多肿瘤标志物诊断模式的建立和新型电化学免疫传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界卫生组织指出,如能早期诊断并及时治疗,95%的肿瘤可以治愈。肿瘤标志物在肿瘤普查、诊断、判断预后、评价疗效和高危人群随访观察等方面都具有较大的实用价值。随着现代生物技术(包括蛋白质组、ELISA、RT-PCR、FISH和SELDI-TOF等)的飞速发展,发现了许多有应用前景的肿瘤标志物。目前临床应用的标志物达到20左右,但因单项肿瘤标志物敏感度和特异度较低,无法准确诊断肿瘤和预测预后。国内外研究表明,多肿瘤标志物联合动态检测是提高肿瘤诊断可行性策略。目前临床上常用的多肿瘤标志物蛋白芯片检测(C-12蛋白芯片),含有12种(糖类抗原19-9(carbohydrate antigen19-9,CA19-9),神经元特异性烯醇化酶(neuron specific enolase,NSE),癌胚抗原(carcinoembryonic antigen,CEA),糖类抗原242(carbohydrate antigen 242,CA242),糖类抗原125(carbohydrate antigen125,CA125),糖类抗原15-3(carbohydrate antigen153,CA15-3),甲胎蛋白(alpha-fetoprotein,AFP),铁蛋白(Ferritin, Fer),游离型前列腺特异性抗原(free prostate specific antigen,F-PSA),前列腺特异性抗原(prostate specific antigen,PSA),生长激素(human growth hormone,HGH)及绒毛膜促性腺激素β(β-HCG)等12种肿瘤标志物,涵盖了大约10种常见的恶性肿瘤,适用于健康人群的体检、筛查及进行肿瘤的辅助诊断。但在具体应用过程中发现C-12蛋白芯片具有诊断灵敏度低、特异度低、分析困难、无法准确定位等缺点,限制其临床的进一步应用。
     发展高灵敏的免疫分析技术对于肿瘤标志物的检测有着至关重要的意义。电化学免疫传感器利用抗原和抗体间的高度特异性结合,将免疫分析法和电化学传感器相结合,该传感器具有灵敏度高,分析速度快,操作简便、价格低廉及选择性好等优点,被广泛应用于临床诊断领域。纳米生物技术是纳米技术与生物技术交叉渗透形成的新技术,是生物医学领域的一个重要发展方向。纳米粒子具有优良的电学、磁学、光学性质以及优越的生物相容性,可用于固定抗体,在免疫分析中已得到广泛的应用。现今,免疫分析法和免疫传感器的研制成为检测肿瘤标志物的研究新兴技术。大量研究用于研发操作简便易行的传感器。尽管这个领域的技术具有不少优点,但是寻求一种更加简便,灵敏度更高,选择性更好的免疫方法仍然是现代医学检验和生物医学研究领域的研究热点。
     本研究用C-12蛋白芯片法检测2177例恶性肿瘤患者(肺癌836例,肝癌318例,胰腺癌84例,胃癌123例,肠癌338例,乳腺癌206例,卵巢癌47例,子宫内膜癌28例,食管癌197例)和2111例正常及良性疾病的非肿瘤患者的12项常见肿瘤标志物,并结合临床资料进行回顾性研究。进而应用Bayes法建立肿瘤判别诊断函数,提高C-12蛋白芯片对肿瘤诊断的准确率并探讨多肿瘤标志物蛋白芯片检测系统对恶性肿瘤诊断的临床意义。采用HTA、结合VBscript及Javascript语言编程,研制《多蛋白芯片肿瘤判别》软件。同时将纳米技术、生物传感技术和电化学分析技术结合用于免疫分析。应用纳米二氧化硅颗粒、纳米金包裹石墨烯纳米复合物、PB- SiO2纳米复合物和包裹了抗坏血酸(AA)和尿酸(UA)的脂质体等纳米材料,采用不同方法构建功能化生物分子固定界面,制备了一系列高灵敏的电化学免疫传感器。研究目的
     1.探讨多肿瘤标志物在10种常见肿瘤中的表达及其临床意义。
     2.通过Bayes法建立多肿瘤标志物判别函数,以明确肿瘤类型,提高肿瘤诊断准确率,比较多肿瘤标志物判别函数与C-12多肿瘤标志物蛋白芯片检测系统的差异和对肿瘤诊断的临床意义。进而研制基于多肿瘤蛋白芯片检测结果的肿瘤判别工具软件系统。
     3.将IgG抗体标记到辣根过氧化物酶(HRP)掺杂二氧化硅纳米颗粒表面(anti-IgG-SiO2-HRP),建立一种简单又灵敏的电化学免疫分析方法检测人血清中IgG的水平。
     4.制备纳米金包裹的石墨烯纳米复合物(NGGN)标记二抗,基于夹心免疫分析模式,建立一种新型高灵敏电化学免疫免疫传感器,用于检测血清中癌胚抗原(CEA)含量。
     5.使用PB-SiO2复合纳米粒子,壳聚糖-金纳米粒子复合物(CS-nanoAu)制备检测小细胞肺癌的性能优良的新型电化学免疫传感器。
     6.采用分别包裹了抗坏血酸(AA)和尿酸(UA)的脂质体作为信号放大的载体,构建了一种可同时检测小细胞肺癌血清标志物ProGRP和NSE的生物传感技术。
     研究内容和方法
     1.多肿瘤标志物在恶性肿瘤中的表达及其临床意义用蛋白芯片法检测2177例恶性肿瘤患者(肺癌836例,肝癌318例,胰腺癌84例,
     胃癌123例,肠癌338例,乳腺癌206例,卵巢癌47例,子宫内膜癌28例,食管癌197例)和2111例正常及患良性疾病的非肿瘤患者的12项常见肿瘤标志物,并结合临床资料进行回顾性研究。建立肿瘤蛋白芯片数据库和临床数据库。进而分析各肿瘤标志物在常见十种肿瘤中的表达及其临床意义。
     2.多肿瘤标志物判别函数的建立及诊断软件的研制
     应用Bayes法建立肿瘤判别诊断函数,比较12种肿瘤标志物和判别诊断函数对肿瘤诊断的准确率差异。并采用HTA、结合VBscript及Javascript语言编程。
     3.双重标记纳米二氧化硅颗粒电化学免疫传感器检测血清中IgG
     合成HRP掺杂纳米二氧化硅,然后将IgG抗体键合到纳米二氧化硅的表面,制得anti-IgG-SiO2-HRP并作为检测抗体,使用夹心免疫分析方法,在酶底物过氧化氢存在的条件下,免疫反应前后电流的变化与抗原的浓度成正比。
     4.新型纳米金包裹石墨烯纳米复合物检测癌胚抗原高灵敏电化学免疫传感器的研究。
     电沉积普鲁士蓝修饰玻碳电极,并在其表面电沉积一层纳米金,固载癌胚抗体蛋白。制备辣根过氧化物酶(HRP)交联的二抗标记的NGGN颗粒,利用夹心免疫分析方法实现对癌胚抗原的高灵敏检测。
     5.基于PB- SiO2纳米复合物的信号增强的免标记电化学免疫传感器用于检测神经化烯醇酶(NSE)
     利用层层自组装技术将PB-SiO2复合纳米粒子,壳聚糖-金纳米粒子复合物(CS-nanoAu)依次组装到玻碳电极表面形成具有高表面能和良好氧化还原活性的夹心结构纳米复合膜。
     6.基于脂质体信号增强的电化学免疫传感器同时检测血清中ProGRP和NSE
     采用分别包裹了抗坏血酸(AA)和尿酸(UA)的脂质体作为信号放大的载体,利用免疫反应的高特异性,结合电化学的高灵敏性,构建了一种可同时检测ProGRP和NSE的生物传感技术。采用“三明治”夹心形式,当固载的捕获抗体与待测物发生特异性的结合,再用表面固定了检测抗体并同时内部包埋了UA或者AA的脂质体夹心检测,最后用表面活性剂破乳,释放出电活性分子,通过检测UA和AA的线性扫描伏安(LSV)峰电流信号强度来检测样品中对应的ProGRP和NSE的浓度。
     研究结果
     1.多肿瘤标志物在恶性肿瘤中的表达及其临床意义
     1) 1209例体检者中,128例结果异常,阳性率为10.59%,显著低于肿瘤组(P<0.01)。12项肿瘤标志物检测结果显示其在体检组的诊断准确率为89.66%,肿瘤患者的诊断准确率为62.77%,灵敏度为66.11%,特异度为48.68%。
     2)单项指标中CEA、CA125和CA242阳性率分别为40.93%、29.78%和13.48%,与肺部良性疾病以及正常人群阳性率有统计学意义(P<0.05),其中CEA对肺癌诊断有统计学差异。肺腺癌的临床疗效病情分级与CA19-9、CEA、CA242、AFP以及CA125有相关性,鳞癌只与CA125具有相关性,小细胞肺癌与CA19-9、CA125有相关性。
     3)结直肠癌组蛋白芯片的阳性率为71.97%,显著高于结直肠良性病变和正常体检组。C-12芯片检测结直肠癌的灵敏度是71.97%,特异度是55.7%,阳性预测值是83.09%,阴性预测值是39.64%;联合检测的阳性率显著高于单项肿瘤标志物的检测(P<0.05)。CA19-9、CEA、CA242、AFP、β-HCG,HGH以及CA125阳性率明显高于良性病变组和正常体检组(P<0.05),同时CA19-9、CEA、CA242和CA125联合检测的灵敏度和准确率明显高于单项检测指标。CA19-9、CEA、CA242以及CA125表达强度和肿瘤预后相关。
     4)胰腺癌患者的阳性率(81.82%)显著高于胰腺良性病变患者(48.72%)和健康体检者(10.59%)(P<0.05)。CA19-9,CEA和CA242,其指标两两联合或三项联合检测较单项指标检测的敏感度和准确率都有所升高,但特异度有所下降。联合检测可提高敏感度和准确率,对诊断更有价值。
     5)用C-12芯片检测胃癌的灵敏度是50% ,显著高于胃良性病变患者(34.82%)和健康体检者(10.59%) ( P<0.05) ,有诊断意义的指标是CA19-9、CEA、CA125、CA242和HGH ( P<0.05) ,前面3项指标联合检测的敏感度为44.12 % ,准确率为59.22 %。
     6)用C-12芯片检测泌尿系肿瘤的阳性预测值是93.33%,阴性预测值是23.68%,特异度是81.81%,灵敏度是49.12%;男性生殖系肿瘤的阳性预测值是64.86%,阴性预测值是46.15%,特异度是48%,灵敏度是62.16%。在前列腺癌中,PSA和f-PSA联合检测时在其灵敏度不变的情况下,特异度可达到90%,并与前列腺良性病变之间有显著性差异(P<0.01)。对于泌尿系肿瘤和男性生殖系肿瘤,C-12芯片的联合检测的阳性率与单项肿瘤标志物检测有明显差异(P<0.05)。
     2.多肿瘤标志物判别函数的建立及诊断软件的研制
     1)成功建立了多肿瘤标志物的三级诊断判别函数。
     2)一级判别函数诊断的特异度为82.11%,灵敏度为71.28%,准确率为83.97%。而C-12蛋白芯片法检测12项肿瘤标志物的特异度为70.11%,灵敏度为66.10%,准确率为68.07%。
     3)二级判别函数能显著提高10种常规肿瘤诊断的灵敏度、特异度和准确率。
     4)三级诊断判别函数对确定部分肿瘤的类型有意义。
     5)成功编制出《多蛋白芯片肿瘤判别》软件,该软件功能主要包括:肿瘤蛋白芯片数据的录入,十种常见肿瘤判别结果提示,数据查询及报告打印等功能。
     3.双重标记纳米二氧化硅颗粒电化学免疫传感器检测血清中IgG
     1)该免疫传感器的线性范围为0.01-15 nmol/L IgG,检测限为5.0 pmol/L。而使用HRP标记的IgG抗体(HRP-anti-IgG)作为检测抗体,线性范围为1.0-10 nmol/L,检测限为0.1 nmol/L IgG。
     2)该免疫传感器具有良好的重现性、稳定性和特异性。
     3)使用该免疫传感器对人血清中IgG的检测,其结果和酶联免疫分析方法检测的结果一致。
     4.新型纳米金包裹石墨烯纳米复合物检测癌胚抗原高灵敏电化学免疫传感器的研究
     1)与传统的HRP-anti-CEA和纳米金标记的HRP-anti-CEA相比,其灵敏度能提高100倍,检测线可达到0.01 ng/mL CEA。
     2)该免疫传感器具有良好的重现性、稳定性和特异性。
     3)与前期工作相比,本研究中石墨烯能改变该传感器的导电性,有利于电子的传输,可用于临床诊断。
     5.基于PB- SiO2纳米复合物的信号增强的免标记电化学免疫传感器用于检测神经化烯醇酶(NSE)
     1)利用PB-SiO2纳米复合物对H2O2明显的电催化作用,构建信号增强的电流型免疫传感器,提高传感器的灵敏度。
     2)在含有0.75 mM H2O2的测试底液中,NSE的浓度与还原峰电流的变化值成正比。该免疫传感器对NSE抗原的标准血清样品的线性响应范围为0.25-5.0 ng/mL和5.0-75 ng/mL,检测限为0.08ng/mL。
     3)免疫传感器与ELISA法的测定NSE结果一致,表明该免疫传感器可较好的应用于人血清中NSE的直接检测。
     6.基于脂质体信号增强的电化学免疫传感器同时检测血清中ProGRP和NSE
     1)通过包裹了不同电活性分子的脂质体作为信号放大的载体,可有效增强免疫反应电流响应信号,提高传感器的灵敏度。
     2)成功研制同时检测NSE和ProGRP的免疫传感器,ProGRP检测限是100-1000 pg/mL,NSE检测限是5-50 ng/mL。
     3)将该免疫传感器用于人血清中NSE和ProGRP的同时检测,并与ELISA法的测定结果比较,结果表明该免疫传感器与经典的ELISA法的测定结果具有良好相关性。
     结论
     1.多肿瘤标志物在恶性肿瘤中的表达及其临床意义
     C-12蛋白芯片在肿瘤普查、诊断、判断预后、评价疗效和高危人群随访观察等方面都具有较大的实用价值。但其具有诊断灵敏度低、特异度低,分析困难,无法准确定位等缺点,限制其临床的进一步应用。
     2.多肿瘤标志物判别函数的建立及诊断软件的研制
     Bayes法建立多肿瘤标志物判别函数具有较高灵敏度、特异度和准确率,对肿瘤的诊断具有重要临床价值。研制的软件自动完成肿瘤诊断判别方程计算,为肿瘤临床医师提供了一种科学、便捷、高效的工具。
     3.双重标记纳米二氧化硅颗粒电化学免疫传感器检测血清中IgG
     成功研制一种灵敏度高、制备简单的电化学免疫传感器,通过使用HRP掺杂的二氧化硅作为标记,使用夹心免疫分析模式,实现对人体血清中IgG的检测。该方法的优点就在于使用了双重标记纳米颗粒作为检测抗体,改善了夹心免疫分析方法,提高了该免疫分析的灵敏度。
     4.新型纳米金包裹石墨烯纳米复合物检测癌胚抗原高灵敏电化学免疫传感器的研究。
     成功研制了一种新型的高灵敏的导电的纳米标记物用于构建电化学免疫传感器,该免疫传感器可用于对痕量血清中CEA的检测,为临床肿瘤的诊断提供了一个新的方法。
     5.基于PB- SiO2纳米复合物的信号增强的免标记电化学免疫传感器用于检测神经化烯醇酶(NSE)
     成功构建了检测NSE电化学传感器免疫传感器,具有灵敏度高、响应时间快、线性范围宽等特点,实现了微量NSE的定量检测,表明该传感器在NSE的诊断方面具有一定的应用前景。
     6.基于脂质体信号增强的电化学免疫传感器同时检测血清中ProGRP和NSE成功构建了同时检测NSE和ProGRP的电化学传感器,具有敏感性高、特异性强、检测快速、成本低廉的特点,建立了血清学诊断小细胞肺癌的临床快速检测方法。
The World Health Organization pointed out, 95 percent cancer can be cured with early diagnosis and timely treatment. Up to now, tumor marker detective technology is almost the only non-invasive effective way to find out malignant tumor. Tumor markers have been used in the tumor screen, diagnosis, prognosis, evaluation of efficacy and the follow-up of high-risk groups. With recent advances in biotechnology such as proteomics, FISH, ELISA, RT-PCR, and SELDI-TOF, many promising biomarkers have been identified and are currently under investigation and validation. More than twenty tumor marker were used in clinic, no one can exactly predict tumor with low specificity and low sensitivity. Domestic and foreign research indicated that recombination of multiple tumor marker would be a realistic way to improve diagnostic accurate. At present, the C-12 protein chip diognostic system including carbohydrate antigen19-9, neuron specific enolase, carcinoembryonic antigen, carbohydrate antigen242, carbohydrate antigen125,carbohydrate antigen153,alpha-fetoprotein,Ferritin, free prostate specific antigen,prostate specific antigen,human growth hormone andβ-HCG tumor marker were used to diagnosis in normally 10 tumor . It can be been used in the tumor screen, diagnosis, evaluation of efficacy and the follow-up of high-risk groups. It can’t be wildly used with low specificity, sensitivity, accuracy and difficulty analysis in clinical practice.
     Developing of sensitive immunoassay technology is crucial for realizing the detection of tumor markers. The electrochemical immunosensor uses specificity of the reaction of antigen and antibody to combine electroanalysis with immunoassay, has been broadly applied in clinical diagnosis owing to the advantages of their high sensitivity, fast analytical time, simple measurement, low cost and high selectivity. Nanometer biotechnology developed from nanometer technique and biology is an novel technique of interdisciplinary studies and is the most advanced research program in the field of biomedicine. Nanoparticles have excellent properties in electricity, magnetism, optics and predominant biocompatibility, it can be used as a platform to immobilize antibodies by adsorption which exert crucial functions in the fields of biochemical immunoanalysis. In recent years, many immunoassay methods and immunosensors as currently popular techniques are being developed for the detection of tumor-related biomarkers. And great efforts have been made worldwide to develop and improve immunoassays for the detection of biomarkers with the aim of making portable and affordable devices. Despite of many advances in this field, it is still a challenge to exploit new approaches that can improve the simplicity, selectivity, and sensitivity of clinical immunoassay, to meet the requirements of modern medical diagnostics and biomedical research applications.
     A retrospective study was done on data of 2177 patients with malignant tumors (836 with lung cancer, 318 with liver cancer, 84 with pancreatic cancer, 123 with gastric cancer, 338 with colorectal cancer, 206 with breast cancer, 47 with ovarian cancer, 28 with endometrial cancer and 197 with esophageal cancer) and 2111 normal and benign lesion (control group), in whom 12 tumor markers were detected by protein chip technology. Furthermore, the diagnostic function was established to evaluate the accuracy rate in cancer by bayesian methods and evaluate the clinical values of C-12 multiple tumor marker protein chip detective system in diagnosis of cancer. The < multiple tumor marker analysis system V1.0> was programmed by HTA based on VBscript and Javascript language. Ten tumor scorings can be calculated and printed by this software. We also focuse on designing and fabricating novel biomimetic interface combining some kinds of nanoparticles with double-codified nanosilica particles, nanogold-enwrapped graphene nanocomposites, Prussian blue-SiO2 nanocomposite and the liposomes containing ascorbic acid (AA) or Uric acid (UA) for the immobilization of biomolecules.
    
     Objective
     1. To research the expression of 12 tumor markers in 10 common tumors, also evaluate its role in tumor diagnosis, treatment and patient’s prognosis.
     2. To establish the diagnostic function by bayesian methods to identify the type of tumor and evaluate the accuracy rate. The difference of the diagnostic function and the C-12 multiple tumor marker protein chip detective system was compared to evaluate their clinical value in diagnosis of tumor. Furthermore, to develop a simple, convenient tumor analysis software with detective results of multiple tumor marker.
     3. A simple and sensitive method for in situ amplified electrochemical immunoassay of human serum IgG has been developed by using double-codified nanosilica particles as labels based on horseradish peroxidase-doped nanosilica particles (HRP-SiO2) with the conjugation of anti-IgG antibodies (anti-IgG-SiO2-HRP).
     4. A new, highly sensitive electrochemical immunosensor with a sandwich-type immunoassay format was designed to quantify carcinoembryonic antigen (CEA) in serum, as a model tumor marker, using nanogold-enwrapped graphene nanocomposites (NGGNs) as trace labels in clinical immunoassays.
     5. A signal-enhanced label-free electrochemical immunosensor was constructed to quantify neuron-specific enolase (NSE), a putative serum marker of small-cell lung carcinoma (SCLC), by the employment of Prussian blue doped silica dioxide (PB-SiO2) nanocomposite and chitosan stabled gold nanoparticle (CS-nanoAu).
     6. A multiplex immunoassay with high diagnostic sensitivity and specificity was constructed to quantify neuron-specific enolase (NSE) and pro-gastrin-releasing peptide (ProGRP), with the amplification strategy of the liposomes containing ascorbic acid (AA) or Uric acid (UA) as entrapped marker.
     Materials and Methods
     1. The clinical significance and expression of C-12 multiple tumor marker protein chip detective system in tumors
     A retrospective study was done on data of 2177 patients with malignant tumors (836 with lung cancer, 318 with liver cancer, 84 with pancreatic cancer, 123 with gastric cancer, 338 with colorectal cancer, 206 with breast cancer, 47 with ovarian cancer, 28 with endometrial cancer and 197 with esophageal cancer) and 2111 normal and benign lesion (control group), in whom 12 tumor markers were detected by protein chip technology. And established tumor markers database and clinical database. To analysis 12 tumor marker expressed in ten common malignant tumor and it’s Clinical Significance.
     2. Establishment of diagnostic function by Bayesian methods and Development of < Multiple Tumor Marker Analysis System V1.0> software
     The diagnostic function was established by Bayesian method to compare the accuracy difference in diagnosis of tumors with 12 tumor markers. And the < multiple tumor marker analysis system V1.0> was programmed by HTA based on VBscript and Javascript language.
     3. Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels
     Electrochemical immunoassay method for the detection of human serum IgG by using double-codified nanosilica particles as labels based on HRP-doped nanosilica particles modified with anti-IgG antibodies. The detection is based on the catalytic reduction of the carried HRP in the nanosilica particles relative to the H2O2 system with a sandwich-type immunoassay format.
     4. Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model
     Prussian Blue (PB) was first modified on a glassy carbon electrode, then gold nanoparticles monolayer were obtained by electrochemically deposition for the anti-CEA antibodies loading. The immunoassay was performed using horseradish peroxidase (HRP)-conjugated anti-CEA as secondary antibodies attached on the NGGN surface (HRP-anti-CEA-NGGN).
     5. The signal-enhanced label-free immunosensor based on assembly of Prussian blue-SiO2 nanocomposite for amperometric measurement of Neuron-specific enolase
     PB-SiO2 nanocomposite which was produced by using a microemulsion method was used to obtain a nanostructural monolayer on a glassy carbon electrode (GCE) surface. Then 3-aminopropyltriethoxy silane (APTES) was allowing assembly of PB-SiO2 monolayer to form a protective layer and functionalize the interface with -NH2. Then chitosan stabled gold nanoparticle (CS-nanoAu) was subsequently attached, while the entire surface was finally loaded with neuron-specific enolase antibody.
     6. An electrochemical immunosensor for simultaneous multiplexed detection for NSE and pro-GRP using liposomes as enhancer
     The liposomes contained ascorbic acid (AA) or Uric acid (UA) as entrapped marker were prepared respectively. Then the resulting liposomes were bound to the sencondery antibodies: pro-gastrin-releasing peptide antibody (anti-ProGRP) or neuron-specific enolase antibody (anti-NSE). With the employment of sandwich type immunoreactions format, the liposomes containing entrapped marker labeled sencondery antibodies were employed to form the immune complexes, which was then destroyed by the addition of surfactant and the entrapped marker was detected electrochemically using MWNT modified electrodes.
     Results
     1. The clinical significance and expression of C-12 multiple tumor marker protein chip detective system in tumors
     1) At least one kind of tumor marker was found positive in 128 cases , with positive rate of 10.59%, which was significantly lower than that of tumor groups. The accuracy rate in examiners was 89.66% by C-12 multiple tumor marker protein chip detective system, while 62.77% in tumors. The sensitivity was 66.11%, the specificity was 48.68%.
     2) The positive rates of CEA, CA125 and CA242 were 40.93%, 29.78% and 13.48%, separately, which were significant different from their counterpart of lung binign disease group and health control. Moreover CEA was significance rather than CA125 and CA242 in lung cancer diagnosis. Grade of efficacy and status was closely related to CA19-9 , CEA , CA242 , AFP and CA125 in adenocarcinoma , to CA125 in squamous cell carcinoma ( SCC) , and to CA19-9 and CA125 in small cell lung cancer ( SCLC) .
     3) It was 71.97% positive ratio in collrectal carcinoma which was significantly higher than the other two groups. The sensitivity, specificity, accuracy, positive predict value and negative value of C-12 system were 71.97%, 55.7%, 83.09%, 39.64%. The positive ratio of combined detection was higher than everyone of C-12 system only (P<0.05). The expression of tumor markers CA19-9, CEA, CA242, AFP,β-HCG,HGH and CA125 in carcinoma group was markedly stronger than other two groups, meanwhile the sensitivity and validity of combined detection of CA19-9, CEA, CA242 was proved. The level of CA19-9, CEA, CA242 and CA125 was related to prognosis in colorectal carcinoma.
     4) The positive rate of pancreatic cancer is significantly higher than that of pancreatic begin patients and normal persons (P<0.05). CA19-9, CEA and CA242 have a clinical significance in diagnosis. Combined detection can significantly increase the diagnostic sensitivity, but the specificity has been decreased.
     5) The positive rate of gastric cancer (50.00%) was significantly higher than that of gastric begin patients (34.82%) and normal persons (10.59%) (P<0.05). The CA19-9, CEA, CA242, CA125 and HGH had a clinical significance (P<0. 05) .
     6) In urinary system tumor, positive value is 93.33%,negative valve is 23.68%,specificity is 81.81%,Sensitivity is 49.12%. In male genital system tumor, positive value is 64.86%,negative valve is 46.15%,specificity is 48.00%,Sensitivity is 62.16%. In prostate carcinoma, combined measurement of PSA and f-PSA can increase diagnostic specificity to 90% (P<0.01), which will not decrease diagnostic sensitivity, The Combining diagnosis of multiple serum tumor markers using C-12 protein chip has a great significance with diagnosis of the single serum tumor marker in both urinary system tumor and male genital system tumor .
     2. Establishment of diagnostic function by Bayesian methods and Development of < Multiple Tumor Marker Analysis System V1.0> software
     1) Three grades of diagnostic functions were successfully established in C-12 multiple tumor marker.
     2) The specificity, sensitivity and accuracy rate were 70.11%, 66.10% and 68.07% by C-12 multiple tumor marker while 82.11%, 71.28% and 83.97% by the first grade diagnostic function.
     3) The accuracy rate, sensitivity and specificity were higher than C-12 multiple tumor marker chip in all the 10 types of malignant tumors by the second diagnostic function.
     4) The third diagnostic function could identify part of the type of tumor, such as breast cancer, prostate cancer, lung cancer, liver cancer, ovarian cancer, endometrial cancer and pancreatic cancer.
     5) The < multiple tumor marker analysis system V1.0> software was developed successfully. The functions of this software include data read, query, print 10 tumor scorings can be calculated and printed by this software.
     3. Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels
     1) With the sandwich-type immunoassay format, the linear range of the developed immunosensor by using anti-IgG-SiO2-HRP as tracer and hydrogen peroxide (H2O2) as enzyme substrate is 0.01-15 nmol/L IgG with a detection limit of 5.0 pmol/L, while the assay sensitivity by directly using HRP-labeled anti-IgG as secondary antibodies is 1.0-10 nmol/L with a detection limit of 0.1 nmol/L IgG..
     2) The reproducibility, stability and specificity of the proposed immunoassay method were acceptable.
     3) The IgG concentrations of the clinical serum specimens assayed by the developed immunosensor show consistent results in comparison with those obtained by commercially available enzyme-linked immunosorbent assay (ELISA) method.
     4. Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model
     1) The method using HRP-anti-CEA-NGGNs as detection antibodies shows high signal amplification, and exhibits a dynamic working range of 0.05-350 ng/mL with a low detection limit of 0.01 ng/mL CEA (at 3s).
     2) The reproducibility, stability and specificity of the proposed immunoassay method were acceptable.
     3) The nanogold-enwrapped graphene nanocomposites facilitate the electron transfer between the analyte and the base electrode in contrast with that of using silica nanoparticles previously reported by us.
     5. The signal-enhanced label-free immunosensor based on assembly of Prussian blue-SiO2 nanocomposite for amperometric measurement of Neuron-specific enolase
     1) As the PB-SiO2 nanostructural sensing film provides plenty of active sites for the direct catalysis of H2O2, the proposed immunosensor exhibited excellent performance with high sensitivity.
     2) The immunosensor exhibited good linear behavior in the concentration range from 0.25-5.0 and 5.0-75 ng/mL for the quantitative analysis of neuron-specific enolase (NSE), a putative serum marker of small cell lung carcinoma (SCLC), with a limit of detection of 0.08 ng/mL in the presence of 0.75 mmol/L H2O2.
     3) No significant difference between the results obtained using the immunosensor and the ELISA, which showed an acceptable degree of agreement, especially at NSE concentrations in human serum with the immunosensor.
     6. An electrochemical immunosensor for simultaneous multiplexed detection of NSE and pro-GRP using liposomes as enhancer
     1) A sensitive immunosensor was construced based on a new signal amplification strategy was developed for the simultaneous multiplexed quantitative analysis using the liposomes contained different electrchemical active molecule as singal enhancer.
     2) A electrochemical immunosensor was developed for the simultaneous multiplexed quantitative analysis of ProGRP in the concentration range from 100-1000 pg/mL and NSE in the concentration range from 5-50 ng/mL, respectively.
     3) The concentrations of NSE and ProGRP in human serum obtained by the developed immunosensor show consistent results in comparison with those obtained by commercially available enzyme linked immunosorbent assay (ELISA) method.
     Conclusion
     1. The clinical significance and expression of C-12 multiple tumor marker protein chip detective system in tumors
     C-12 multiple tumor marker protein chip detective system can be been used in the tumor screen, diagnosis, evaluation of efficacy and the follow-up of high-risk groups. It can’t be wildly used with low specificity, sensitivity, accuracy and difficulty analysis in clinical practice.
     2. Establishment of diagnostic function by Bayesian methods and Development of < Multiple Tumor Marker Analysis System V1.0> software
     Diagnostic function established by Bayesian methods has advantages of high sensitivity, specificity and accuracy and is of great clinical value in early detection of the cancers. The software can automatic diagnosis the sort of tumor, which is a scientific, convenient, efficient tool for clinician.
     3. Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels
     a newly double-codified immunoassay method based on HRP-doped nanosilica particles modified with anti-IgG antibodies has been introduced for electrochemical detection of human IgG in a sandwich-type immunoassay format. The electrochemical signal is amplified by using double-codified nanosilica particles as tracer and hydrogen peroxide as enzyme substrate. Highlight of the developed immunoassay method is the intrinsic electrochemical properties of the double-codified nanosilica particles that being proportional to the protein concentration can be directly quantified by cyclic voltammetry. This method has many desirable merits including sensitivity, accuracy, and little required instrumentation.
     4. Nanogold enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model
     We develop a new conductive nanolabel with highly amplified properties and high sensitivity for the sandwich-type electrochemical immunoassays. The assayed results of serum samples with the sensor received an acceptable agreement with the reference values. The convenient operation and ultrasensitivity of the developed methodology provides a promising potential in clinical diagnosis.
     5. The signal-enhanced label-free immunosensor based on assembly of Prussian blue-SiO2 nanocomposite for amperometric measurement of Neuron-specific enolase Tests result indicated this strategy could provide a promising approach of the sensor preparation and a practical method with high sensitivity, shorter detection time and border linear dynamic range for clinical immunoassay in dignosis of NSE.
     6. An electrochemical immunosensor for simultaneous multiplexed detection for NSE and pro-GRP using liposomes as enhancer
     The multiplex immunoassay can offer higher sample throughput, less sample consumption, shorter assay time and lower cost than the traditional parallel single analyte immunoassay. The multiplex immunoassay provides a clinical serum diagnostic solution in small cell lung carcinoma.
引文
1. Weinberger SR, Dalmasso EA, Fung ET. Current achievements using protein chip array technology. Curt Opin Chem Biol. 2002, 6(1):86-91.
    2. Sun Z, Fu X, Zhang L, et al. A protein chip system for parallel analysis of multi-tumor markers and its application in cancer detection. Anticancer Res,2004,24(2C):1159
    3. Molina R, AugéJM, Bosch X, et al. Usefulness of Serum Tumor Markers, Including Progastrin-Releasing Peptide, in Patients with Lung Cancer: Correlation with Histology. Tumor Biol. 2009,30(3):121-129.
    4. Rafael Molina. Usefulness of Serum Tumor Markers, Including Progastrin-Releasing Peptide, in Patients with Lung Cancer: Correlation with Histology. Tumor Biol 2009,30:121–129.
    5. Mrochem J, Sodowski K, Deja R, et al. Evaluation of selected serum protein markers as early detectors of ovarian cancer. Ginekol Pol. 2008,79(4):271-275.
    6. Ohori M. Biomarkers for prostate cancer in predicting diagnosis, staging and prognosis. Gan To Kagaku Ryoho. 2009,36(1):6-10.
    7.董学君,陈建军,郑专,等.多肿瘤指标联合诊断肝癌的函数建立和应用.检验医学. 2006; 21(3):255-257
    8.李梦侠,王东,李增鹏,王佳,关伟,杨镇洲,谢家印,仲召阳.血清多肿瘤标志物判别方程建立及其对肺癌诊断及分类的意义.重庆医学,2007;36(19):1926-1928.
    9. Sreekumar A, Chinnaiyan AM. Using protein microarrays to study cancer. Biotechniques, 2002; Suppl:46-53.
    10. Margreiter M, Stangelberger A, Valimberti E, et al. Biomarkers for early prostate cancer detection. Minerva Urol Nefrol. 2008,60(1):51-60.
    11. Visintin I, Feng ZD, Longton G, et al. Diagnostic Markers for Early Detection of Ovarian Cancer. Clin Cancer Res.2008,14(4) :1065-1072.
    12. Fiorentino M, Capizzi E, Loda M. Blood and tissue biomarkers in prostate cancer: state of the art. Urol Clin North Am. 2010,37(1):131-141.
    13. Tsavaris N, Kosmas C, Papadoniou N, et al. CEA and CA-19.9 serum tumor markers as prognostic factors in patients with locally advanced (unresectable) or metastaticpancreatic adenocarcinoma: a retrospective analysis. J Chemother. 2009,21(6):673-680.
    14. Michael J. Duffy. Role of tumor markers in patients with solid cancers: A critical review. European Journal of Internal Medicine. 2007,18(3):175-184.
    15. Mrochem J, Sodowski K, Deja R, et al. Evaluation of selected serum protein markers as early detectors of ovarian cancer. Ginekol Pol. 2008,79(4):271-275.
    16. Park IJ, Choi GS, Jun SH. Prognostic value of serum tumor antigen CA19-9 after curative resection of colorectal cancer. Anticancer Res. 2009,29(10):4303-4308.
    17. Chan CC, Fan CW, Kuo YB, et al. Multiple serological biomarkers for colorectal cancer detection. Int J Cancer. 2010 ,126(7):1683-1690.
    18. Matsuoka K, Sumitomo S, Nakashima N, et al. Prognostic value of carcinoembryonic antigen and CYFRA21-1 in patients with pathological stage I non-small cell lung cancer. European Journal of Cardio-thoracic Surgery. 2007,32(3):435-439.
    19. Peng XQ, Wang F, Geng X, Zhang WM. Current advances in tumor proteomics and candidate biomarkers for hepatic cancer. Expert Rev Proteomics. 2009 ,6(5):551-561.
    20.仲召阳,王东,李增鹏,等。多肿瘤标志物蛋白质芯片检测对肿瘤诊断的临床意义。第三军医大学学报,2008,30(17):1658-1660.
    21.仲召阳,王东,李增鹏,等.多肿瘤标志物蛋白质芯片检测系统对结直肠癌诊断的临床意义。重庆医学,2007;36(23):2406-2408.
    22. Montomoli C, Nichelatti M. Bayesian statistics in medicine -- part II: main applications and inference. G Ital Nefrol,2008,25(4):422-431.
    23. Verzilli C, Shah T, Casas JP, et al. Bayesian meta-analysis of genetic association studies with different sets of markers. Am J Hum Genet, 2008, 82(4):859-872.
    24. Wu D,Rosner G L,Broemeling L D. Bayesian inference for the lead time in periodic cancer screening. Biometrics. 2007; 63(3): 873-880.
    25. Okun O, Priisalu H. Dataset complexity in gene expression based cancer classification using ensembles of k-nearest neighbors. Artif Intell Med. 2009 ,45(2-3):151-162.
    26. Land WH Jr, Verheggen EA. Multiclass primal support vector machines for breast density classification. Int J Comput Biol Drug Des. 2009;2(1):21-57.
    27. Gil Mor, Irene Visintin , Yinglei La, et al. Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci. 2005,24;102(21):7677-7682.
    28. Landgren O, Goedert JJ, Rabkin CS,et al. Circulating serum free light chains aspredictive markers of AIDS-related lymphoma. J Clin Oncol. 2010 Feb 10;28(5): 773-779.
    29. Kowalska M, Druzd-Sitek A, Fuksiewicz M,et al. Procollagen I amino-terminal propeptide as a potential marker for multiple myeloma. Clin Biochem. 2010 Apr;43(6):604-608.
    30. Davelaar EM, van de Lande J, von Mensdorff-Pouilly S, et al. A combination of serum tumor markers identifies high-risk patients with early-stage squamous cervical cancer. Tumour Biol, 2008, 29(1):9-17.
    31. J.H. Dolderer, H. Schuldes, H. Bockhorn, et al. HERG1 gene expression as a specific tumor marker in colorectal tissues. European Journal of Surgical Oncology.2010, 36(1):72-77.
    32. Schostak M, Schwall GP, Poznanovi? S,et al. Annexin A3 in urine: a highly specific noninvasive marker for prostate cancer early detection. J Urol. 2009 ;181(1):343-53.
    33. Duffy MJ,Napieralski R,Martens JW,et al. Methylated genes as new cancer biomarkers. Eur J Cancer. 2009 ;45(3):335-346.
    34. Parker C.O., Tothill I. E. Development of an lectrochemical immunosensor for aflatoxin M1 in milk with focus on matrix interference. Biosens. Bioelectron., 2009, 24: 2452-2457.
    35. Cissell KA, Rahimi Y, Shrestha S, Hunt EA, Deo SK. Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem. 2008 ;80(7):2319-2325.
    36. Yin HS, Ai SY, Shi WJ, et al. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sens. Actuators B, 2009, 137: 747-753
    37. Yang J, Dave SR, Gao X. Quantum dot nanobarcodes: epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution. J Am Chem Soc. 2008;130(15):5286-5292.
    38. Yang ZJ, Xie ZY, Liu H, et al. Streptavidin-functionalized three-dimensional ordered nanoporous silica film for highly efficient chemiluminescent immunosensing. Adv. Funct. Mater., 2008, 18: 3991-3998.
    39. Sharma RK, Das S, Maitra A. Enzymes in the cavity of hollow silica nanoparticles. JColloid Interface Sci. 2005;284(1):358-361.
    40. Hong CL, Yuan R, Chai YQ, et al. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3. Anal. Chim. Acta, 2009, 633: 244-249.
    41. Cui R, Huang H, Yin Z, et al. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosens Bioelectron. 2008;23(11):1666-1673.
    42. Limoges B, Marchal D, MavréF, Savéant JM, Sch?llhorn B. Theory and practice of enzyme bioaffinity electrodes. Direct electrochemical product detection. J Am Chem Soc. 2008;130(23):7259-7275.
    43. Ambrosi A, Casta?eda MT, Killard AJ, et al. Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem. 2007;79(14):5232-5240.
    44. Maier I, Morgan MR, Lindner W, Pittner F. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection. Anal Chem. 2008;80(8):2694-2703.
    45. Mason JT, Xu L, Sheng ZM, O'Leary TJ. A liposome-PCR assay for the ultrasensitive detection of biological toxins. Nat Biotechnol. 2006;24(5):555-5557.
    46. Lin YH, Chen SH, Chuang YC, et al. Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7. Biosens Bioelectron. 2008 ;23(12):1832-1837.
    47. Henry JB. The impact of biosensors on the clinical laboratory. MLO Med. Lab. Obs., 1990, 22: 32-35.
    48. Xu Y, Li Q. Multiple fluorescent labeling of silica nanoparticles with lanthanide chelates for highly sensitive time-resolved immunofluorometric assays. Clin Chem. 2007;53(8):1503-1510.
    49. Sun YY, Yan F, Yang WS, et al. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Biomaterials, 2006, 27: 4042-4049.
    50. Hong CL, Yuan R, Chai YQ, et al. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3.Anal. Chim. Acta, 2009, 633: 244-249.
    51. Yang ZJ, Xie ZY, Liu H, et al. Streptavidin-functionalized three-dimensional ordered nanoporous silica film for highly efficient chemiluminescent immunosensing. Adv. Funct. Mater., 2008, 18: 3991-3998.
    52. Miyake M, Sugano K, Sugino H, et al. Fibroblast growth factor receptor 3 mutation in voided urine is a useful diagnostic marker and significant indicator of tumor recurrence in non-muscle invasive bladder cancer. Cancer Sci. 2010;101(1):250-258.
    53. Gas F, Baus B, Pinto L, et al. One step immunochromatographic assay for the rapid detection of Alexandrium minutum. Biosens Bioelectron. 2010 15;25(5):1235-1239.
    54. Gomez-Hens A,Fernandez-Romero JM,Aguilar C. Control of tumor markers using nanotechnology. Mini Rev Med Chem. 2009; 9(9): 1064-1074.
    55. Bertoncello P,Forster RJ. Nanostructured materials for electrochemiluminescence (ECL) based detection methods: recent advances and future perspectives. Biosens Bioelectron. 2009 ; 24(11): 3191-3200.
    56. Chen H, Jiang C, Yu C, et al. Protein chips and nanomaterials for application in tumor marker immunoassays. Biosens-Bioelectron. 2009; 24(12): 3399-3411.
    57. Zhang H, Zhao Q, Li XF, Le XC. Ultrasensitive assays for proteins. Analyst. 2007;132(8):724-737.
    58. Chikkaveeraiah BV, Bhirde A, Malhotra R, et al. Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem. 2009;81(21):9129-9134.
    59. Lai G, Yan F, Ju H. Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem. 2009;81(23):9730-9736
    60. Frosteg?rd J. Low level natural antibodies against phosphorylcholine: a novel risk marker and potential mechanism in atherosclerosis and cardiovascular disease. Clin Immunol. 2010;134(1):47-54.
    61. Lopes-Virella MF, Virella G. Clinical significance of the humoral immune response to modified LDL. Clin Immunol. 2010;134(1):55-65
    62. Zhong Z, Li M, Xiang D, et al. Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles aslabels. Biosens Bioelectron. 2009;24(7):2246-2249.
    63. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666-669.
    64. Kang XH, Wang J, Wu H, et al. Glucose Oxidase-graphene- chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron., 2009, 25: 901-905
    65. Wu H, Wang J, Kang XH, et al. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta, 2009, 80: 403-406
    66. Shan CS, Yan g HF, Song JF, et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Anal. Chem. 2009, 81: 2378-2382
    67. Das J, Jo K, Lee JW, Yang H. Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current. Anal. Chem., 2007, 79: 2790-2796.
    68. Mani V, Chikkaveeraiah BV, Patel V, et al. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano., 2009, 3: 585-594.
    69. Ho JA, Lin YC, Wang LS, et al. Carbon nanoparticle-enhanced immunoelectr- ochemical detection for protein tumor marker with cadmium sulfide biotracers. Anal. Chem., 2009, 81:1340-1346.
    70. Han MY, Liu Q, Yu Jk, Zheng S. Detection and significance of serum protein markers of small-cell lung cancer. J. Clin. Lab. Anal. 2008,22:131-137.
    71. Molina R, Filella X, Auge JM. ProGRP: a new biomarker for small cell lung cancer. Clin Biochem 2004;37:505-11.
    72. SchneiderJ,Philipp M, Velcovsky HG, et al. Pro-gastrin-releasing peptide (ProGRP), neuron specific enolase (NSE), carcinoembryonic antigen (CEA) and cytokeratin 19-fragments (CYFRA 21-1) in patients with lung cancer in comparison to other lung diseases, Anticancer Res. 2003,23;885-893.
    73. Yu X, Munge B, Patel V, et al. A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J. Am. Chem. Soc. 2006,128 :16022-16023.
    74. Pividori MI, Lermo A, Bonanni A. Bonanni, et al. Electrochemical immunosensor for the diagnosis of celiac disease, Anal. Biochem. 2009,388: 229-234.
    75. Lin JH, Ju HX. Electrochemical and chemiluminescent immunosensors for tumor markers, Biosens. Bioelectron. 2005,20:1461-1470.
    76. Zhuo Y, Yuan PX, Yuan R, et al. Nanostructured conductive material containing ferrocenyl for reagentless amperometric immunosensors. Biomaterials, 2008,29: 1501-1508.
    77. Guo SJ, Dong SJ. Biomolecule-nanoparticle hybrids for electrochemical biosensors. TrAC-Trend. Anal. Chem. 2009,28:96-109.
    78. M. Riskin, R. Tel-Vered, T. Bourenko, E. Granot, I. Willner. Imprinting of molecular recognition sites through electropolymerization of functionalized au nanoparticles: Development of an electrochemical TNT sensor based on pi-donor-acceptor interactions. J. Am. Chem. Soc. 130 2008,130:9726-9733.
    79. Zhuo Y, Yuan PX, Yuan R, et al. Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials, 2009,30:2284-2290.
    80. Ricci F, Palleschi G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens. Bioelectron. 2005,21:389-407.
    81. Koncki R. Chemical sensors and biosensors based on Prussian blues. Crit. Rev. Anal. Chem. 2002,32:79-96.
    82. S.S.Han, J.L. Mendoza-Cortes,W.A. Goddard. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. Chem. Soc. Rev. 2009,38:1460-1476.
    83. L. Pasqua L, S. Cundari, C. Ceresa, G. Cavaletti. Recent Development, Applications, and Perspectives of Mesoporous Silica Particles in Medicine and Biotechnology, Curr. Med. Chem. 2009,16:3054-3063.
    84. Guo SJ, Wang EK. Synthesis and electrochemical applications of gold nanoparticles, Anal. Chim. Acta. 2007,598:181-192.
    85. Jain PK, Huang XH, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res. 2008,41:1578-1586.
    86. Liu Xue-Ping, Deng Ya-Juan, Jin Xiao-Yong, et al. Ultrasensitive electrochemical immunosensor for ochratoxin A using gold colloid-mediated hapten immobilization, Anal. Biochem. 2009,389:63-68.
    87. Scodeller P, Flexer V, Szamocki R, et al. Wired-enzyme core-shell Au nanoparticle biosensor. J. Am. Chem. Soc. 2008,130:12690-12697.
    88. Demolliens A, Boucher C, Durocher Y, et al. Tyrosinase-catalyzed synthesis of a universal coil-chitosan bioconjugate for protein immobilization, Bioconjugate Chem. 2008,19:1849-1854.
    89. Lin Jiehua, He Chunyan,Zhang Lijuan, Zhang Shusheng. Sensitive amperometric immunosensor forα-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film, Anal.l Biochem. 2009,384:130-135.
    90. Huang HZ, Yuan Q, Yang XR. Morphology study of gold-chitosan nanocomposites, J. Colloid Interface Sci. 2005,282:26-31.
    91. Alving C R. Liposomes as carriers of antigens and adjuvants. Journal of Immunological Methods. 1991,140(1):1-13.
    92. Gregoriadis G, Florence A T. Liposomes in drug delivery Clinical, diagnostic and ophthalmic potential. Drugs. 1993, 45(1):15-28.
    93. Imura T, Gotoh T, Otake K, et al. Control of physicochemical properties of liposomes using a supercritical reverse phase evaporation method. Langmuir. 2003, 19(6): 2021-2025.
    94. Rozema D, Gellman SH. Artificial chaperone-assisted refolding of denatured-reduced lysozyme:modulation of the competition between renaturation and aggregation. Biochemistry. 1996, 35(49):157-160.
    95. Alfonta L,Singh A K,Willner I.Liposomes labeled with biotin and horseradish peroxidase:A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes.Analytical Chemistry. 2001, 73(1):91-102
    96. Ahn-Yoon S, DeCory T R, Baeumner A J, et al. Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin. Analytical Chemistry. 2003, 75(10): 2256-2261
    97. Viswanathan S, Rani C, Anand A. V, et al. Disposable electrochemical immunosensorfor carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosens. Bioelectron. 2009, 24: 1984-1989.
    98. Singh A K,Kilpatrick P K,Carbonell R G. Noncompetitive immunoassays using bifunctional unilamellar vesicles or liposomes.Biotechnology Progress. 1995, 11(3):333-341
    99. Gouveia-Caridade C, Pauliukaite R, Brett CMA. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol. Electrochimi. Acta. 2008, 52: 6732-6739.
    100. Jeykumari DR S, Narayman SS. A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Biosens. Bioelectron. 2008, 23:1404-1411
    101.焦奎,张书圣,张敏等.电化学免疫分析法研究进展.分析化学. 1995, 23: 1211~1217
    102. Myszyka D.G. Improving biosensor analysis. J. Mol.Recognit. 1999, 12(5): 279-284.
    103. Wilson MS, Nie WY. Electrochemical multianalyte immunoassays using an array-based sensor. Anal. Chem. 2006, 78: 6476-6483
    104. Wu J, Zhang Z, Fu ZF, Ju HX. A disposable two-throughput electrochemical immunosensor chip for simultaneous multianalyte detennination of tumor markers Biosens. Bioelectron. 2007, 23: 114-120
    105. Fu ZF, Yang Z, Tang J, Liu H, Yan F, Ju HX. Channel and substrate zone two-dimensional resolution for chemiluminescent multiplex immunoassay Anal. Chem. 2007, 79: 7376-7382
    106. Fu ZF, Yan F, Liu H, Yang ZJ, Ju HX. Channel-resolved multianalyte immunosensing system for flow-through chemiluminescent detection of alpha-fetoprotein and carcinoembryonic antigen. Biosens. Bioelectron. 2008, 23:1063-1069.
    107. Wu J, Zhang Z, Fu ZF, Ju HX. A disposable two-throughput electrochemical immunosensor chip for simultaneous multianalyte detennination of tumor markers Biosens. Bioelectron. 2007, 23: 114-120
    108. Edwards K. A., BaeumnerA J. Liposomes in analyses. Talanta, 2006, 68: 1421-1431.
    109. Gómez-Hens A., Fernández-Romero J. M. The role of liposomes in analytical processes. Trends. Anal. Che. 2005, 24: 9-19.
    110. Viswanathan S,Wu L C,Huang M R,et al.Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes.Analytical Chemistry.2006,78(4):1115-1121
    111. Singh A K,Harrison S H,Schoeniger J S.Gangliosides as receptors for biological toxins:development of sensitive fluoroimmunoassays using ganglioside-bearing liposomes.Analytical Chemistry.2000,72(24):6019-6024
    112. Mason J. T., Xu L. X., Sheng Z. M., et al. A liposome-PCR assay for the ultrasensitive detection of biological toxins, Nature Biotechnol. 2006, 24: 555-557.
    113.李庭,曾光明,汤琳等.脂质体免疫传感器的研究进展.分析化学, 2008, 38(1):122-126.
    1. Neng-Yao Shih, Hsing-Liang Lai, Gee-Chen Chang , et al. Anti-α-enolase Autoantibodies Are Down-regulated in Advanced ancer Patients. Jpn J Clin Oncol, 2010
    2. Tibor Szarvas,Markus Becker, Frank vom Dorp,et al. Matrix metalloproteinase-7 as a marker of metastasis and predictor of poor survival in bladder cancer. Cancer Sci. 2010,101: 1300–1308.
    3. H Sova, A Jukkola-Vuorinen, U Puistola, et al. 8-Hydroxydeoxyguanosine: a new potential independent prognostic factor in breast cancer. British Journal of Cancer . 2010, 102; 1018– 1023.
    4.张贵生.关于EL ISA若干问题的分析.疾病监测.2009,24(9):724-728.
    5. El Aneed A, Banoub J. Proteomics in the diagnosis of hepatocellular carcinoma: focus on high risk hepat tis B and C patients . Anticancer Res ,2006 ,26 (5) :3293-3300.
    6. Poon TC, Hui A Y, Chan HL,et al. Prediction of liver fibrosis and cirrhosis in chronic hepati tis B infection by serum proteomic finger printing: a pilot study .ClinChem,2005,51: 328-335.
    7. Ye B,Cramer DW,Skates SJ,et al.Haptoglobin-a subunit as potential serum biomarker in ovarian cancer:identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res,2003,9(8):2904-2911.
    8. Dekker LJ, BoogerdW, Stockhammer G, et al. MALD I - TOF mass spectrometry analysis of cerebrospinal fluid tryp tic pep tide profiles to diagnose lep tomeningealmetastases in patients with breast cancer. Mol & Cell Proteomics, 2005,4(9):1341-1349.
    9. Luo, Pengchenga, He, Ellenb d, Eriksson Staffane, et al. Thymidine kinase activity in serum of renal cell carcinoma patients is a useful prognostic marker. European Journal of Cancer Prevention. 2009, 18(3):220-224.
    10. Sai Bi, Yameng Yan, Xiaoyan Yang, and Shusheng Zhang. Gold Nanolabels for New Enhanced Chemiluminescence Immunoassay ofAlpha-Fetoprotein Based on Magnetic Beads. Chem Eur J. 2009, 15:4704-4709.
    11. Luo LY, Zhang ZJ, Luo LR. Chemiluminescent imaging analysis of interferon alpha inserum samples. Anal Bioanal Chem. 2007,387: 925-931.
    12.马连学.游离前列腺特异抗原免疫放射分析方法的建立.同位素. 2009,22(1):40-42.
    13. Higashi Y, Ikeda Y, Yamamoto R, et al. Pharmacokinetic interaction with digoxin and glucocorticoids in rats detected by radio-immunoassay using a novel specific antiserum. Life Sci. 2005,77: 1055-1067.
    14. Gorelik E, Landsittel DP , Marrangoni AM, et al.Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer.Cancer Epidemiol Biomarkers Prev. 2005,14(4) :981-987.
    15. Ye Y, Wang D, Su C, Rong T, Guo A. Combined detection of p53, p16, Rb, and EGFR mutations in lung cancer by suspension microarray. Genet Mol Res. 2009 ,8(4):1509-1518.
    16.柯峰,吴健民.悬浮阵列技术多项标志物联合检测对乳腺癌术后早期复发转移的预测价值.华中医学杂志. 2008,32(1)3-6.
    17. Tang YP, Wu YS, Yin AH,et al. Determination of median levels of the free beta subunit of human chorionic gonadotropin in women from Mainland China using a new time-resolved fluoroimmunoassay. Clin Chem Lab Med. 2010;48(1):109-14.
    18. Sheng SL, Bao SH, Huang G, Wang LM. Simultaneous determination of alpha-fetoprotein immune complexes and alpha-fetoprotein concentration in hepatocellular carcinoma using dual-label time-resolved immunofluorometric assays. J Clin Lab Anal. 2009,23(3):179-185.
    19. Sheng SL, Bao SH, Huang G, Wang LM. Development of time-resolved immunofluorometric assays for vascular endothelial growth factor and application on plasma of patients with gastric tumours. Clin Exp Immunol. 2008,151(3):459-466.
    20. Fu Zhifeng, Yan Feng , Liu Hong, et al. Channel-resolved multianalyte immunosensing system for flow-through chemiluminescent detection of -fetoprotein and carcinoembryonic antigen. Biosensors and Bioelectronics .2008,23 :1063–1069.
    21. Yang Zhanjun, Fu Zhifeng, Yan Feng, et al. A chemiluminescent immunosensor based on antibody immobilized carboxylicresin beads coupled with micro-bubble accelerated immunoreaction for fast flow-injection immunoassay. Biosensors and Bioelectronics .2008, 24:35–40.
    22. Zheng Yue, Chen Huan, Liu Xue-Ping , et al. An ultrasensitive chemiluminescenceimmunosensor for PSA based on the enzyme encapsulated liposome Talanta . 2008,77 :809–814.
    23. Breyer B., Radcliff F. J. Polarographic investigation of the antigen-antibody reaction. Nature.1951, 167: 79-79.
    24. Andrew C. Barton, Frank Davis, and Se′amus P J. Labeless Immunosensor Assay for Prostate Specific Antigen with Picogram per Milliliter Limits of Detection Based upon an ac Impedance Protocol. Anal. Chem. 2008, 80, 6198–6205.
    25. Ja-an Annie Ho, Yeh-Chun Lin, Li-Sheng Wang, et al. Carbon Nanoparticle-Enhanced Immunoelectrochemical Detection for Protein Tumor Marker with Cadmium Sulfide Biotracers Anal. Chem. 2009, 81, 1340–1346.
    26. Mangesh A. Bangar, Dhammanand J. Shirale, Wilfred Chen, et al. Single Conducting Polymer Nanowire Chemiresistive Label-Free Immunosensor for Cancer Biomarker. Anal. Chem. 2009, 81, 2168–2175.
    27. Vigneshwaran Mani, Bhaskara V. Chikkaveeraiah, et al. Rusling Ultrasensitive Immunosensor for Cancer Biomarker Proteins Using Gold Nanoparticle Film Electrodes and Multienzyme-Particle Amplification. ACS Nano. 2009, 3: 585-594.
    28. Du Dan, Zou Zhexiang, Shin Yongsoon, et al. Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multienzyme Functionalized Carbon Nanospheres. Anal. Chem. 2010, 82, 2989–2995.
    29. Tang Dianping, Yuan Ruo, and Chai Yaqin. Ultrasensitive Electrochemical Immunosensor for Clinical Immunoassay Using Thionine-Doped Magnetic Gold Nanospheres as Labels and Horseradish Peroxidase as Enhancer Anal. Chem. 2008, 80, 1582-1588.
    30. Jie G F, Zhang J J, Wang D C, et al. Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal. Chem. 2008, 80 (11): 4033–4039.
    31. Shons A,Dorman F,Najarian J,et al. An immunospecific microbalance.Journal of Biomedical Materials Research.1972,6(6):565-570.
    32. Muratsugu M,Ohta F,Miya Y,et al.Quartz crystal microbalance for the detection of microgram quantities of human serum albumin: relationship between the frequenccy change and the mass of protein adsorbed. Analytical Chemistry. 1993, 65(20): 2933-2937.
    33. Zhang Bo , Zhang Xue , Yan Hui-hui , et al. A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor. Biosensors and Bioelectronics. 2007,23 :19–25.
    34. Ding Yanjun, Lu Haixia, Shi Guorong, et al. Cell-based immobilization strategy for sensitive piezoelectric immunoassay of total prostate specific antigen. Biosensors and Bioelectronics.2008, 24: 228–232.
    35. Guangyu Shen, Jilin Lu. Piezoelectric immunosensor based on gold nanoparticles capped with mixed self-assembled monolayer for detection of carcinoembryonic antigen.Thin Solid Films.2010.
    36. Chang Chia-Chen, Chiu Nan-Fu, She Davidn,et al. High-Sensitivity Detection of Carbohydrate Antigen15-3 Using a Gold/Zinc Oxide Thin Film Surface Plasmon Resonance-Based Biosensor. Anal. Chem. 2010, 82, 1207–1212.
    37. Siriwan Suwansa-ard, Proespichaya Kanatharana, Punnee Asawatreratanakul, et al. Comparison of surface plasmon resonance and capacitive immunosensors for cancer antigen 125 detection in human serum samples Biosensors and Bioelectronics. 2009, 24:3436-3441.
    38. Jaeyeon Jung, Kyunga Na, Jonghwan Lee, et al. Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface. Analytica Chimica Acta.2009, 651:91–97.
    39. Visintin I, Feng ZD, Longton G, et al. Diagnostic Markers for Early Detection of Ovarian Cancer. Clin Cancer Res.2008,14(4) :1065-1072.
    40. Fiorentino M, Capizzi E, Loda M. Blood and tissue biomarkers in prostate cancer: state of the art. Urol Clin North Am. 2010,37(1):131-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700