涡轮间隙流动主动控制的试验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气轮机作为能量转换和动力传递的装置,被广泛应用于国民经济中的各个领域,属能源与动力行业的关键设备,也是航空动力工程中的核心组成部件。
     为了进一步改善燃气轮机性能,一个很重要的方面就是必须对其内部复杂三维流动有足够的认识,以降低流动损失、提高燃气轮机整体效率水平。而动叶叶顶间隙流动是导致流道内流动损失增大、换热条件恶化、涡轮整体效率降低的重要因素之一。但由于受测量技术的限制,目前对动叶叶顶间隙流动的研究尚存在较多亟需深入研究的内容。
     本文利用亚音速平面叶栅试验台模拟了叶顶间隙流动,并对平面叶栅出口截面上总压、气流角以及出口速度分布进行了试验测量。同时,通过在叶片表面设置的静压孔,测量了叶片中部以及靠近叶顶截面的叶表静压分布。结合三维数值计算的方法,揭示了间隙内部流场分布、间隙进出口速度、间隙流量等试验难以测量的物理量和流动细节。
     本文首先深入研究了间隙高度、叶片与外壳相对转动速度以及叶栅进口冲角对间隙流动的影响情况,对间隙流动的形成机理进行了深入地分析。研究发现,间隙高度增加时,通过间隙的流量增大,间隙涡尺寸及强度都随之大幅增加,叶栅通道内气流过偏/偏转不足现象加剧,间隙流动引起的损失也基本呈线性增大;而叶片与外壳之间的相对转动会抑制并使得间隙入口速度减小,减弱通过间隙的流量,从而降低间隙流动损失;叶栅进口冲角改变时,间隙流动损失也随之变化。可以看出,在负冲角i=-8.5o时,间隙流动引起的损失减小,而在正冲角时,间隙流动损失迅速增大。
     在此基础上,本文对采用叶顶喷气的主动控制方法来削弱间隙流动对涡轮性能的影响进行了研究。由外部空气压缩机提供叶顶喷气所需的空气,这部分气体通过叶片空腔然后从叶顶布置的成排小孔喷出。喷气孔与叶顶表面存在一个夹角,其方向是使得喷出气体能阻碍流体进入间隙,从而降低间隙流量,削弱间隙流动。叶栅出口截面上总压测量结果表明,叶顶喷气确实能够阻碍间隙流动的形成,减小间隙流量,降低间隙流动损失,间隙流量最大下降幅度达78.25%,间隙流动损失最大可减少约21.59%。
     本文通过研究不同喷气参数变化对喷气效果的影响,对叶顶喷气方案的控制机理有了较为深入的理解,得出了各个参数对间隙流动控制效果的影响规律,并得到了试验条件下的最优喷气方案。文中所研究的喷气参数主要包括喷气孔在叶片厚度/弦长方向上的分布、叶顶喷气切向/流向角度等。
     试验结果表明,对于喷气孔在叶片厚度方向上的分布,当喷气孔布置在靠近叶片压力边位置时,能获得最佳的控制效果,间隙涡几乎消失并与叶栅尾迹融合在一起;而对于喷气孔在叶片弦长方向上的分布,前缘附近喷气孔对间隙流动的控制作用相对较小,而叶片中后部弦长位置布置喷气孔能较好的控制间隙流量、降低间隙流动损失;不同切向喷气角度对间隙流动的影响也不尽相同,当喷气孔垂直于叶顶表面时,虽然在一定程度上减弱了间隙涡,但由于上通道涡区损失增大,使得出口截面上总损失反而增大。而采用45o及60o切向喷气角度时效果相差不大,但考虑到实际加工情况,切向喷气角度可以优先考虑60o;对于喷气孔在流向方向上的角度分布,当喷气孔垂直于叶顶压力边时由于正好与间隙流动方向相反,因此能更好的抑制间隙流动,获得更佳的喷气效果。因此综合考虑叶顶喷气各个参数变化对间隙流动的影响,可以得出本文试验条件下的最佳喷气方案为:喷气孔靠近压力边喷气、喷气量为1.11%主流流量、喷气孔垂直于叶顶压力边、喷气孔分在18~72%弦长范围内、采用60o切向喷气角度。
     本文还通过改变叶栅进口冲角,对叶顶喷气在非设计进口条件下对间隙流动的控制效果进行了研究。试验结果可以发现,即使在较大的正/负冲角工况下,叶顶喷气仍能较好的减小通过间隙的流量、削弱间隙涡尺寸及强度,从而降低间隙流动损失。因此,上述研究结果表明叶顶喷气方案具有良好的实用性,是较好的控制间隙流动损失的措施之一。
     最后,采用目前常见的几个间隙流动损失模型预测了各个不同喷气工况下的间隙流动损失,其结果表明这些模型由于没有考虑叶顶喷气对间隙流动的影响,预测值与试验测量值相差较大。而Hamik & Willinger模型在Yaras & Sjolander模型的基础上,考虑了叶顶喷气对间隙流动的影响,因此采用该模型得到的间隙流动损失值与试验值吻合较好,即使在不同进口冲角工况下,Hamik & Willinger模型仍能较好的预测出此时的间隙流动损失大小。
Transformation of the energy potential of fuels into useful forms of energy has been an important aspect of civilization ever since the Industrial Revolution. The invention of the gas turbine provided great impetus to the Industrial Revolution. This machine converts chemical energy of natural gas into kinetic energy. In addition to propulsion of large and medium aircrafts, gas turbine engines are also used extensively in electrical power generation and in marine applications. Thus improving the performance of the gas turbine engine has great economic and environmental value.
     The energy transfer in gas turbine is achieved by a change in the angular momentum of the working fluid in a rotating blade row. The flow field of a turbine blade row contains loss regions due to the creation of secondary flow within the main flow. As these regions convect into the following blade row complex interaction mechanisms occur between the loss regions of both blade rows.
     In order to reduce losses and improve performance of gas turbine, it is needed to understand in detail the complicated three-dimensional flow structures within the passage. However, due to the restrict of measurement technique, it is difficult to realize, especially the tip clearance flow.
     Tip clearance flow is created by the fluid that passes through the radial gap between the tips of the rotor blades and the stationary rotor casing. About one third of the losses of a high-pressure stage can be due to the tip clearance flow, which deteriorates the aerodynamic and thermal performance of the axial flow turbine.
     In this paper, detailed flow field measurements were made downstream of the cascade using a three-hole probe. Static pressure distributions were also measured on the blade surface at 50% and 97.5% span, respectively. Besides that, numerical investigations were also conducted to study phenomena which are not easily measured in the experiments, for example, tip clearance mass flow rate, detailed flow structure inside the tiny tip clearance, distributions of velocity at entrance / exit of tip clearance and so on.
     First of all, we investigated three of the most important factors that affected tip clearance flow, i. e., tip clearance height, endwall relative motion and incidence angle. The results indicated that losses associated with tip clearance flow rise with increases in tip clearance height, which were showed to be linearly proportional, as well as both the size and the strength of the tip clearance vortex; The relative motion between casing wall and blade rows obstrcuted tip clearance flow in axial turbines, with remarkable reduction in tip clearance mass flow; In addition, incidence angle at the cascade inlet also influenced significantly the flow structures of the tip clearance flow. At negative incidences, tip clearance loss decreases, while it increases with positive incidences.
     Then a novel method was investigated that aimed to reduce the rotor tip clearance flow and hence the losses associated to the interaction of the tip clearance vortex with the main passage flow. Cooling air was injected through an array of holes on the blade tip surface that were inclined in circumferential direction, such that the injected fluid could counteract the motion of the tip clearance flow. From the measurement results at the cascade exit, it could be found that tip injection could really weaken the interaction of the tip clearance flow and the main passage flow, reducing the tip clearance mass flow and its associated losses.
     In order to adequately understand the physics of tip injection, we investigated experimentally and numerically the influences of injection mass flow rate, chordwise/width location of injection holes and injection circumferential/streamwise angle on the tip clearance flow. It could be concluded that effects of tip injection increased with a larger injection mass flow rate. Injection location in the blade width direction played an important role in the redistribution of secondary flow within the cascade passage. With the same amout of injection holes and injection mass flow, injection located much closer to the pressure-side corner performed better in reducing tip clearance massflow and its associated losses; Considering the chordwise distribution of injection holes, holes located in the aft part of blade could obtain better performance than that in the front part when the same amount of injection holes was applied; With holes disposed to be perpendicular to the pressure side of blade, injection at a smaller circumferential angle performed better in reducing tip clearance flow.
     Besides that, we also analyzed the influences of tip injection on tip clearance flow at off-design conditions, to verify the effectiveness of tip injection when the approaching flow was at off-design incidences. The results indicated that even at these off-design incidences, tip injection could also act as an obstruction to the tip clearance flow and weaken the interaction between the passage flow and the tip clearance flow. It could be also found that tip injection caused the tip clearance loss to be less sensitive to the incidences. Thus, tip injection was proved to be an effective method of controlling tip clearance flow, even at off-design conditions.
     At the end, we predicted the losses associated with the tip clearance flow with several empirical tip clearance loss correlations. All these correlations showed great discrepancy with experiemental data. However, a modified loss model proposed by Hamik & Willinger agreed better, which was based on the loss model of Yaras & Sjolander and takes the effects of the tip injection into consideration, even at off-design conditions.
引文
[1] GE Aviation homepage. http://www.geae.com/engines/marine/lm6000.html. 2009.
    [2]糜洪元,徐文军,吕水淼.国内外燃气轮机发电现况和21世纪展望.面向21世纪电机工程科技发展战略研讨会. 1999.
    [3]翁史烈.燃气轮机与蒸汽轮机.上海:上海交通大学出版社. 1995.
    [4] Azad, G. S., Han, J. C., Bunker, R. S., Lee, C. P. Effect of squealer geometry arrangement on a gas turbine blade tip heat transfer [J]. ASME Journal of Turbomachinery. 2002, 124: 452-459.
    [5] Booth, T. C., Dodge, P. R., Hepworth, H. K. Rotor-tip leakage Part I: Basic methodology [J]. ASME Journal of Engineering for Power. 1982, 104: 154-161.
    [6] Bindon, J. P. The measurement and formation of tip clearance loss [J]. ASME Journal of Turbomachinery.1989,111: 257-263.
    [7] Spirkl, A. MTR390, the new generation turbo-shaft engine [C]. In: Henderson R E. AGARD-CP-537, Techology requirement for small gas turbines. Montreal, Canada: North Atlantic Treaty Organization.1993.
    [8] Schaub, U. W., Vlasic, E., Moustapha, S. H. Effect of tip clearance on the performance of a highly loaded turbine stage [C]. In: Henderson R E. AGARD-CP-537, Techology requirement for small gas turbines. Montreal, Canada: North Atlantic Treaty Organization.1993.
    [9] Bunker, R. S. A review of turbine blade tip heat transfer. Annals of the New York Academy of Sciences [J]. 2001, 934: 64-79.
    [10] Yamamoto, A. Interaction Mechanisms between Tip Leakage Flow and the Passage Vortex in a Linear Turbine Rotor Cascade [J]. ASME Journal of Turbomachinery. 1988, 110: 329-338.
    [11] Yamamoto, A., Mimura, F., Tominaga, J. Unsteady Three-Dimensional Flow Behavior Due to Rotor-Stator Interaction in an Axial-Flow Turbine [J]. 1993. ASME paper 93-GT-404.
    [12] Uzol, O., Chow, Y., Katz, J. Experimental investigation of unsteady flow field within a two-stage axial turbomachine using particle image velocimetry [J]. Journal of Turbomachinery. 2002, 124: 542-552.
    [13] Uzol, O., Chow, Y., Katz, J. Average passage flow field and deterministic stresses in the tip and hub regions of a multistage turbomachine [J]. Journal of Turbomachinery. 2003, 125: 714-725.
    [14] Metzger, D. E., Rued, K. The influence of turbine clearance gap leakage on passage velocity andheat transfer near blade tips. Part I: sink flow effects on blade pressure side [J]. ASME Journal of Turbomachinery. 1989, 111(2): 284-292.
    [15] Bindon, J. P. Pressure distributions in the tip clearance region of an unshrouded axial turbine as affecting the problem of tip burn-out [C]. ASME paper NO.87-GT-230.
    [16] Sjolander, S. A.,Cao, D. Measurements of the fiow in an idealized turbine tip gap [J]. ASME Journal of Turbomachinery. 1995, 117(4): 578-584.
    [17] Krishnababu, S. K., Newton, P. J., Dawes, W. N. Aerothermal investigation of tip leakage flow in axial turbines. Part I: Effect of tip geometry and tip clearance gap [J]. ASME Journal of Turbomachinery. 2009, 131(1): 011006-1-011006-14.
    [18] Krishnababu, S. K., Dawes, W. N., Hodson, H. P. Aerothermal investigation of tip leakage flow in axial turbines. Part II: Effect of relative casing motion [J]. ASME Journal of Turbomachinery. 2009, 131(1): 011007-1-011007-10.
    [19] Newton, P. J., Lock, G. D., Krishnababu, S. K. Aerothermal investigation of tip leakage flow in axial turbines. Part III: Tip cooling [J]. ASME Journal of Turbomachinery. 2009, 131(1): 011008-1-011008-12.
    [20] Bunker, R. S., Bailey, J. C., Ameri, A. A. Heat transfer and flow on the first-stage blade tip of a power generation gas gurbine. Part I: Experimental results [J]. ASME Journal of Turbomachinery. 2000, 122: 263-271.
    [21] M?rz, J., Hah Ch, Neise, W. An experimental and numerical investigation into the mechanisms of rotating instability [J]. ASME Journal of Turbomachinery. 2002, 124: 367-374.
    [22] Kameier, F., Neise, W. Rotating blade flow instability as a source of noise in axial turbomachines [J]. Journal of Sound and Vibration. 1997, 203: 833-853.
    [23] Kameier, F., Neise, W. Experimental study of tip clearance losses and noise in axial turbomachinery and their reduction [J]. ASME Journal of Turbomachinery. 1997, 119: 460-471.
    [24] Rains, D. A. Tip clearance flows in axial flow compressors and pumps [R]. Hydrodynamics and Mechanical Engineering Laboratories, California Institute of Technology. Report 5. 1954.
    [25] Moore, J., Moore, J. G., Herny, G. S., Chaudhry, U. Flow and heat transfer in turbine tip gaps [C]. ASME paper No. GT-88-135. 1988.
    [26] Storer, J. A., Cumpsty, N. A. Tip leakage flow in axial conpressors [J]. ASME Journal of Turbomachinery. 1991, 113(2): 252-259.
    [27] Lakshminarayana, B., Horlock, J. Secondary and leakage flow in turbomachinery [J]. International Journal of Mechanical Sciences. 1963, 5: 287-307.
    [28] Booth T.C., Dodge P.R., Hepworth H.K. Rotor-tip leakage. Part I: Basic methodology [J]. Journal of Engineering for Power. 1982,104: 154-161.
    [29] Wadia A.R., Booth T.C. Rotor-tip leakage. Part II: Design optimization through viscous analysis and experiment [J]. Journal of Engineering for Power. 1982, 104: 154-161.
    [30] Storer, J.A., Cumpsty, N.A. Tip leakage flow in axial compressors [J]. ASME Journal of Turbomachinery. 1991,113: 252-259.
    [31] Kang, S., Hirsch, C. Experimental study on the three-dimensional flow within a compressor cascade with tip clearance. Part I: Velocity and pressure fields [J]. ASME Journal of Turbomachinery. 1993, 115(3): 435-443.
    [32] Kang, S., Hirsch, C. Experimental study on the three-dimensional flow within a compressor cascade with tip clearance. Part II: The tip leakage vortex [J]. ASME Journal of Turbomachinery. 1993, 115(3): 444-452.
    [33] Kang, S., Hirsch, C. Tip leakage flow in linear compressor cascade [J]. ASME Journal of Turbomachinery. 1994, 116(4): 657-664.
    [34] Xiao, X. W. Investigation of tip clearance flow physics in axial flow turbine rotors [D]. Ph.D. thesis. Pennsylvania: Pennsylvania State University. 2001.
    [35] Sjolander, S. A., Amrud, K. K. Effects of Tip Clearance on Blade Loading in a Planar Cascade of Turbine Blades [J]. ASME Journal of Turbomachinery. 1987, 109: 237-245.
    [36] Bindon, J. P. The measurement and formation of tip clearance loss [C]. ASME paper NO. 88-GT-203.
    [37] Moore, J., Tilton, J.S. Tip leakage flow in a linear turbine cascade [J]. ASME Journal of Turbomachinery. 1988, 110(1): 18-26.
    [38] Yamamoto, A. Endwall flow/loss mechanisms in a linear turbine cascade with blade tip clearance [J]. ASME Journal of Turbomachinery. 1989,111: 264-275.
    [39] Yaras, M. I.. Ying Kang, Sjolander, S. A. Flow field in the tip gap of a planar cascade of turbine blades [J]. ASME Journal of Turbomachinery. 1989, 111(3): 287-283.
    [40] Lakshminarayana, B., Camci, C., Halliwell I. Design and development of a turbine research facility to study rotor-stator interaction effects [J]. International Journal of Turbo and Jet Engines. 1996, 13: 155-172
    [41] Ristic, D., Lakshminarayana, B., Chu, S. Three-dimensional flow field downstream of an axial-flow turbine rotor [J]. Journal of Propulsion and Power. 1999,15: 334-345.
    [42] Xiao, X.W., McCarter, A.A., Lakshminarayana B. Tip clearance effects in a turbine rotor. Part I:Pressure field and loss [J]. ASME Journal of Turbomachinery. 2001, 123(2): 296-304.
    [43] McCarter, A.A., Xiao, X.W., Lakshminarayana, B. Tip clearance effects in a turbine rotor. Part II : Velocity field and flow physics [J]. ASME Journal of Turbomachinery. 2001, 123(2): 305-313.
    [44] Wernet, M. P., Zante, D. V., Strazisar, T. J., John, W. T., Prahst, P. S. Characterization of the tip clearance flow in an axial compressor using 3-D digital PIV [J]. Experiments in Fluids. 2005, 39: 743-753.
    [45] Palafox, P., Oldfield, M. L. G., Lagraff, J. E., Jones, T. V. PIV maps of tip leakage and secondary flow fields on a low-speed turbine blade cascade with moving end wall [J]. ASME Journal of Turbomachinery. 2008, 130: 011001-1-011001-9.
    [46]竺晓程.轴流通风机转子叶顶区流场的实验和数值研究. [博士论文].上海:上海交通大学. 2003.
    [47] Tallman, J. A. , Lakshminarayana B. Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part I Effect of Tip Clearance Height [J]. ASME Journal of Turbomachinery. 2001. 123: 314~323.
    [48] Tallman, J. A., Lakshminarayana B. Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part II Effect of Outer Casing Relative Motion [J]. ASME Journal of Turbomachinery. 2001. 123: 324~333.
    [49] You, D. Y., Wang, M., Mittal, R. Study of Rotor Tip-Clearance Flow Using Large-Eddy Simulation [J]. AIAA paper 2003-0838. 2003.
    [50] You, D. Y., Mittal, R., Wang, M. Progress in Large-Eddy Simulation of a Rotor Tip-Clearance Flow [C]. The 12th Annual DoD HPCMP User Group Conference. Austin, TX. 2002.
    [51] Lattime, S. B., Steinetz, B. M. High-pressure-turbine clearance control systems: current practices and future directions [J]. Journal of Propulsion and Power. 2004, 20: 302-311.
    [52] Rao, N. M. Desensitization of over tip leakage in an axial turbine rotor by tip surface coolant injection [D]. Ph.D. Dissertation. Pennsylvania: The Pennsylvania State University. 2005.
    [53] Bindon, J. P., Morphis, G. The development of axial turbine leakage loss for two profiled tip geometries using linear cascade data [J]. Journal of Turbomachinery. 1992, 114(1): 198-203.
    [54] Denton, J. D. Loss Mechanisms in Turbomachines [J]. ASME Journal of Turbomachinery. 1993, 115(3): 621-656.
    [55] Markus, H., Reinhard, W. An innovative passive tip-teakage control method for axial turbines: basic concept and performance potential [J]. Journal of Thermal Science. 2007,16: 215-222.
    [56] Camci, C., Dey, D., Kavurmacioglu, L. Tip leakage flows near partial squealer rims in an axialflow turbine stage [C]. ASME Paper No. GT2003-38979. 2003.
    [57] Kavurmacioglu, L., Dey, D., Camci, C. Simulation of tip leakage flow around partial squealer rims in axial turbines. http://www.personal.psu.edu/cxc11/papers/.
    [58] Key, N. L., Arts, T. Comparison of turbine tip leakage flow for flat tip and squealer tip geometries at high-speed conditions [J]. ASME Journal of Turbomachinery. 2006, 128: 213-220.
    [59] Nasir, H., Ekkad, S. V., Kontrovitz, D. M., Bunker, R. S., Prakash, C. Effect of tip gap and squealer geometry on detailed heat transfer measurements over a high pressure turbine rotor blade tip [J]. ASME Journal of Turbomachinery. 2004, 126: 221-228.
    [60]杨佃亮,丰镇平.凹槽对动叶顶部流动和换热的影响.工程热物理学报. 2007, 28(6): 936-938.
    [61]杨佃亮,丰镇平.叶顶凹槽对燃气透平动叶气动性能及叶顶传热的影响.西安交通大学学报. 2008, 42(7): 937-941.
    [62] Lee, S. W., Chae, B. J. Effects of squealer rim height on aerodynamic losses downstream of a high-turning turbine rotor blade [J]. Experimental Thermal and Fluid Science. 2008, 32: 1440-1447.
    [63] Bunker, R. S., Bailey, J. C. Blade tip heat transfer and flow with chordwise sealing strips [C]. International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, Hawaii. 2000: 548-553.
    [64] Kwak, J. S., Ahn, J., Han, J. C., Lee, C. P., Bunker, R. S., Boyle, R., Gaugler, R. Heat transfer coefficients on the squealer tip and near-tip regions of a gas turbine blade with single or double squealer [J]. ASME Journal of Turbomachinery. 2003, 125: 778-787.
    [65] Saxena, V., Ekkad, S. V. Effect of squealer geometry on tip flow and heat transfer for a turbine blade in a low speed cascade [J]. ASME Journal of Turbomachinery. 2004, 126: 546-553.
    [66] Patel, K.V. Research on a high work axial gas generator turbine[C]. SAE Paper 800618. 1980.
    [67] Harvey, N.W., Ramsdan, K.A computational study of a novel turbine rotor partial shroud [C]. ASME paper 2000-GT-668. 2000.
    [68] Saha, A. K., Acharya, S., Bunker, R. S. Blade tip leakage flow and heat transfer with pressure-side winglet [J]. International Journal of Rotating Machinery. 2006:1~15.
    [69] Tallman, J. A. A computational study of tip desensitization in axial flow turbines [D]. Ph.D. Dissertation. Pennsylvania: The Pennsylvania State University. 2002.
    [70] Wadia, A.R. Numerical solution of two- and three-dimensional rotor tip leakage models [J]. AIAA Journal, 1985, 23(7): 1061-1069.
    [71] Dey, D., Camci, C. Aerodynamic tip desensitization of an axial turbine rotor using tip platform extensions [C]. ASME paper No. 2001-GT-0484. 2001.
    [72] Yaras, M.I., Sjolander, S.A. Measurements of the effects of winglets on tip-leakage losses in a linear turbine cascade [C]. ISABE Conference. 1991, AIAA paper 91-7011.
    [73] Morphis, G., Bindon, J.P. The development of axial turbine leakage loss for two profiled tip geometries using linear cascade data [J]. ASME Journal of Turbomachinery. 1992, 114(1): 198-203.
    [74] Morphis, G., Bindon, J.P. The performance of a low speed one and a half stage axial turbine with varying rotor tip clearance and tip gap geometry [C]. ASME Paper No. 94-GT-481. 1994.
    [75] Ameri, A.A. Heat transfer and flow on the blade tip of a gas turbine equipped with a mean camberline strip [J]. ASME Journal of Turbomachinery. 2001, 123: 704-708.
    [76] Tallman, J. A. A computational study of tip desensitization in axial flow turbines. Part I: Baseline turbine computations and comparisons with measurement [C]. ASME paper No. GT2004-53918. 2004.
    [77] Tallman, J. A. A computational study of tip desensitization in axial flow turbines. Part II: Turbine rotor simulations with modified tip shapes [C]. ASME paper No. GT2004-53919. 2004.
    [78] Tallman, J. A., Lakshminarayana, B. Methods for desensitizing tip clearance effects in turbines [C]. ASME paper No. GT2001-0486. 2001.
    [79] Zhang, H., Ma, H. W. Study of sloped trench casing treatment on performance and stability of a transonic axial compressor [C]. ASME paper No. GT2007-28140. 2007.
    [80] Nezym, V. Y. Development of new casing treatment configuration [J]. JSME International Journal, Series B. 2004, 47(4):804-812.
    [81] Mileshin, V., Brailko, I., Startsev, A. Application of casing circumferential grooves to counteract the influence of tip clearance [C]. ASME paper No. GT2008-51147. 2008.
    [82] Müller, M. W., Biela, C., Schiffer, H. P., Hah, C. Interaction of rotor and casing treatment flow in an axial single-stage transonic compressor with circumferential grooves [C]. ASME paper No. GT2008-50135. 2008.
    [83] Lu, X. G., Chu, W. L., Zhu, J. Q., Zhang, Y. F. Numerical investigations of the coupled flow through a subsonic compressor rotor and axial skewed slot [J]. ASME Journal of Turbomachinery. 2009, 131(1): 011001-1-011001-9.
    [84] Ameri, A. A., Steinthorsson, E., Rigby, D. L. Effects of tip clearance and casing recess on heat transfer and stage efficiency in axial turbines [R]. NASA/CR-1998-208514. 1998.
    [85] Thomas, G. A., Atkins, N. R., Thorpe, S. J., Ainsworth, R. W., Harvey, N. W. The effect of a casing step on the over-tip aerothermodynamics of a transonic HP turbine stage [C]. ASME paper No. GT2007-27780. 2007.
    [86] Bohn, D.E. Kreitmeler, F. Influence of endwall contouring in axial gaps on the flow field in afour-stage turbine [C]. ASME paper No.GT2000-0472. 2000.
    [87] Gustafson, R., Mahmood, G., Acharya, S. Aerodynamic measurements in a linear turbine blade passage with three-dimensional endwall contouring [C]. ASME paper No. GT2007-28073. 2007.
    [88] Praisner, T. J., Bradley, E. A., Grover, E. A., Knezevici, D. C., Sjolander, S. A. Application of non-axisymmetric endwall contouring to conventional and high-lift turbine airfoils [C]. ASME paper No. GT2007-27579. 2007.
    [89] Knezevici, D. C., Sjolander, S. A., Praisner, T. J., Bradley, E. A., Grover, E. A. Measurements of secondary losses in a turbine cascade with the implementation of non-axisymmetric endwall contouring [C]. ASME paper No. GT2008-51311. 2008.
    [90] Rao, N. M., Gumusel, B., Kavurmacioglu, L., Camci, C. Influence of casing roughness on the aerodynamic structure of tip vortices in an axial flow turbine [C]. ASME paper No. GT2006-91011. 2006.
    [91] Auyer, E. L. Dynamic sealing arrangement for turbomachines [P]. United States Patent No. 2,685,429. 1954.
    [92] Minoda, M., Inoue, S., Usui, H., Hiroyuki, N. Air sealed turbine blades [P]. United States Patent No. 4,732,531. 1988.
    [93] Jin, W. B., Kenneth, S. B., Choon, S. T. Active control of tip clearance flow in axial compressors [J]. ASME Journal of Turbomachinery. 2005, 127: 352-362.
    [94] Neuhaus, L., Neise, W. Active control to improve the aerodynamic performance and reduce the tip clearance noise of axial turbomachines with steady air injection into the tip clearance gap [J]. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 2007, 95: 293-306.
    [95] Cassina, G., Beheshti, B. H., Kammerer, A. Parametric study of tip injection in an axial flow compressor stage [C]. ASME paper No. GT2007-27403. 2007.
    [96] Dobrzynski, B., Saathoff, H., Kosyna, G. Active flow control in a single-stage axial compressor using tip injection and endwall boundary layer removal [C]. ASME paper No. GT2008-50214. 2008.
    [97] Milan, M., Lukas, P., Pavel, S. Influence of active methods of flow control on compressor blade cascade flow [C]. ASME paper No. GT2008-51109. 2008.
    [98] Behr, T., Kalfas, A., Abhari, R. S. Control of rotor tip leakage through cooling injection from the casing in a high-work turbine [J]. ASME Journal of Turbomachinery. 2008, 130: 031014-1~031014-12.
    [99] Behr, T. Control of rotor tip leakage and secondary flow by casing air injection in unshrouded axial turbines [D]. Ph.D. Dissertation. Switzerland: Swiss Federal Institute of Technology. 2007.
    [100] Mischo, B., Burdet, A., Behr, T. Control of rotor tip leakage through cooling injection fromcasing in a high-work turbine: computational investigation using a feature-based jet model [C]. ASME Paper No. GT2007-27669. 2007.
    [101]牛茂升,臧述升.外壳喷气位置对涡轮间隙流动控制的影响.推进技术. 2009, 30(5): 594-598.
    [102]牛茂升,臧述升.外壳喷气流量对涡轮间隙流动控制的影响.燃气轮机技术. 2009, 22(3): 40-45.
    [103]牛茂升,臧述升.外壳喷气角对涡轮动叶叶顶间隙流动的影响.第一部分:切向喷气角度的影响.热能动力工程.
    [104]牛茂升,臧述升.外壳喷气角对涡轮动叶叶顶间隙流动的影响.第二部分:流向喷气角度的影响.热能动力工程.
    [105] Pouagare, G., Lazarus, K., Weinhold, W. P., Duke, U., Durham, N. C. Tip leakage reduction through tip injection in turbomachines. AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Conference. 1986. AIAA-86-1746.
    [106] Hohlfeld, E. M., Christophel, J. R., Couch, E. L., Thole, K. A. Predictions of cooling from dirt purge holes along the tip of a turbine blade [C]. ASME Paper No. GT2003-38251. 2003.
    [107] Couch, E. L., Christophel, J. R., Hohlfeld, E. M., Thole, K. A., Cunha, F. J. Comparisons of measurements and prediction for blowing from a turbine blade tip [J]. AIAA Journal of Propulsion and Power. 2005, 21(2): 335-343.
    [108] Christophel, J. R., Couch, E. L., Thole, K. A., Cunha, F. J. Measured adiabatic effectiveness and heat transfer for blowing from the tip of a turbine blade [J]. ASME Journal of Turbomachinery. 2005, 127: 251-262.
    [109] Christophel, J. R., Thole, K. A., Cunha, F. J. Cooling the tip of a turbine blade using pressure side holes. Part I: Adiabatic effectiveness measurements [J]. ASME Journal of Turbomachinery. 2005, 127: 270-277.
    [110] Christophel, J. R., Thole, K. A., Cunha, F. J. Cooling the tip of a turbine blade using pressure side holes. Part I: Heat transfer measurements [J]. ASME Journal of Turbomachinery. 2005, 127: 278-286.
    [111] Hamik, M., Willinger, R. An innovative passive tip-teakage control method for axial turbines: basic concept and performance potential [J]. Journal of Thermal Science. 2007.16: 215-222.
    [112] Hamik, M., Willinger, R. An innovative passive tip-leakage control method for axial turbines: linear cascade wind tunnel results [C]. ASME Paper No. GT2008-50056. 2008.
    [113] Auxier, T. A. Aerodynamic tip sealing for rotor blades [P]. United States Patent No. 5.403.148. 1995.
    [114] Rao, N. M., Camci, C. Axial turbine tip desensitization by injection from a tip trench. Part I:effect of injection mass flow rate [C]. ASME Paper No. GT2004-53256. 2004.
    [115] Rao, N. M., Camci, C. Axial turbine tip desensitization by injection from a tip trench. Part II: leakage flow sensitivity to injection location [C]. ASME Paper No. GT2004-53258. 2004.
    [116] Li, W., Qiao, W. Y., Xu, K. F. Numerical simulation of tip clearance control in axial turbine. Part I: active flow control injection from turbine blade tip [C]. ASME paper NO.GT2008-50084. 2008.
    [117] Dey, D. Aerodynamic tip desensitization in axial flow turbines [D]. Ph.D. Dissertation. Pennsylvania: The Pennsylvania State University. 2001.
    [118] Canelli, C., Castelanelli, M., Luccoli, R.. Numerical prediction of film cooling on the squealer tip of gas turbine blade. http://www.cfd-engineering.it/italiano/publications/.
    [119] Mhetras, S., Narzary, D., Gao, Z. H., Han, J. C. Effect of a cutback squealer and cavity depth on film-cooling effectiveness on a gas turbine blade tip [J]. ASME Journal of Turbomachinery. 2008, 130: 021002-1-021002-13.
    [120]周少伟.涡流管能量分离效应的理论与试验研究[博士论文].哈尔滨:哈尔滨工程大学. 2007.
    [121]牛玉川.吸附式压气机叶栅的实验研究和分析[硕士论文].北京:中国科学院工程热物理研究所. 2007.
    [122]童志庭.轴流压气机中叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的实验研究[博士论文].北京:中国科学院工程热物理研究所. 2006.
    [123]柯峰.开口后台阶引射及窄宽度二维台阶绕流的湍流非定常特性实验研究[博士论文].上海:上海交通大学. 2007.
    [124]袁锋.带前缘气冷的旋转涡轮流场实验与数值研究[博士论文].上海:上海交通大学. 2007.
    [125]孙伟.周期性吹吸扰动对湍流边界层相干结构影响的实验研究[硕士论文].天津:天津大学. 2006.
    [126] Bruun, H. H. Hot-wire anemometry. New York, Oxford University press, 1995.
    [127] Brunn, H. H., Nabhani, N., Al-Kayiem, H. H. Calibration and analysis of X hot-wire probe signals [J]. Measurement Science and Technology. 1990, 1:782-785.
    [128]沈煜欣.微型燃气轮机的气动设计方法与内部流动研究[博士论文].北京:中国科学院工程热物理研究所. 2009.
    [129] Hah, C. A numerical modeling of enwdall & tip-clearance flow of an isolated compressor rotor [J]. ASME Journal of Engineering of Gas Turbines & Power. 1986, 108: 15-21.
    [130] Dwaes, W. N. A numerical analysis of viscous flow in a transonic compressor rotor and comparison with experiment [J]. ASME Journal of Engineering of Gas Turbines & Power. 1987, 109:83-90.
    [131] Kunz, R. F., Lakshminarayana, B. Three-dimensional Navier-Stokes computation of turbomachinery flows using an explicit numerical procedure and a coupled k-εturbulence model [J]. ASME Journal of Turbomachinerr.1992, 114: 627-642.
    [132] VanZante, D. E., Strazisar, A. J., Wood, J. R., Hathaway, M. D., Okiishi, T. H. Recommendation for achieving accurate numerical simulation of tip clearance flows in transonic compressor rotors [C]. ASME paper No. 99-GT-390. 1999.
    [133] Glanville, J. P. Investigation into core compressor tip leakage modeling techniques using a 3D viscous solver [C]. ASME paper GT 2001-0336. 2001.
    [134] Anurag GuPta., Khalid, S. A., McNulty, G. S., Dailey, L. Prediction of low speed compressor rotor flow fields with lager tip clearances [C]. ASME paper GT 2003-38637. 2003.
    [135] Niu, M. S., Zang, S. S. Influence of Tip Cooling Injection on Tip-clearance Control at Design and Off-design Incidence [J]. International Journal of Rotating Machinery. 2009.
    [136] Baldwin, B. S., Lomax, H. Thin layer approximation and algebraic model of separated turbulent flows [C]. AIAA paper78-257. 1978.
    [137] Dunham, J. CFD validation for propulsion system components [C]. AGARD-AR-355. 1998.
    [138] Conley, J. M., Leonard, B. P. Modification of the MML turbulence model for adverse pressure gradient flows [C]. AIAA paper 94-2715. 1994.
    [139] Spalart, P. R., Allmaras, S. R. A one-equation turbulence model for aerodynamic flows [C]. AIAA paper 92-0439. 1992.
    [140] Baldwin, B. S., Barth, T. A one-equation turbulence transport model for high-Reynolds number wa11 bounded flows [C]. AIAA paper 91-0610. 1991.
    [141] Lai, J. C., Yang, C. Y. Numerical simulation of turbulence suppression comparisons of the performance of four k-εturbulence models [J]. International Journal of Heat and Fluid Flow. 1997, 18(6): 129-140.
    [142] Wilcox, D. C. Reassessment of the scale determining equation for advanced turbulence models [J]. AIAA Journal. 1988, 26(11): 1299-1310.
    [143] Coakley, T. J. Turbulence modeling methods for the compressible Navier-Stokes equations [C]. AIAA paper 83-1693. 1983.
    [144] Chima, R. V. Calculation of tip clearance effects in a transonic compressor rotor [J]. ASME Journal of Turbomachinery. 1998, 102: 131-140.
    [145]宁方飞,徐力平. Spalart-Allmaras湍流模型在内流流场数值模拟中的应用.工程热物理学报.2001, 22(3): 304-306.
    [146] Ning, F., Xu, L. Numerical investigation of transonic compressor rotor flow using an implicit 3D flow solver with one-equation Spalart-Allmaras turbulence model [C]. ASME Paper No. GT2001-0359. 2001.
    [147] Adamczyk, J. J., Celestina, M. L., Greitzer, E. M. The role of tip clearance in high-speed fan stall [J]. ASME Journal of Turbomachinery. 1993, 115: 28-38.
    [148] Dale, E. V., Anthony, J. S., Jerry, R. W. Recommendations for achieving accurate numerical simulation of tip clearance flows in transonic compressor rotors [C]. 2000. NASA/TM-2000-210347
    [149]牛茂升,臧述升,黄名海.间隙高度对涡轮叶顶间隙流动的影响.工程热物理学报. 2008, 29(6): 935-939.
    [150]牛茂升,臧述升,黄名海.涡轮叶顶间隙内部流动的数值研究.燃气轮机技术. 2008, 21(4): 26-31.
    [151]牛茂升,臧述升.叶片转动对涡轮间隙内部流动影响的数值研究.力学学报. 2009, 41(5): 628-634.
    [152]牛茂升,臧述升.机匣相对转动对涡轮叶顶间隙流动的影响.空气动力学学报. 2009, 27(5): 597-601.
    [153] Srinivasan, V., Goldstein, R. J. Effect of endwall motion on blade tip heat transfer [J]. ASME Journal of Turbomachinery. 2003, 125: 267-273.
    [154] Niu, M. S., Zang, S. S. Tip clearance flow simulation in an axial turbine stage [C]. The twelfth international symposium on transport phenomena and dynamics of rotating machinery. Honolulu. 2008. ISROMAC12-2008-20143.
    [155] Heyes, F. J. G., Hodson, H. P. Measurement and prediction of tip clearance flow in linear turbine cascade [J]. ASME Journal of Turbomachinery. 1993, 115(3): 376-382.
    [156] Stephens, J. E., Corke, T., Morris, S. Turbine blade tip leakage flow control: thick/thin blade effects [C]. 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007. AIAA-2007-0646.
    [157] Stephens, J. E., Corke, T., Morris, S. Turbine blade tip leakage flow control: thick/thin blade effects and separation line studies [C]. ASME paper No. GT2008-50705. 2008.
    [158] Traupel, W. Termische Turbomaschinen Zweiter Band Gel?nderte Betriebsbedingungen, Regelung, Mechanische Probleme, Temperaturprobleme. Springer-Verlag Berlin heidelberg. New York. 1977.
    [159] Ainley, D. G., Mathieson, G. C. R. A method of performance estimation for axial-flow turbines [R]. A.R.C. Technical Report R&M, No.2974. British Aeronautical Research Council. 1951.
    [160] Dunham, J., Came, P. M. Improvements to the Ainley-Mathieson method of turbine performance prediction [J]. ASME J. Engineering Power. 1970, 92: 252-256.
    [161] Kacker, S. C., Okapuu, U. A mean line prediction method for axial flow turbine efficiency [J]. ASME J. Engineering Power. 1982, 104: 111-119.
    [162] Craig, H. R., Cox, H. J. Performance Estimation of Axial Flow turbines [J]. Proc. Instn. Mech. Engrs. 1970, 185: 407-424.
    [163] Baljé, O. E., Binsley, R. L. Axial Turbine Performance Evaluation. Part B : Optimization with and without constraints [J]. Journal of Engineering for Power. 1968: 348-360.
    [164] Yaras, M. I., Sjolander, S. A. Prediction of tip-leakage losses in axial turbines [J]. ASME J. Turbomachinery. 1990, 114: 204-210.
    [165] Milne-Thomson, L. M. Theoretical Hydrodynamics [B]. 1974. London: MacMillan.
    [166] Ning, E. Significance of Loss Models in Aerothermodynamic Simulation for Axial Turbines [D]. Ph.D. Dissertation. Royal Institute of Technology. 2000.
    [167] Niu, M. S., Zang, S. S. Parametric study of Tip Cooling Injection in an Axial Turbine Cascade: Influences of Injection Circumferential Angle [J]. Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy. 2009, 223. DOI: 10.1243/09576509JPE771.
    [168] Niu, M. S., Zang, S. S. Numerical Investigation of Active Tip-clearance Control through Tip Cooling Injection in an Axial Turbine Cascade [J]. Journal of Thermal Science. 2009, 18(4): 306-312. DOI: 10.1007/s11630-009-0306-z.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700