基于柔耦合的整车动力学建模与悬架隔振性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是结合“国家863计划”项目子课题——“整车NVH控制技术”进行的研究。汽车的NVH性能,作为重要的法规和竞争指标在当今汽车产品竞争中变得举足轻重。悬架作为底盘以及整车的一个重要子系统,能够缓和冲击和吸收来自车轮的能量。悬架系统的几何结构、度、阻尼、橡胶衬套等参数对悬架的隔振性能以及整车的乘坐舒适性有着极其重要的作用。
     随着计算机技术和数值分析理论的发展,CAE技术在现代汽车产品设计中扮演着越来越重要的角色。为了在汽车隔振设计时充分考虑悬架系统的作用,本文将有限元方法和多体动力学虚拟样机仿真技术相结合,研究悬架系统结构特征和力学参数对整车振动的影响。先对组成悬架系统的各主要结构件进行模态分析,获得其固有振动特性。同时,在虚拟样机软件ADAMS/Car中建立了整车的各主要子系统,包括前后悬架、转向、轮胎、车身、动力总成等,并利用有限元分析生成柔性体的方法,建立了整车刚柔耦合动力学模型,以提高建模精度。
     其次,本文从悬架系统的隔振性能角度考虑,在ADAMS软件中编写了计算加权加速度均方根值的函数,对整车模型进行了动力学仿真分析。在此基础上利用试验优化的方法优化匹配了前后悬架系统的弹簧度和减振器阻尼参数,将匹配结果导入模型进行重新仿真,使得悬架系统的隔振性能得到一定程度的改善。
     最后,针对橡胶衬套的柔性连接作用和作为汽车设计后期少数几个可以修改的设计参数,利用有限元法分析橡胶衬套的度特性,结合DOE技术对悬架系统中几个主要橡胶衬套的度进行灵敏度分析,对其中影响较大的衬套度进行优化匹配,为改善整车的隔振性能提供指导。
This dissertation was studied in the background of program of“Vehicle NVH Control”, which is one sub program of“National 863 Project”. Vehicle NVH performance, as an important indicator of regulation and factor of competition, has became more and more important in today's vehicle products. As a major component of vehicle, the suspension system can ease the impact and absorb the energy from the wheels. The geometry characteristics, stiffness, damping, rubber bushings of suspension are all extremely important roles in suspension vibration isolation and ride comfort of a vehicle.
     With the development of computer technology and numeric analysis theories, CAE technology plays an increasingly important role in the modern automotive product design. In order to consider the contribution from suspension to vehicle vibration isolation when designing a vehicle, this paper used finite element method and multi-body dynamics simulation of virtual prototyping technology to study the structural characteristics and parameters of suspension system on the impact of vehicle vibration. Firstly, normal mode analysis of some major structural components of suspension had been taken in order to obtain the vibration characteristic. Meanwhile, with the virtual prototype software ADAMS / Car, all subsystems, including the front/rear suspension, steering, tires, body, power train etc., were established. And then organize all subsystems to build a rigid-flexible coupled dynamics full vehicle model to improve the modeling accuracy.
     Secondly, dynamics simulation was taken to analysis the vibration isolation performance of suspension system in this paper, and a function to calculate the RMS of acceleration values was also written. On basis of above, using experimental optimization method to optimized the front and rear suspension stiffness and damping parameters of the suspension system, which resulted in improvement of suspension vibration isolation performance.
     Finally, consider rubber bushings to be the few parameters can be modified and their flexible connection function, using the FEM to analysis stiffness characteristics of rubber bushing and making sensitivity analysis of their contributions to vibration, to optimize the stiffness of some important rubber bushings, in order to provide guidance to improve vehicle vibration isolation.
引文
[1]庞剑,谌,何华编著.汽车噪声与振动——理论与应用[M].北京:北京理工大学出版社,2006:5-16
    [2] Hua F.Sin, Qin Pan. Seat/Floor Coupling CAE Study for Body/Vehicle NVH [J].SAE,2008-01-0254
    [3] Joonhyung Park,Perry Gu. A New Experimental Methodology to Estimate Chassis Force Transmissibility and Applications to Road NVH Improvement [J]. SAE,2003-01-1711
    [4]余志生主编.汽车理论(第三版)[M].北京:机械工业出版社,2003:170-172
    [5]黄承修.基于虚拟样机技术的汽车行驶平顺性仿真研究[D].浙江大学硕士学位论文,2006:1-2
    [6]陈家瑞主编.汽车构造(第五版)(下册)[M].北京:人民交通出版社,2006:221-252
    [7]章志龙,靳晓雄,陈栋华.扭杆梁式半独立悬架扭转度对车轮定位参数影响的仿真研究[J].上海汽车,2006(8):29-33
    [8]陈栋华,靳晓雄,黄海波等.轿车扭杆式半独立后悬架动力学仿真和试验研究[J].汽车工程,2007,第29卷(2):149-152
    [9] Balamurugan Janarthanam, Samir K.Ghodekar. Virtual Development of Optimum Twist Beam Design Configuration for a New Generation Passenger Car[J]. SAE,2007-01-3562
    [10] Vinicius Leal, Rudinixon Moreira Bitencourt. Twist Beam Rear Suspension- Influences of the Cross Section Member Geometry in the Elastokinematics Behavior[J]. SAE,2007-01-2860
    [11]喻凡,林逸编著.汽车系统动力学[M].北京:机械工业出版社,2008:1-4
    [12]陈欣,林逸,方传流.综述多柔体系统动力学在汽车技术中的应用[J].吉林工业大学学报,1997(1):96-101
    [13] L.C.Ferraro, M.A.Fogaca and M.Ururahy. Comfort Study of a Medium Sized Truck with the Use of ADAMS Considering Frame Flexibility Imported from a NASTRAN Finite Element Model[J].SAE,1999-01-3062
    [14] G. FICHERA, M. LACAGNINA and F. PETRONE. Modeling of Torsion Beam Rear Suspension by Using Multibody Method [J]. Multibody System Dynamics,2004(12): 303–316
    [15] Xiaobo Yang, Dajun Zhang, Sudhakar Medepalli and Mohammed Malik. Suspension Tuning Parameters Affecting Impact Harshness PerformanceEvaluation[J]. SAE,2006-01-0991
    [16] M.A.Keshavarz, M.Bayani and Sh.Azadi. Improving Vehicle Vibration Behavior via Structural Modification with Random Road Input[J].SAE,2009-01-2093
    [17]林逸,王望予,方传流,等.弹性元件对奥迪轿车前悬架力学特性及顺从性的影响[J].汽车工程,1995(3):157-163
    [18]王国权,杨文通,许先峰,等.车汽车平顺性的虚拟试验研究[J].上海交通大学学报,2003(11):1772-1775
    [19]乔明侠.基于多体动力学的汽车平顺性仿真分析及悬架参数优化[D].合肥工业大学硕士学位论文,2005:42-53
    [20]马天飞,王登峰,梁和平.利用MSC.ADAMS/Car建立轿车的弹耦合模型[J].计算机辅助工程,2006第15卷增刊:238-240
    [21]舒进,赵德明.基于MSC.ADAMS的汽车柔性扭力梁后悬架特性分析及操稳性仿真[J].计算机辅助工程,2006(9),增刊:199-201
    [22]高琦.计及车体柔性的悬架系统动力学分析与优化设计概[D].山东大学硕士学位论文,2007:11-13
    [23]刘晓东,章晓明.基于ADAMS与NASTRAN的柔耦合体动力学分析方法[J].机械设计与制造,2008(02):168-170
    [24]骆涛.轿车悬架运动学及整车平顺性仿真[D].合肥工业大学硕士学位论文,2008:1-20
    [25]车华军,陈南,李峻岩.基于柔耦合模型的轿车仿真分析及试验研究[J].汽车工程,2009(8):694-697
    [26]王国强,张进平,马若丁编著.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002:8-41
    [27]郑凯,胡仁喜,陈鹿民,等编著.ADAMS 2005机械设计高级应用实例[M].北京:机械工业出版社,2006:2-24
    [28]肖力军.基于ADAMS/CAR的汽车悬架系统虚拟样机设计与性能分析[D].湖南大学硕士学位论文,2006:14-16
    [29]洪嘉振著.计算多体系统动力学[M].北京:高等教育出版社,2002:9-11
    [30]陈力平,张云清,任卫群,等编著.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005:21-25
    [31]杨剑,张璞,陈火红编著.新编MD.Nastran有限元实例教程[M].北京:机械工业出版社,2008:51-52,176-180
    [32]张胜兰,郑冬黎,郝琪等编著.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社社,2007:13-124
    [33]江迎春.基于柔耦合的汽车悬架有限元分析[D].合肥工业大学硕士学位论文,2008:29-32
    [34]范成建,熊光明,周明飞编著.虚拟样机软件MSC.ADAMS应用与提高[M].北京:机械工业出版社.2006:76
    [35]陈军编著.MSC.ADAMS技术与工程分析实例[M].中国水利水电出版社,2008:187-191
    [36]任露泉主编.实验优化技术[M].北京:机械工业出版社.1986:98-122
    [37]石博强,申焱华,宁晓斌,等编著.ADAMS基础与工程范例教程[M].北京:中国铁道出版社,2007:197-224
    [38]何艳则.基于多体动力学的轿车扭转梁悬架运动学及NVH特性下的参数匹配优化研究[D].合肥工业大学硕士学位论文,2009:41-42
    [39]李峰.汽车悬架橡胶衬套力学特性的研究[D].同济大学硕士学位论文,2004:1-3
    [40]李.基于橡胶件的汽车平顺性研究[D].辽宁工学院硕士学位论文,2006:14-25
    [41] MSC.MARC User’s Guide. MSC.Software Corporation,2005 :Chapter3.27
    [42] Ji-Un Lee, Jin-Kwan Suh and Seung-Kab Jeong. Development of Input Loads for Road Noise Analysis[J]. SAE technical paper series,2003-01-1608
    [43] Alexander Kruse. NVH Improvement of Car Suspension using Transfer Path and Running Mode Analysis [J]. SAE 2006-01-0485
    [44]彭辉,靳晓雄,叶武平.悬架系统对轿车车内噪声的影响预测[J].汽车工程,2000,第22卷(1):42-47
    [45] ADAMS Vibration Training Guide. MDI,Version 12.0,120VIBTR-01
    [46] Myung-Gyu Kim, Jae-Sung Jo, Jeong-Hyun Sohn and Wan-Suk Yoo. Reduction of Road Noise by the Investigation of Contributions of Vehicle Components [J]. SAE 2003-01-1718
    [47] Xiaobo Yang and Sudhakar Medepalli. Sensitivities of Suspension Bushings on VehicleImpact Harshness Performances [J]. SAE 2005-01-0827

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700