具有柔性关节的轻型机械臂控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,柔性关节轻型机械臂由于具有高的负载/自重比、质量轻、功耗低等特点,被广泛应用于各种移动机器人或者平台上,在空间探索、军事侦察、反恐排爆和家庭服务等领域占据越来越重要的地位。从轻型机械臂的应用领域和范围来看,其工作任务多样化且工作环境随工作任务而改变。要么工作于危险、未知的复杂环境下,要么与人亲密接触。因此从安全操作及可靠性来说,轻型机械臂除了需要高精度的位置控制外,还需要其对未知工作环境的柔顺性,即当机器人与未知环境相接触时,不至于对机器人本身和操作对象造成损伤;这就需要对轻型机械臂实施柔顺控制。而实现柔性关节机械臂的柔顺控制的有效方法有:力/位混合控制和阻抗控制。再者由于轻型机械臂关节采用谐波齿轮减速以及关节处存在的力矩传感器,都使其关节柔性增大;这不但给轻型机械臂的控制带来了很大的挑战,而且使其在运动的过程中不可避免的存在振动以及运动结束后存在残余振动的问题。为了得到高性能的轻型机械臂,就必须抑制其振动以及残余振动。因此,本文除了对柔性关节轻型机械臂的位置控制进行研究外,还将对柔性关节轻型机械臂笛卡尔阻抗控制以及振动与残余振动抑制进行深入研究。
     本文研制了柔性关节轻型机械臂的硬件系统,包括机械系统、传感器系统以及电气系统,并对整个系统的电气布局进行了简要的介绍。即利用模块化设计思想设计了4自由柔性关节轻型机械臂,模块化关节具有丰富的传感器系统。同时建立了基于Xilinx FPGA的底层控制器、基于PCI的上层控制器以及实现上下层之间通讯的PP-LVDS高速串行总线,通讯周期为200us。底层控制器实现的功能包括:传感器数据采集、数据融合、电机的方波驱动以及与上层的通讯;上层控制器实现的功能有:运动学、动力学、轨迹规划以及与底层的通讯。
     基于反步法实现单连杆柔性关节轻型机械臂的位置控制,但由于其对系统模型参数变化敏感。因此,采用基于神经网络的自适应反步法控制器。既克服了传统反步法对模型参数敏感的问题,又消除了对柔性关节轻型机械臂精确动力学模型的需要,并不受关节柔性大小的限制,控制过程中无需连杆加速度及加加速度信息。仿真和实验结果证明该方法的有效性,同时,利用该方法控制轻型机械臂,测试其末端位置重复定位精度和姿态重复定位精度的均达到设计指标。
     采用反步法笛卡尔阻抗控制实现轻型机械臂的柔顺控制,在设计笛卡尔阻抗控制器的过程中,传统的反步法存在“项数膨胀”问题。为了解决此问题,提出了基于动态面控制-反步法阻抗控制器;该方法在每一步设计过程中引入一阶积分滤波器来估计虚拟控制输入的导数,从而既消除了传统反步法中存在的“项数膨胀”问题,又对可能包含传感器噪声的输入信号进行了滤波,提高系统的动态性能,最后给出了该控制器的稳定性证明。利用此方法实现了柔性关节机械臂在受限环境下的柔顺行为,从而证明该方法的有效性。
     由于谐波齿轮减速以及关节力矩传感器存在,使得轻型机械臂由关节的柔性引起的振动以及残余振动进行抑制控制。针对运动过程中由于干扰或自身柔性引起的振动,设计了基于Luenberger函数的关节状态观测器,利用电机位置传感器和关节力矩传感器,实现对关节位置和关节速度的观测。从而实现了柔性关节的全状态反馈控制,抑制了柔性关节机械臂在运动过程中由于外力扰动或自身柔性引起的振动。而对于运动停止后存在的残余振动,引入时变输入整形技术对机械臂进行控制。当模型不准确时采用离线方法,获得主振模态随构型变化函数,基于这个函数实时修改输入整形器参数,达到抑制残余振动的目的;当模型准确时通过动力学模型求解特征值获得振动模态随构型变化函数,基于此函数实现自适应输入整形控制,从而实现机械臂的残余振动抑制。上述两种方法针对的是机械臂空载情况;对于带载情况下,采用基于模型的自适应输入整形方法。
     本文位置控制和振动以及残余振动抑制方法的实现是在第一代四自由度柔性关节轻型机械臂上进行的;而笛卡尔阻抗控制是在第二代五自由度柔性关节轻型机械臂上实现的。
Recently, due to the features of high load-to-weight-ratio, lightweight and low power consumption etc, flexible joint lightweight robots are widely used in a variety of mobile robots or mechanical platforms, playing a more and more important role in the areas of space exploration, military reconnaissance, counter-terrorism, defusing, as well as home service. From the viewpoint of lightweight robot applications, there exist many different tasks under changing working conditions, either working in dangerous and unknown complex environment or closely contacting with human beings. Therefore, for a safe operation and high reliability, lightweight robots need not only high-precision position control but also compliance control, such that no injury on the robot and operated object will occur when interacting with the unknown environments. Furthermore, the flexibility of the robot joint increases due to the harmonic drive and the torque sensor integrated in the robot joint, which makes the control tasks of lightweight robots to be a challenging issue and results in inevitable vibrations during the robot motion and residual vibrations upon the stopping of the motion. In order to achieve a high control performance, the vibrations must be suppressed. Therefore, Cartesian impedance control as well as vibration (including residual vibration) suppression of flexible joint robots will be investigated deeply, in addition to the study of position control problems.
     In this work, the hardware system of a flexible joint robot is developed, including mechanical subsystem, sensor subsystem and electronics subsystem; a brief introduction to the electrical layout of the entire system is also given. A 4-DOF lightweight robot was designed based on the idea of modular design with a variety of integrated joint sensors. As a part of the robot system, a lower-level (inner-loop) controller based on Xilinx FPGA, an upper-level (outer-loop) controller based on PCI technique, and a point-to-point-LVDS high-speed serial communication bus between the lower-level and upper-level controllers (with a communication cycle of 200us) were developed as well.
     The position control of a single-link flexible joint robot based on backstepping approach is realized. However, the traditional backstepping approach is sensitive to the model parameters of controlled system. Therefore, a neural network-based adaptive backstepping controller is employed, which not only overcomes the problem of the sensitivity to the model parameters, but also eliminates the need of accurate dynamic model of the flexible joints robot. Moreover, the control system is not subjected to the restrictions on the range of joint flexibility, and the link acceleration and jerk signals are not required for the control realization. Simulation and experimental results confirmed the effectiveness of the proposed control approach, and at the same time, the repeatability of positioning accuracy of end-point position and attitude is reached according to the design target.
     We realized Cartesian impedance controller based on backstepping approach to achieve compliance control of the lightweight robot, during which the“explosion of terms”problem associated with the traditional backstepping approach occurs. To overcome this problem, an impedance controller based on the so-called Dynamic-Surface-Control-backstepping is proposed, which introduces a first-order integral filter to estimate the derivative of the virtual control input in each step of the backstepping design process; this action not only eliminates the“explosion of terms”, but also filters out the sensor noise, thus improving the dynamic performance of the system. The effectiveness of this new control approach is confirmed by the compliance behavior of the flexible joint robot working in constrained environments.
     Finally, vibration and residual vibration due to the joints flexibility (induced by the integrated harmonic drive and joint torque sensor) are suppressed. A joint state observer based on Luenberger approach is designed in order to reconstruct the link-side position and velocity, using motor position and joint torque as the input of the observer. As for the residual vibration upon the stopping of the motion, the time-varying input-shaping technique is introduced.
     In this thesis, the position control and vibration suppression as well as the residual vibration suppression are realized on the first generation 4-DOF flexible joint lightweight robot. while Cartesian impedance control is implemented on the second-generation 5-DOF flexible joint lightweight robot.
引文
1 G. Hirzinger and A. A. Schaeffer. Light-weight Robots. http://www. Scholardia. org /article /Light-weight_robots
    2 Y. S. Xu, B. Brown, S. Aoki and T. Kanade. Mobility and Manipulation of a Light-Weight Space Robot. IEEE/RSJ International Conference on Intelligent Robots and Systems. Raleigh, NC, 1992:11~19
    3马香峰.工业机器人的操作机设计.冶金工业出版社, 1999: 62~71
    4诸静.机器人与控制技术.浙江大学出版社, 1991: 3~17
    5杨汝清等.智能控制工程.上海交通大学出版社, 2001:181~201
    6殷跃红,尉忠信,朱剑英.机器人柔顺控制研究.机器人. 1998, 20(3): 232~240
    7 A. Albu-Schaffer, O. Eiberger. Soft Robotics. IEEE Robotics and Automation Magazine. 2008, 3(15):20~30
    8 G. Hirzinger, J. Butterfeb, M. Fischer. A Mechatronics Approach to the Design of Light-Weight Arms and Multifingered Hands. Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, 2000:46~54
    9 G. Hirzinger, A. Albu-Schaeffer, M. Haehnle, I. Schaefer and N. Sporer. On a New Generation of Torque Controlled Light-Weight Robots. IEEE International Conference of Robotics and Automation. Seoul, Korea, 2001: 3356~3363
    10 G. Hirzinger, N. Sporer, A. Albu-Schaffer. DLR’s Torque-controlled Light Weight Robot III–Are We Reaching the Technological Limits Now? IEEE International Conference on Robotics and Automation. Washington, DC, 2002:1710~1716
    11 G. Hirzinger, K. Landzettel, B. Brunner. DLR’s Robotics Technologies for On-Orbit Servicing. Advanced. Robotics. 2004, 18(2):139~174
    12 B. Schaefer, K. Landzettel, B. Rebele. ROKVISS: Orbital Testbed for Telepresence Experiments, Novel Robotic Components and Dynamics Models Verification. Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, 2004:1~8
    13 B. Rebele, B. Schaefer, A. Albu-Schaeffer, W. Bertleff. Robotic Joints and Contact Dynamics Experiments Lessons Learned from ROKVISS. Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2006' ESTEC, Noordwijk, 2006:1~8
    14 A. J. J?rgensen and H. G. Petersen. Usage of Simulations to Plan Stable Grasping of Unknown Objects with a 3-fingered Schunk Hand, 2004:1~6
    15 F. Richard. Concurrent Actuator Development for the Mars Exploration Rover Instrument Deployment Device. Alliance Spacesystems. 2004:1~8
    16 B. Rius. Caging Mechanisms for the Mars Exploration Rover Instrument Deployment Device. Alliance Spacesystems. 2004:1~4
    17 TALON-Brochure. http://www.TALONrobots.com
    18 Mavroidis. Development of a New Arm for the Foster-Miller TALON Robot. Department of Mechanical, Industrial and Manufacturing Engineering,College of Engineering, Northeastern University, 2005:6~7
    19 B. Rooks. The Harmonious Robot. Industrial Robot: An International Journal. 2006, 2(33):125~130
    20 C. Heemskerk, H. Petersen, L. Aris. ERA Operations Verification Results and Lessons Learned. Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, 2004:1~8
    21 D. Verhoeven. Space Mechanisms and Tribology for Joints of the European Robot Arm(ERA). Proceedings of the 8th European Space Mechanisms and Tribology Symosium, Toulouse, 1999:335~340
    22 F. Doctor, A. Glas, Z. Pronk. Mission Performance Preparation Support of the European Robotic Arm(ERA). Proceedings of the 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2002', ESTEC, Noordwijk, 2002:1~8
    23 Y. Kuroda, K. Kondo, K. Nakamura, Y. Kunii, and T. Kubota. Low Power Mobility System for Micro Planetary Rover“Micro5”. i-SAIRAS’99, ESTEC, Noordwijk, The Netherlands, 1999: 77~82
    24 A. A. Schaffer, S. Haddadian C. Ott. The DLR Lightweight Robot: Design and Control Concepts for Robot in Human Environments. Industrial Robot. 2007, 5(34):376~385
    25 T. Nakamyr, N. Saga, M. Nakazawa. Development of a Soft Manipulator Using a Smart Flexible Joint for Safe Contact with Humans. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, Japan, 2003: 441~446
    26 E. I. Rivin. Effective Rigidity of Robot Structure: Analysis and Enhancement. In Proceedings of American Control Conference, Boston, USA, 1985:381~382
    27 M. W. Spong. Modeling and control of Elastic joint robots. Journal of Dynamic Systems, Measurement, and Control, 1987, 109(1): 310~319
    28 M. M. Bridges and D. M. Dawson. Redesign of Robust Controllers for RigidLink FJ Robotic Manipulators Actuated with Harmonic Drive. IEEE Journal of Control Theory and Applications, 1995, 142(5): 508~514
    29 D. Li, J. W. Zu and A. A. Goldenberg. Dynamic Modeling and Mode Analysis of Flexible-Link, Flexible-Joint Robots. Machine Theory, 1998, 33(7): 1031~1044
    30 K. Melhem and A. Loria. A New Model for Flexible-Joint Robot Manipulator. In 2002 IFAC 15th Triennial World Congress. Barcelona, Spain, 2002: 1227~1233
    31 P. Tomei. A Simple PD Controller for Robots with Elastic Joints. IEEE Transactions on Automatic Control, 1991, 36(10):1208~1213
    32 A. A. Schaffer and G. Hirzinger. State Feedback Controller for Flexible Joint Robots: A globally Stable Approach Implemented on DLR's Lightweight Robots. In Proceedings of the IROS 2000, Takamatsu, Japan,, 2000:1087~1093
    33 M. W. Spong, K. Khorasani, P. V. Kokotovic. An Integral Manifold Approach to the Feedback Control of Flexible Joint Robots. IEEE Journal of Robotics and Automation, 1987, 3(4): 291~300
    34 S. S. Ge. Adaptive Controller Design for Flexible Joint Manipulator. Automatica, 1996, 32(2): 273~278
    35 K. Khorasani. Adaptive Control of Flexible-joint Robots. IEEE Transactions on Robotics and Automation, 1992, 8(2): 250~267
    36 H. D. Taghirad, M. A. Khosravi. A Robust Linear Controller for Flexible Joint Manipulator. In Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and System, Sendal, Japan, 2004:2936~2941
    37 R. Amjadi, S. E. Khadem, H. Khaloozadeh. Position and Velocity Control of a Flexible Joint Robot Manipulator via a Fuzzy Controller Based on Singular Perturbation Analysis. In Proceedings of 10th Annual IEEE Conference on Fuzzy System, Australia, 2001:348~351
    38 F. Ghorbel, J. Y. Huang, M. W. Spong. Adaptive Control of Flexible-joint Manipulator. IEEE Control System Magazine, 1989, 4(3): 9~13
    39 F. Ghorbel, M. W. Spong. Stability of Adaptively Controlled Flexible Joint Manipulator. In Proceedings of 29th IEEE Conference on Decision and Control, Honolulu, Hawall, USA, 1990:2538~2554
    40 F. Ghorbel, M. W. Spong. Adaptive Integral Manifold Control of Flexible Joint Robot Manipulator. In Proceedings of the IEEE Conference on Robotics and Automation, Kope, Japan, 1992: 707~714
    41 K. Khorasani. Robust Adaptive Stabilization of Flexible Joint Manipulator. In Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, USA, 1989:1194~1199
    42 R. A. Al-ashoor, R. V. Patel, K. Khorasani. Robust Adaptive controller Design and Stability Analysis for Flexible-joint Manipulator. IEEE Transactions onSystem, Man, and Cybernetics, 1993, 23(2): 589~602
    43 R. A. Al-ashoor, K. Khorasani. A Decentralized Indirect Adaptive Control for a class of Two-time-scale Nonlinear System with Application to Flexible-joint Manipulator. IEEE Transactions on Industrial Electronics, 1999, 46(5): 1019~1029
    44刘业超,金明河,刘宏.柔性关节机器人基于柔性补偿的奇异摄动控制.机器人,2008,30(5): 460~466
    45 W. M. Grimm. Robustness Analysis of Nonlinear Decoupling for Elastic-joint Robots. IEEE Transaction on Robotics and Automation, 1990, 6(3): 373~377
    46 H. Sira-ramirez, M. W. Spong. Variable Structure Control of Flexible Joint Manipulator. International Journal of Robotics and Automation, 1988, 3(2): 57~64
    47 V. Zeman, R. Patel, K. Khorasani. Control of Flexible-joint Robot Using Neural Networks. IEEE Transaction on Control Systems Technology, 1997, 5(4): 453~462
    48 S. S. Ge, T. Lee, E. Tan. Adaptive Neural Networks Control of Flexible Joint Robots Based on Feedback Linearization. International Journal of System Science, 1998, 29(6): 623~635
    49 S. Ider, M. Ozgoren. Trajectory Tracking Control of Flexible-joint Robots. Computers and Structures, 2000, 76(6): 757~763
    50 M. C. Readman. Flexible Joint Robots. USA, CRC Press, 1994: 30~46
    51 A. D. Luca, L. Lanari. Robots with Elastic Joints are Linearizable via Dynamic Feedback. In Proceedings of 34th IEEE Conference on Decision and Control, New Orleans, USA, 1995: 3895~3897
    52 A. D. Luca, P. Lucibello. General Algorithm for Dynamic Feedback Linearization of Robots with Elastic Joints. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Piscataway, USA, 1998: 504~510
    53 P. Tomei. An Observer for Flexible Joint Robots. IEEE Transactions on Automation Control, 1990, 35(6): 739~743
    54 F. Abdollahi, H. A. Talebi, R. V. Petal. A Stable Neural Network-based Observer with Application to Flexible-joint Manipulators. IEEE Transactions on Neural Networks, 2006, 7(1): 118~129
    55 T. Lahdhiri, H. Elmaraghy. Design of an Optimal Feedback Linearizing-based Controller for an Experiment Flexible-joint Robot Manipulator. Optimal Control Application and Methods, 1999, 20(4): 165~182
    56 J. Yaun and Y. Stepanenko. Composite Adaptive Control of Flexible Joint Robots. Automatica, 1993, 29(3):609~619
    57 R. Colbaugh and K. Glass. Adaptive Task-space Control of Flexible-joint Manipulators. Journal of Intelligent and Robotic Systems, 1997, 20(4):225~249
    58 M. Krstic, I. Kanellakopoulos and P. Kokotovic. Nonlinear and Adaptive Control Design. New York: Wiley, 1995: 1~49
    59 S. Nicosia and P. Tomei. Design of Global Tracking Controllers for Flexible-joint Robots. Journal of Robotic Systems, 1993, 10(6): 835~ 846
    60 B. Brogliato, R. Ortega and R. Lozano. Global Tracking Controllers for Flexible-joint Manipulators: a Comparative Study. Automatica, 1995, 31(7): 941~956
    61 J. H. Oh and J. S. Lee. Control of Flexible Joint Robot System by Backstepping Approach. In Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 1997: 3435~3440
    62 M. M. Bridges, D. M. Dawson and C. T. Abdallah. Control of Rigid-link, Flexible-joint Robots: A Survey of Backstepping Approaches. Journal of Robotic Systems, 1995, 12(3): 119~ 216
    63 C. Liu, C. C. Cheah, J. J. Slotine. Adaptive Task-Space Regulation of Rigid-Link Flexible-Joint Robots with Uncertain Kinematics. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, USA, 2006:2565~2570
    64 M. C. Chien, A. C. Huang. FAT-based Adaptive Control for Flexible-joint Robots without Computation of the Regressor Matrix. In 2006 IEEE International Conference on Systems, Man, and Cybernetics, Taipei, Taiwan, 2006: 2653~2658
    65 J. S. Yeon, J. H. Park. Practical Robust Control for Flexible Joint Robot Manipulators. In 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 2008:3378~3382
    66 S. K. Spurgron, L. Yao, X. Y. Lu. Robust Tracking via Sliding Mode Control for Elastic Joint Manipulators. Journal of Systems and Control Engineering, 2001, 215(14): 405~417
    67 S. J. Yoo, J. B. Park and Y. H. Choi. Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks. IEEE Transactions on System, Man, and Cybernetics-Part B: Cybernetics, 2006, 36(6): 1342~1355
    68彭济根,倪元华,乔红.柔性关节机操手的神经网络控制.自动化学报, 2007, 33(2): 175~180
    69 H. Chaoui, W. Gueaieb, M. C. E. Yaggoub. FPGA Implementation of a Hybrid Neural Fuzzy Controller for Flexible-Joint Manipulators with Uncertain Dynamics. In 2007 IEEE International Conference on Systems, Man andCybernetics, Quebec, Canada, 2007:70~75
    70 O. K. Teresa, K. Szabat. Adaptive Fuzzy Sliding Mode Control of a Drive System with Flexible Joint. In IEEE 32nd Annual Conference on Industrial Electronics, Paris, France, 2006:994~999
    71 H. Chaoui and W. Gueaieb. Type-2 Fuzzy Logic Control of a Flexible-Joint Manipulator. Journal Intelligent Robot Systems, 2008, 51(7): 159~186
    72 J. B. Zbigniew. Force Control of a Flexible Joint Robot. Doctor Thesis of Ottawa University, 1993:4~24
    73 M. H. Raibert and J. J. Craig. Hybrid Position/Force Control of Manipulators. Trans. of ASME Journal of Dynamics Systems, Measurement, and Control. 1981,102:126~133
    74 N. Hogan. Impedance Control: An Approach to Manipulation: Part I– Theory. Journal of Dynamics Systems, Measurement, and Control, 1985, 107(11): 1~7
    75 N. Hogan. Impedance Control: An Approach to Manipulation:PartⅡ– Implementation. Journal of Dynamics Systems, Measurement, and Control, 1985, 107(11): 8~16
    76 N. Hogan. Impedance Control: An Approach to Manipulation: PartⅢ– applications. Journal of Dynamics Systems, Measurement, and Control, 1985, 107(11): 17~24
    77 A. A. Schaffer, C. Ott, U. Frese and G. Hirzinger. Cartesian Impedance Control of Redundant Robots: Recent Results with the DLR-light-weight-arms. In Proceedings of the 2003 IEEE international conference on robotics &Automation, Taipei, Taiwan, 2003:3704~3709
    78 J. B. Huang, Z. W. Xie, H. Liu. DSP/FPGA-based Controller Architecture for Flexible Joint Robot with Enhanced Impedance Performance. Journal of Intelligent Robot System, 2008, 53:247~261
    79 K. Khalilh. Nonlinear Systems. London: Prentice Hall, 2002: 30~40
    80 A. A. Schaffer and G. Hirzinger. Cartesian Impedance Control Techniques for Torque Controlled Light-Weight Robots. In Proceedings of the 2002 IEEE international conference on robotics & automation, Washington, DC, USA, 2002: 657~663
    81 C. Ott, A. A. Schaffer, A. Kugi. Decoupling Based Cartesian Impedance Control of Flexible Joint Robots. In Proceedings of the 2003 IEEE international conference on robotics &Automation, Taipei, Taiwan, 2003: 3101~3107
    82 C. Ott, A. A. Schaffer, A. Kugi. A Passivity Based Cartesian Impedance Controller for Flexible Joint Robots - PartⅠ: Torque Feedback, and Gravity Compensation. In Proceedings of the 2004 IEEE international conference on robotics &Automation, New Orleans, LA, USA, 2004: 2659~2665
    83 A. A. Schaffer, C. Ott, G. Hirzinger. A Passivity Based Cartesian Impedance Controller for Flexible Joint Robots - PartⅡ: Full State Feedback, Impedance Design and Experiments. In Proceedings of the 2004 IEEE international conference on robotics &Automation, New Orleans, LA, USA, 2004: 2666~2672
    84 C. Ott, A. A. Schaffer, A. Kugi. On the Passivity-Based Impedance Control of Flexible Joint Robots. IEEE Transactions on Robotics, 2008, 24(2):416~429
    85 R. Ozawa and H. Kobayashi. A New Impedance Control Concept for Elastic Joint Robots. In Proceedings of the 2003 IEEE international conference on robotics &Automation, Taipei, Taiwan, 2003:3126~3131
    86 G. Ferretti, G. Magnani and P. Rocco. Impedance Control for Elastic Joints Industrial Manipulators. IEEE Transactions on Robotics and Automation, 2004, 20(3):488~498
    87 M. C. Chien and A. C. Huang. Regressor-Free Adaptive Impedance Control of Flexible-Joint Robots Using FAT. In Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, 2006:3904~3909
    88 J. B. Huang, Z. W. Xie, H. Liu. Adaptive Cartesian Impedance Control System for Flexible Joint Robot by Using DSP/FPGA Architecture. International Journal of Robotics and Automation, 2008, 4(23):251~258
    89 H. Liu, Y. C. Liu, M. H. Jin. An Experimental Study on Cartesian Impedance Control for a Joint Torque-based Manipulator. Advanced Robotics, 2008, 22:1155~1180
    90 J. B. Huang, Z. W. Xie, M. H. Jin. Adaptive Impedance-controlled Manipulator based on Collision Detection. Chinese Journal of Aeronautics, 2009, 1(22):105~112
    91 A. Sabanovic, K. Ohnishi. Vibration Control of Flexible Joint-A Sliding Mode Approach. In Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, San Diego, CA, USA, 1992:907~911
    92 A. D. Luca, D. Schroder, M. Thummel. An Acceleration-based State Observer for Robot Manipulators with Elastic Joints. In 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 2007:3817~3823
    93 H. Y. Park and S. H. Lee. Eigenvector Assignment Based Vibration Suppression Control for a Two Link Flexible Joint Robot Arm. In: International Conference on Control, Automation and Systems, Seoul, Korea, 2008:2513~2516
    94 P. H. Meckl, R. Kinceler. Trajectory Determination for Vibration-Free Motions of a Flexible-Joint Robot. In Proceedings of the American Control Conference, Baltlmore, Maryland, 1994:2521~2525
    95 M. Thummel, M. Otter and J. Bals. Control of Robots with Elastic Joints based on Automatic Generation of Inverse Dynamics Models. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA, 2001:925~930
    96 M. Thummel, M. Otter and J. Bals. Vibration Control of Elastic Joint Robots by Inverse Dynamics Models. German: Springer Netherlands, 2005: 1~10
    97 R. Kinceler, P. H. Meckl. Corrective Input Shaping for a Flexible-Joint Manipulator. In Proceedings of the American Control Conference, Albuquerque, New Mexico, USA, 1997:1335~1339
    98 S. Lee, S. Kim, S. Oh. Residual Vibration Control of Flexible Joint Robot Manipulator Using Modified Feedback-Error-Learning Method by Evolutionary Programming. In Proceedings of the 32nd ISR (International Symposium on Robotics), Seoul, Korea, 2001:1215~1220
    99 S. Kapucu and S. Baysec. Residual Vibration Suppression of a Flexible Joint System Using a Systematic Command Shaping Technique. The Arabian Journal Science and Engineering, 2006, 31(2B): 139~152
    100 M. A. Ahmad, M. S. Ramli. Optimal Control with Input Shaping for Input Tracking and Vibration Suppression of a Flexible Joint Manipulator. European Journal of Scientific Research, 2009, 28(4): 583~599
    101 D. Jim. Introduction to M-LVDS(TIA/EIA-899). http://www.interfacebus. com/design_connector_899_MLVDS.html
    102 Cyclic redundancy check. http://eu.wikipedia.org/wiki/cyclic_redundancy_check
    103 W. J. Book. Recursive Lagrangian Dynamics of Flexible Manipulator Arms. International Journal of Robotics Research. 1984, 3(3):87~101
    104 A. D. Luca, B. Siciliano. Closed-form Dynamic Model of Planar Multilink Lightweight Robots. IEEE Transactions on Systems, Man, Cybernetics. 1991, 21(4):826~839
    105 S. S. Ge, T. H. Lee, G. Zhu. A Nonlinear Feedback Controller for a Single-link Flexible Manipulator Based on a Finite Element Model. Journal of Robotic Systems. 1997, 14(3):165~178
    106黄剑斌.人机碰撞环境中机械臂的笛卡尔阻抗控制系统研究.哈尔滨工业大学博士论文. 2009:44~45
    107刘业超.空间机器人笛卡尔阻抗控制研究.哈尔滨工业大学博士论文. 2009:30~32
    108 P. S. Gandhi, F. H. Ghorbel, J. Dabney. Modeling, Identification, and Compensation of Friction in Harmonic Drives. Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, USA. 2002:160~166
    109 T. D. Tuttle, W. P. Seering. A Nonlinear Model of a Harmonic Drive Gear Transmission. IEEE Transaction on Robot and Automation. 1996, 12(3):368~374
    110 N. M. Kircanski, A. A. Goldenberg. An Experimental Study of Nonlinear Stiffness, Hysteresis, and Friction Effects in Robot Joints with Harmonic Drives and Torque Sensors. International Journal of Robotics Research. 1997, 16(2): 214~239
    111 C. W. Kennedy, J. P. Desai. Modeling and Control of the Mitsubishi PA-10 Robot Arm Harmonic Drive System. IEEE/ASME Transactions on Mechatronics. 2005, 10(1):263~274
    112宫琪,田玉平.非线性交叉严格反馈系统的一种构造性设计方法.自动化学报, 2000 ,4(26):447~453
    113 R. B. Abder, D. Andre. Backstepping-Based Adaptive PID. IEEE Proc-Control Theory Application. 2002, 1(149) :54~59
    114 B. Wiktor, S. Jerzy. Singularity of Backstepping Control for Nonlinear Systems. Proceedings of the American Control Conference Anchorage, AK, 2002: 2689~2694
    115胡跃明.非线性控制系统理论与应用.国防工业出版社. 2002:20~35
    116王莉,王庆林.BackstePPing设计方法及应用.自动化博览. 2004, 6(21):57~61
    117黄琳.稳定性与鲁棒性的理论基础.科学出版社. 2003:2~11
    118刘金坤.机器人控制系统的设计与MATLAB仿真.清华大学出版社. 2008:3~4
    119伊建川.径向基函数神经网络及其在船舶运动控制中的应用研究.大连理工大学博士论文. 2007:10~14
    120李士勇.模糊控制.神经网络控制和智能控制.哈尔滨工业大学出版社. 1998:91~94
    121 O. Christian. Cartesian Impedance Control of Flexible Joint Manipulators. Doctor Thesis of Universitat Des Saarlandes, 2005:26~28
    122杨磊.基于指尖传感器的DLR/HIT机器人灵巧手阻抗控制的研究.哈尔滨工业大学博士论文. 2005:68~69
    123 P. P. Yip and J. K. Hedrick. Adaptive Dynamic Surface Control: A Simplified Algorithm for Adaptive Backstepping Control of Nonlinear Systems. International Journal of Control, 1998, 71(5): 959~979
    124 J. Green, J. K. Hedrick. Nonlinear Speed Control of Automotive Engines. Proceedings of the ACC, San-Diego, USA. 1990, 3: 2891~2898
    125 J. K. Hedrick and P. P. Yip. Multiple Sliding Surface Control: Theory and Application. Journal of dynamic system, Measurement, and Control. 2002,4(122):586~593
    126 D. Swaroop, J. C. Cerdes, P. P. Yip. Dynamic Control of Nonlinear Systems. Proceedings of the ACC, New Mexico, USA. 1997: 3028~3034
    127 B. Song, J. K. Hderick. Observer-based Dynamical Surface Control for a Class of Nonlinear Systems: An LIM Approach. IEEE Transaction on Automatic control. 2004,49(11):1995~2001
    128 B.Song, H. Adam and J. K. Hderick. Dynamic Surface Control Design for a Class of Nolinear Systems. Orland, Proceedings of the 40th IEEE Conference on decision and control. Orland,Florida USA, 2001:2797~2802
    129 X. Y. Lu and J. K. Hderick. Integral Filter from a New Viewpoint and Their Application Nonlinear Control Design. Proceedings of IEEE International Conference on Control Application. Orage, Alaska,USA, 2000:501~506
    130 J. C. Cerdes, J. K. Hderick. Loop-at-a-time Design of Dynamic Surface Controllers for Nolinear Systems. Proceedings of ACC, San-Diego, USA, 1999:3574~2578
    131 B. Song. Decentralized Dynamic Surface Control for a Class of Interconnected Nonlinear Systems. American Control Conference. Minneapolis, Minnesota, USA, 2006:130~136
    132 W. H. Zhu, J. D. Schutter. Adaptive Control of Mixed Rigid/Flexible Joint Robot Manipulators Based on Virtual Decomposition. Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico, USA, 1997:1916~1921
    133 N. C. Singer, W. P. Seering. Preshaping Command Inputs to Reduce System Vibration. ASEM Journal of Dynamic Systems, Measurement and Control. 1990,23(3):76~82
    134段广仁.线性系统理论.哈尔滨工业大学出版社. 1996:293~298
    135 V. Kapila, A. Tzes, Q. Yan. Close-loop Input Shaping for Flexible Structures Using Time Delay Control. Transactions of the ASME. 2000, 122(9):454~460
    136梁春燕,谢剑英.时滞滤波器设计及在柔性机械臂控制中的应用.机器人,2002,13(18):1552~1554
    137富历新,刘洋,杜志江.基于输入指令整形法的X光机残余振动抑制.振动工程学报,2005,18(3):371~374
    138 J. Park, P. H. Chang and H. S. Park. Design of Learning Input Shaping Technique for Residual Vibration Suppression in an Industrial Robot.EEE/ASME Transactions on mechatronics. 2006, 1(11):55~65
    139 K. P. Liu, Y. C. Li. Vibration Suppression for a Class of Flexible Manipulator Control with Input Shaping Technique. Proceedings of the Fifth InternationalConference on Machine Learning and Cybernetics, Dalian, 2006:835~839
    140 H. Y. Kwang, J. L. Hyo, K. L. Jong and S. P. Byung. Vibration Suppression Control of a Two Mass System by Using a Robust Disturbance Observer. International Conference on Control, Automation and system, Seoul, Korea, 2007:1645~1650
    141 H. C. Pyung and S. P. Hyung. Timing-Varying Input Shaping Technique Applied to Vibration Reduction of an Industrial Robot. Control Engineering Practice, 2005, 13:121~131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700