解算法,并结合机器人的虚拟样机,不考虑导线的柔性,对除冰机器人单臂越障的过程进行了仿真,根据结果,为除冰机器人最薄弱的关节选择了合适的减速器和电机,验证了除冰机器人本体结构设计的可行性。
     最后,研究了柔性导线的悬挂形状,并用Lagrange方程建立了机器人的刚柔耦合动力学模型,在ADAMS中用除冰机器人的虚拟样机模型和导线的柔性模型进行了仿真,得到机器人运动与导线变形间耦合特性。验证了即使在考虑导线柔性的情况下,所选的减速器和电机仍能满足要求,从而证明了除冰机器人本体设计的合理性。
Cleaning the ice on transmission lines is a effective way to resist disaster of ice. With low cost, high efficiency, safety and reliability qualities, deicing robot can cleaning transmission lines without switch off the transmission of electric power. So far, the application of robot on transmission lines is mainly about line inspection. Few people are studying the deicing application on transmission lines. This paper studied the archtecture design, obstacle-navigation planning and dynamic analysis of a deicing robot. The main contents are as follows:
     Firstly, the structure of transmission lines and the requirement of deicing assignment is analysed. Then we point out the shortcomings of inspection robots as applied in lines deicing task. Based on these analysis, a kind of archtecture of a deicing robot is designed, and the action of obstacle-navigation is planed. Via kinematics simulation the rationality of the action plan is verified.
     Secondly, the multi-rigid-body dynamics model of deicing robot is established through Lagrange method. Then the proper gearheads and motor of the weakeast joint of deicing robot are selected according to the result of dynamics simulation without considering the flexibility of transmission lines.
     Finally, the shape of hanging flexible lines is studied. Then the dynamics model of rigidity and flexibility coupled system is established. Via dynamics simulation with considering the flexibility of transmission lines, the feasibility of selected gearheads and motor is verified.
     Then the conclusion is: the desiged architecture of a deicing robot is rational and feasible.
引文
[1] Serge Montambault, Nicolas Pouliot. The HQ LineROVer: Contributing to Innovation in Transmission Line Maintenance,Transmission and Distribution Construction[C] . Operation and Live-Line Maintenance. 2003IEEE ESMO, 2003IEEE 10th internation conference: 33-40
    [2] Serge Montambault, Nicolas Pouliot. Design and Validation of a Mobile Robot for Power Line Inspection and Maintenance[C], 6th international conference on Field and service Robotics-FSR2007: 1-10
    [3] Jun Sawada, Kazuyuki Kusumoto Yasuhisa Maikawa, Tadashi Munakata Yoshinobu Ishikawa. A mobile robot for inspection of power transmission lines [J], IEEE Transactions on Power Delivery, Vol.6, No.1, January 1991:309-315
    [4]吴功平,肖晓晖,肖华等。架空高压输电线路巡线机器人样机研制[J],电力系统自动化,第30卷,第13期,2006.7:237-240
    [5]肖晓晖,史铁林,杜娥。巡线机器人的动力学建模研究[J],机械与电子,2004.11:44-47
    [6] Ludan Wang, Lijin Fang, Hongguang Wang, Mingyang Zhao. Development and control of an autonomously obstacle-navigation inspection robot for extra-high voltage power transmission lines [J], SICE-ICASE International Joint Conference 2006:5400-5405
    [7]周风余,李贻斌,吴爱国等,高压巡线机器人的设计与实现[J],机械科学与技术,第25卷第5期,2006.5:623-626
    [8] Roberson R E, Wittenburg W. A dynamical formulation for an arbitrary number of interconnected rigid bodies with reference to the problem of satellite attitude control[J]. 3rd IFAC Congress, Proc. London, 1968,45D:2-46
    [9] Wittenburg J. Dynamics of systems of rigid bodies [M] . B.G . Teubner Stuttgart, 1977:25-46
    [10]肖晓辉,高压输电线路巡线作业机器人中若干动力学问题的研究,博士学位论文,武汉:华中科技大学,2005
    [11]周凤余,高压输电线路自动巡线机器人机构设计及在约束条件下的逆运动学分析[J],中国机械工程,第17卷第1期,2006:4-8
    [12]李宾,李映辉,殷学纲,大垂度柔索的动力学建模与仿真[J],应用数学和力学,第21卷第6期,2000:641-646
    [13]朱兴龙,王洪光等,一种自主越障巡检机器人行走夹持机构[J],机械设计,第23卷第8期,2006:11-13
    [14]霍伟,机器人动力学与控制[M],北京:高等教育出版社,2005:16-76
    [15]郑建荣,ADAMS虚拟样机技术入门与提高[M],北京:机械工业出版社,2002:136-172
    [16]刘极峰,易际明,机器人技术基础[M],北京:高等教育出版社,2006:30-71
    [17]蔡自兴,机器人学[M],北京:清华大学出版社,2000:46-106
    [18]刘延柱,体动力学理论与应用[C],上海:上海交通大学出版社,2006:89-133
    [19]洪嘉振,多体系统动力学[C],上海:上海交通大学出版社,2006:1-64
    [20]赵锡芳,机器人动力学[M],上海:上海交通大学出版社,1992:69-94
    [21] Irvine H M. Caughey T K. The linear theoty of free vibrations of a suspended cable[C].Proc R Sco Lond A,1974:299-315
    [22] Luongo A. Rega G. Vestroni F.Monofrequent oscillations of a nonlinear model of a suspended cable[J]. Journal of Sound and Vibration,1982(2):247-259
    [23]曲广吉,航天器动力学工程[M],北京:中国科学技术出版社,2000
    [24] Huston R L. Multibody Dynamics Including the Effects of Flexibility and Compliance[J]. Computers&Structures, 1981,14(5-6):443-451.
    [25] DarylL.Logan,有限元法基础教程[M],伍义生,吴永礼等译,北京:电子工业出版社,2003
    [26] Naganathan G., Soni A H. An Analytical and Experimental Investigation of Flexible Manipulator Performance[J]. Proc. 1987 IEEE Int. Conf. on Robotics and Automation, 1987:707-773
    [27]杜娥,基于ADAMS的巡线机器人运动学、动力学仿真,硕士学位论文,武汉大学,2005
    [28]能源部东北电力设计院,电力工程高压送电线路设计手册[M],北京:水利水电出版社:185-241
    [29]懂吉谔,电力金具手册[M],北京:中国电力出版社,2001:115-124
    [30]宋建龙,柔性机械臂动力学建模与仿真研究,硕士学位论文,天津大学,2002
    [31]孙世基,黄承绪,机械系统柔耦合动力分析及仿真[M],北京:人民交通出版社,2000
    [32]陆佑方,柔性多体系统动力学[M],北京:高等教育出版社,1996:233-434
    [33]廖胜松,电气五金手册[M],北京:化学工业出版社,2005:159-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700