维数约简研究及其在特征提取中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益增长的海量数据,人们越来越多地依赖计算机智能化地从数据中得到问题解决所需要的有用信息。作为智能化数据分析的重要手段,维数约简技术不仅有效减低了处理过程的计算复杂度,也显著提高了数据分析的准确性和有效性。维数约简技术广泛应用于模式识别和计算机视觉领域,其中基于维数约简的特征提取已成为解决诸多相关问题的关键因素。尽管关于维数约简的研究已取得丰富的成果,但当前数据呈现出的高维数和多模态特点带来了新的挑战。在人脸图像识别、视频序列分析、文本与图像检索等实际应用的驱动下,维数约简技术通过对现有方法进行完善或探索新的理论方法获得了进一步的发展。本文立足于当前的数据形势,深入研究了关于向量数据和高阶数据的维数约简技术及其在特征提取中的应用问题。作为维数约简研究的一些新成果,本文提出的算法在数据可视化和人脸识别中得到了较好的应用。
     流形嵌入是目前非监督向量数据降维的研究热点,在探索数据的潜在结构上该方法具有优势。然而流形嵌入方法无法获得数据空间到低维特征空间的显式映射关系,故难于对新数据进行维数约简。针对这个问题,本文提出了面向流形的随机近邻投影(MSNP)用于非监督特征提取。MSNP算法在随机近邻嵌入(SNE)算法的启发下提出,基本想法是改善SNE算法的非线性流形展开能力和用显式的线性投影近似流形嵌入的非线性映射以适于特征提取任务。本文分析了SNE算法的不足,在以下三个方面进行了改进和完善:(1)提出在数据空间中用测地线距离代替欧氏距离构建随机近邻选择概率,从而提高了描述数据相似关系的准确性。(2)提出在低维特征空间使用柯西分布代替学生t分布构建随机近邻选择概率,以增强算法对数据的适应性。(3)在近邻概率分布保持的原则下引入线性投影得解决了新样本的维数约简问题,同时基于共轭梯度的迭代解法简明直观并具有比SNE更快的收敛速度。本文通过数据可视化、人脸识别和掌纹识别实验考察了MSNP的算法性能,包括投影基的性质、算法收敛性和特征提取能力。实验结果证明本文所提出的MSNP算法是一种有效的非监督向量数据降维方法,具有挖掘数据复杂模式的能力。
     在监督化向量数据降维方面,局部化线性鉴别分析方法考虑了数据的局部结构信息,提取鉴别特征的能力强于传统的全局线性鉴别方法。经过深入研究,本文发现已有的局部化线性鉴别方法普遍存在模型参数多且不易设置的问题。针对此问题,本文对局部线性鉴别分析的自适应问题进行了探索研究。本文提出了由同类局部近邻样本确定的局部邻域概念,其中的异类近邻样本能够自动被确定。在新的局部邻域内,同类和异类样本的分布反映了数据集不同局部的数据特性。据此,本文发展出了一种自适应的局部线性鉴别方法。该方法采用差分鉴别模型,模型中反映同类样本和异类样本权重的参数由局部近邻的特性自动设置。由于只需要同类近邻样本数这一个参数,本文提出的算法大大提高了局部线性鉴别分析在特征提取上的可用性。通过对人脸识别实验结果的分析,本文发现与已有的局部线性鉴别算法相比,所提出的自适应算法多数情况下能提升所得特征的鉴别能力,即便在训练数据极端少的情况下也取得了与已有方法相当的识别效果。
     对于如图像和视频这一类的高阶数据,近几年兴起的张量化维数约简方法基于数据的张量模型利用多重线性投影以获得数据的线性结构。尽管也出现了如张量LPP和张量NPE这样的方法试图获取张量数据的非线性结构信息,但基于多重线性投影的降维方式导致非线性结构信息在降维过程中不可避免地遭到损失。本文从张量数据采样自低维非线性流形的假设出发,提出了一种直接获得张量数据的低维嵌入(即参数化坐标)的非监督降维算法。该算法利用局部秩一张量投影所得到的低维向量来刻画张量数据的局部线性结构,然后在局部坐标全局化排列的原则下由局部仿射变换得到张量的全局性低维表示。由于维数约简过程依赖于一个非线性映射,本文提出的算法能有效挖掘张量数据的非线性结构。此外,为了方便特征提取,本文基于数值插值方法给出了张量嵌入的一种泛化方案。数据可视化的实验结果表明,本文提出的张量嵌入方法能有效发现张量数据流形的潜在结构,而人脸图像识别上的实验结果证明所提算法经过泛化扩展后能从张量数据中提取出有效的模式特征。
     本文针对张量数据的监督化特征提取问题,提出了一种新的张量化降维算法---“局部鉴别化正交秩一张量投影”(LDOROTP)。该算法的目标是从张量数据中提取出紧凑的特征并同时赋予特征相当的鉴别能力。LDOROTP算法通过正交秩一张量投影获得张量数据的向量形式的特征,并通过局部鉴别分析求取最优的投影张量基。与已有的算法相比,本文所提出的算法创新点在于:(1)局部鉴别分析采用所有的同类样本和适当数量的异类近邻样本;(2)在局部邻接图中引入新的加权函数对局部鉴别信息进行编码。LDOROTP算法的目标函数建立在差分鉴别模型上,避免了难以处理的奇异矩阵求逆问题。除此之外,LDOROTP算法对于秩一张量的正交性约束提出了轮换正交的策略,增强了算法结果的稳定性。本文提出的算法在人脸图像特征问题上进行了验证,实验结果证明LDOROTP算法在提取张量数据的鉴别特征方面是有效的。
Faced with the growing massive data, people increasingly rely on computers to intelli-gently get useful information from the data to solve problems. As an important technique of in-telligent data analysis, dimensionality reduction not only effectively reduces the computational complexity of the processing procedure, but also significantly improve the accuracy and validity of data analysis. Dimensionality reduction techniques are widely used in applications of pattern recognition and computer vision, which makes feature extraction become the key to solve re-lated problems. Despite the research for dimensionality reduction has made fruitful results, but the new characteristics of current data with high dimensionality and multi-modal features being new challenges to dimensionality reduction target. Driven by the requirements from applica-tions such as face image recognition, video analysis and multispectral remote sensing image processing, dimensionality reduction technique has made further development through improv-ing and perfecting the existing methods or exploring new theories and techniques. Standing on the reality of data analysis demand in current situation, this thesis studies some theoretical and algorithmic problems in dimensionality reduction for vector data and high-order data, as well as some practical problems of feature extraction in applications. We develop some new algo-rithms as regards it, and these algorithms are verified to be effective in the application of data visualization and face identification.
     Manifold embedding methods have advantages in discovering the underlying structure of data, thus it is currently a research focus in unsupervised dimensionality reduction for vec-tor data. However, manifold embedding methods cannot obtain explicit mapping between data space and feature space, which leads to the difficulties when one try to apply the methods to new data. To solve this problem, we develop a novel algorithm named manifold oriented stochastic neighbor projection(MSNP) is developed for unsupervised feature extraction. This algorithm is inspired by the stochastic neighbor embedding(SNE) algorithm and owns the characteristic that it uses an explicit linear projection from data space to feature space to approximate the nonlinear manifold mapping. Based on the analysis results about the deficiency of SNE al-gorithm, we achieves improvement and perfection on the following three aspects:(1) MSNP models the structure of manifold by stochastic neighbor distribution in the high-dimensional observation space with geodesic distance rather than Euclidean distance, improving the accu-racy of estimating the pairwise similarity of data. (2)In order to enhance the adaptability to data with variable Characteristics, MSNP used Cauchy distribution in low-dimensional feature space instead of the Student t distribution to calculate stochastic neighbor selection probability. (3) MSNP benefits from stochastic neighbor distribution preserving strategy and linear projec-tion manner to endow with nice properties, with a fast convergence speed given by the solution based on conjugate gradient operation. We evaluate the effectiveness of our MSNP method for dimensionality reduction, including the property of basis vector, convergence speed and the ability of feature extraction. The experimental results on ORL, Yale, AR, and PolyU databases demonstrate that MSNP can substantially enhance the quality of data visualization compared with many competitive manifold learning algorithms and improve the recognition accuracy in biometrics recognition task. This verifies that the proposed MSNP is an effective feature ex-traction method.
     Local linear discriminant analysis takes data structure information into account for unsu-pervised feature extraction of vector data, so that it obtains feature with more discriminative power than the global discriminative analysis method. We make a thorough study on the exist-ing local linear discriminative methods, then find that there exist multiple parameters in most of these methods and it is difficult to set the proper parameters. Aiming at this problem, we make exploration and research on the automation of local discriminative analysis for dimensional-ity reduction. We develop a novel algorithm named adaptive local discriminative analysis, in which there is only one parameter needed to be set. This algorithm performs discriminative analysis by using the difference model based on a novel local neighborhood, in which the local inter-class neighbors are determined automatically. We design the adaptive algorithm under the principle that the model parameter is automatically determined according to the local data distribution of inter-class neighbors and intra-class neighbors. The experimental results show that the proposed adaptive achieves higher recognition accuracy than the existing methods in most case, and in the special case of 2 samples available per class it gets comparable results. Considering that the adaptive algorithm need to set only one parameter, the results provide proofs that our algorithm is effective for supervised feature extraction.
     Several tensor based dimensionality reduction methods are proposed recently to reduce the dimension of high-order data, such as images and videos. Although some algorithms such as Tensor LPP and Tensor NPE consider the nonlinear structure of data, the manner of linear projection restricts the existing tensor methods on the ability of discovering nonlinear structure. In this paper, we develop a novel unsupervised dimension reduction algorithm for the purpose of exploring the nonlinear structure information from high-order data. We design the algorithm under the assumption of tensor manifold, and combine local rank-one tensor projection and global alignment strategy to obtain the embedding of tensor manifold. Besides, we provide a scheme of numerical interpolation to solve the out-of-sample problem. The experimental results of data visualization show that the proposed tensor manifold embedding algorithm can discover the underlying nonlinear structure of high-order data. And its effectiveness of feature extraction is proved by the experimental results of face recognition.
     For the supervised feature extraction task to high-order data, we propose a new tensor based algorithm, called local discriminant orthogonal rank-one projection(LDOROTP). The goal of LDOROTP is to learn a compact feature for images meanwhile endow the feature with prominent discriminative ability. LDOROTP achieves the goal through a serial of rank-one tensor projections with orthogonal constraints. To seek the optimal projections, LDOROTP carries out local discriminant analysis, but differs from the previous works on two aspects: (1)the local neighborhood consists of all the samples of the same class and partial local sam-ples from different classes; (2)a novel weighting function is designed to encode the local dis-criminant information. The criterion of LDOROTP is built on the trace differences of matrices rather than the trace ratio, so the awkward problem of singular matrix do not emerges. Besides, LDOROTP benefits from an efficient and stable iterative scheme of solution and a data pre-processing called GLOCAL tensor representation. LDOROTP is evaluated on face recognition application on two benchmark databases:Yale and PIE, and compared with several popular projection techniques. Experimental results suggest that the proposed LDOROTP provides a supervised image feature extraction approach of powerful pattern revealing capability.
引文
[1]R. Bellman, R. Kalaba. On Adaptive Control Processes[J]. Automatic Control, IRE Transactions on,1959,4(2):1-9.
    [2]A. Jain, R. Duin, J. Mao. Statistical Pattern Recognition:A Review[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2000,22(1):4--37.
    [3]T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning:Data Mining, Inference, and Prediction[M]. Springer,2003.
    [4]F. Keinosuke. Introduction to Statistical Pattern Recognition[M].1990.
    [5]L. Breiman. Random Forests[J]. Machine learning,2001,45(1):5--32.
    [6]K. Mardia, J. Kent, J. Bibby. Multivariate Analysis[M]. Academic press,1980.
    [7]C. Lee, D. Hyun, E. Choi, et al. Optimizing Feature Extraction for Speech Recogni-tion[J]. IEEE Transactions on Speech and Audio Processing,2003,11(1):80--87.
    [8]K. Saenko, K. Livescu, J. R. Glass, et al. Multistream Articulatory Feature-based Models for Visual Speech Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31:1700--1707.
    [9]T. Sobol-Shikler, P. Robinson. Classification of Complex Information:Inference of Co-occurring Affective States from Their Expressions in Speech[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32:1284--1297.
    [10]F. Rudzicz. Articulatory Knowledge in the Recognition of Dysarthric Speech[J]. IEEE Transactions on Audio, Speech & Language Processing,2011,19:947--960.
    [11]P. Belhumeur, J. Hespanha, D. Kriegman. Eigenfaces Vs. Fisherfaces:Recognition Using Class Specific Linear Projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
    [12]X. Wang, X. Tang. Face Photo-sketch Synthesis and Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31:1955--1967.
    [13]J. Wright, A. Y. Yang, A. Ganesh, et al. Robust Face Recognition via Sparse Repre-sentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009, 31:210--227.
    [14]A. K. Jain, B. Klare. Face Recognition:Some Challenges in Forensics[C]//IEEE Inter-national Conference on Automatic Face and Gesture Recognition.2011:726--733.
    [15]Y. Tong, A. K. Jain. Age-invariant Face Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32:947--954.
    [16]L. Wolf, T. Hassner, Y. Taigman. Effective Unconstrained Face Recognition by Com-bining Multiple Descriptors and Learned Background Statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:1978--1990.
    [17]R. He, W.-S. Zheng, B.-G. Hu. Maximum Correntropy Criterion for Robust Face Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011, 33:1561-1576.
    [18]D. Maltoni, D. Maio, A. Jain, et al. Handbook of Fingerprint Recognition[M]. Springer-Verlag New York Inc,2009.
    [19]R. Cappelli, D. Maltoni. On the Spatial Distribution of Fingerprint Singularities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31.
    [20]R. Cappelli, M. Ferrara, D. Maltoni. Minutia Cylinder-code:A New Representation and Matching Technique for Fingerprint Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32:2128--2141.
    [21]J. Feng, A. K. Jain. Fingerprint Reconstruction:From Minutiae to Phase[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:209--223.
    [22]Y. Wang, J. Hu. Global Ridge Orientation Modeling for Partial Fingerprint Identifica-tion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:72--87.
    [23]L. Wang, T. Tan, H. Ning, et al. Silhouette Analysis-based Gait Recognition for Hu-man Identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(12):1505-1518.
    [24]J. Han, B. Bhanu. Individual Recognition Using Gait Energy Image[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2006,28(2):316--322.
    [25]J. Zhang, J. Pu, C. Chen, et al. Low-resolution Gait Recognition[J], IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2010,40:986--996.
    [26]M. Karg, K. Kuhnlenz, M. Buss. Recognition of Affect Based on Gait Patterns[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2010, 40:1050--1061.
    [27]C. Chen, J. Zhang, R. Fleischer. Distance Approximating Dimension Reduction of Rie-mannian Manifolds[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,2010,40:208--217.
    [28]M. Stikic, D. Larlus, S. Ebert, et al. Weakly Supervised Recognition of Daily Life Ac-tivities with Wearable Sensors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:2521-2537.
    [29]H. Bunke, P. Wang. Handbook of Character Recognition and Document Image Analy-sis[M]. World Scientific Pub Co Inc,1997.
    [30]S.-Y. Kong, L.-S. Lee. Semantic Analysis and Organization of Spoken Documents Based on Parameters Derived from Latent Topics[J].2011,19:1875--1889.
    [31]G. Zhu, Y. Zheng, D. S. Doermann, et al. Signature Detection and Matching for Doc-ument Image Retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence,2009,31:2015--2031.
    [32]D. Ghosh, T. Dube, A. P. Shivaprasad. Script Recognition-a Review[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence,2010,32:2142--2161.
    [33]O. R. Terrades, E. Valveny, S. Tabbone. Optimal Classifier Fusion in a Non-bayesian Probabilistic Framework[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence,2009,31:1630--1644.
    [34]A. Smeulders, M. Worring, S. Santini, et al. Content-based Image Retrieval at the End of the Early Years[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(12):1349--1380.
    [35]R. Datta, J. Li, J. Wang. Content-based Image Retrieval:Approaches and Trends of the New Age[C]//Proceedings of the 7th ACM SIGMM international workshop on Multi-media information retrieval.2005:253--262.
    [36]R. Datta, D. Joshi, J. Li, et al. Image Retrieval:Ideas, Influences, and Trends of the New Age[J]. ACM Computing Surveys (CSUR),2008,40(2):5.
    [37]M. Nixon, A. Aguado. Feature Extraction and Image Processing[M]. Academic Press, 2008.
    [38]H. Zhang, J. Fritts, S. Goldman. Image Segmentation Evaluation:A Survey of Unsuper-vised Methods[J]. Computer Vision and Image Understanding,2008,110(2):260--280.
    [39]B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Cat-egorization and Segmentation[J]. International Journal of Computer Vision,2008, 77(1):259--289.
    [40]J. Yoder, H. Medeiros, J. Park, et al. Cluster-based Distributed Face Tracking in Camera Networks[J]. IEEE Transactions on Image Processing,2010,19:2551--2563.
    [41]E.-J. Ong, R. Bowden. Robust Facial Feature Tracking Using Shape-constrained Multiresolution-selected Linear Predictors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:1844--1859. [42] N. Jiang, W. Liu, Y. Wu. Learning Adaptive Metric for Robust Visual Tracking[J]. IEEE Transactions on Image Processing,2011,20:2288--2300. [43] X. Mei, H. Ling. Robust Visual Tracking and Vehicle Classification via Sparse Rep-resentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011, 33:2259--2272. [44] J. Xing, H. Ai, L. Liu, et al. Multiple Player Tracking in Sports Video:A Dual-mode Two-way Bayesian Inference Approach with Progressive Observation Model-ing[J]. IEEE Transactions on Image Processing,2011,20:1652--1667. [45] J. Venna, J. Peltonen, K. Nybo, et al. Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization[J]. The Journal of Machine Learning Research,2010,11:451-490. [46] K. Sidorov, S. Richmond, D. Marshall. An Efficient Stochastic Approach to Group-wise Non-rigid Image Registration[C]//Computer Vision and Pattern Recognition,2009. CVPR 2009. IEEE Conference on.2009:2208--2213.
    [47]J. Ji, T. Chan, Q. Zhao. Fast Document Clustering Based on Weighted Comparative Advantage[C]//Systems, Man and Cybernetics,2009. SMC 2009. IEEE International Conference on.2009:541--546.
    [48]F. Pereira, T. Mitchell, M. Botvinick. Machine Learning Classifiers and Fmri:A Tutorial Overview[J]. Neuroimage,2009,45(1):S199--S209.
    [49]J. Noh, V. Solo. Rician Distributed Fmri:Asymptotic Power Analysis and Cramer(?)rao Lower Bounds[J]. Signal Processing, IEEE Transactions on,2011,59(3):1322--1328.
    [50]M. Kirby. Geometric Data Analysis:An Empirical Approach to Dimensionality Reduc-tion and the Study of Patterns[M]. John Wiley & Sons, Inc.,2000.
    [51]T. Hastie, R. Tibshirani. Generalized Additive Models[J]. Statistical Science,1986, 1:297--318.
    [52]W. Siedlecki, J. Sklansky. On Automatic Feature Selection.[J]. INT. J. PATTERN RECOG. ARTIF. INTELL.,1988,2(2):197--220.
    [53]S. Safavian, D. Landgrebe. A Survey of Decision Tree Classifier Methodology [J]. IEEE Transactions on Systems, Man and Cybernetics,1991,21(3):660--674.
    [54]J. Quinlan. C4.5:Programs for Machine Learning[M]. Morgan kaufmann,1993.
    [55]C. Bishop. Neural Networks for Pattern Recognition[M]. Clarendon press Oxford,1995.
    [56]M. Carreira-Perpinan. A Review of Dimension Reduction Techniques[J]. Department of Computer Science. University of Sheffield. Tech. Rep. CS-96-09,1997:1--69.
    [57]I. Fodor. A Survey of Dimension Reduction Techniques[J]. Livermore, CA:US DOE Office of Scientific and Technical Information,2002,18:1--18.
    [58]L. Van der Maaten, E. Postma, H. Van den Herik. Dimensionality Reduction:A Com-parative Review,2007.
    [59]M. Kim, V. Pavlovic. Central Subspace Dimensionality Reduction Using Covariance Operators[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011, 33:657--670.
    [60]Y.-Y. Lin, T.-L. Liu, C.-S. Fuh. Multiple Kernel Learning for Dimensionality Reduc-tion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:1147--1160.
    [61]R. Wang, S. Shan, X. Chen, et al. Maximal Linear Embedding for Dimensionality Reduc-tion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:1776--1792.
    [62]H. Cai, K. Mikolajczyk, J. Matas. Learning Linear Discriminant Projections for Dimen-sionality Reduction of Image Descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:338--352.
    [63]X. He, M. Ji, C. Zhang, et al. A Variance Minimization Criterion to Feature Selection Using Laplacian Regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:2013--2025.
    [64]I. T. Jolliffe. Principal Component Analysis[M].2nd ed., Springer,2002.
    [65]J. Jackson, J. Wiley. A User's Guide to Principal Components[M]. Wiley Online Library, 1991.
    [66]M. Kirby, L. Sirovich. Application of the Karhunen-loeve Procedure for the Character-ization of Human Faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence,1990,12(1):103--108.
    [67]M. Turk, A. Pentland. Face Recognition without Features[C]//IAPR Workshop on Ma-chine Vision Applications.1990:267--270.
    [68]M. Turk, A. Pentland. Face Recognition Using Eigenfaces[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR).1991:586--591.
    [69]M. Bichsel, A. Pentland, M. I. of Technology. Media Laboratory. Vision, et al. Human Face Recognition and the Face Image Set's Topology[J]. CVGIP Image Understanding, 1994,59:254--254.
    [70]M. Partridge, R. Calvo. Fast Dimensionality Reduction and Simple Pca[J]. Intelligent Data Analysis,1998,2(3):1.
    [71]S. Roweis. Em Algorithms for Pea and Spca[C]//Advances in neural information pro-cessing systems(NIPS). MIT Press,1998:626--632.
    [72]P. Comon. Independent Component Analysis, a New Concept?[J]. Signal processing, 1994,36(3):287--314.
    [73]D. Lee, H. Seung, et al. Learning the Parts of Objects by Non-negative Matrix Factor-ization[J]. Nature,1999,401(6755):788--791.
    [74]A. hyvarinen. Survey on Independent Component Analysis[J]. Neural Computing Sur-veys,1999,2:94--128.
    [75]Y. Li, D. Powers, J. Peach. Comparison of Blind Source Separation Algorithms[J]. Ad-vances in Neural Networks and Applications,2000:18--21.
    [76]A. Hyvarinen. Fast and Robust Fixed-point Algorithms for Independent Component Analysis[J]. IEEE Transactions on Neural Networks,1999,10(3):626--634.
    [77]M. Bartlett, J. Movellan, T. Sejnowski. Face Recognition by Independent Component Analysis[J]. Neural Networks, IEEE Transactions on,2002,13(6):1450--1464.
    [78]O. Deniz, M. Castrillon, M. Hernandez. Face Recognition Using Independent Com-ponent Analysis and Support Vector Machines[J]. Pattern Recognition Letters,2003, 24(13):2153--2157.
    [79]C. Liu, H. Wechsler. Comparative Assessment of Independent Component Analysis (ica) for Face Recognition[C]//International conference on audio and video based biometric person authentication.1999.
    [80]K. Baek, B. Draper, J. Beveridge, et al. Pca Vs. Ica:A Comparison on the Feret Data Set[C]//Joint Conference on Information Sciences(JCIS).2002:824--827.
    [81]E. Wachsmuth, M. Oram, D. Perrett. Recognition of Objects and Their Component Parts: Responses of Single Units in the Temporal Cortex of the Macaque[J]. Cerebral Cortex, 1994,4(5):509--522.
    [82]I. Biederman. Recognition-by-components:A Theory of Human Image Understand-ing.[J]. Psychological review,1987,94(2):115-147.
    [83]N. Logothetis, D. Sheinberg. Visual Object Recognition[C]//Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA,1996,19:577-621.
    [84]D. Lee, H. Seung. Algorithms for Non-negative Matrix Factorization[C]//Advances in neural information processing systems(NIPS). MIT Press,2001,13:556-562.
    [85]I. Buciu, I. Pitas. Application of Non-negative and Local Non Negative Matrix Fac-torization to Facial Expression Recognition[C]//Pattern Recognition,2004. ICPR 2004. Proceedings of the 17th International Conference on.2004,1:288-291.
    [86]S. Li, X. Hou, H. Zhang, et al. Learning Spatially Localized, Parts-based Representa-tion[C]//Proc. IEEE Conf. Computer Vision and Pattern Recognition Machine Learning (CVPR'01).2001,1:202--207.
    [87]M. Berry, M. Browne, A. Langville, et al. Algorithms and Applications for Approximate Nonnegative Matrix Factorization[C]//Elsevier,2007,52:155--173.
    [88]R. Hogg, A. Craig. Introduction to Mathematical Statistics[M]. Prentice Hall,2004.
    [89]R. Duda, P. Hart, D. Stork. Pattern Classification and Scene Analysis 2nd Ed.[M].1995.
    [90]R. Fisher. The Use of Multiple Measurements in Taxonomic Problems [J]. Annals of Human Genetics,1936,7(2):179--188.
    [91]D. Foley, J. Sammon Jr. An Optimal Set of Discriminant Vectors[J]. IEEE Transactions on Computers,1975,100(3):281--289.
    [92]Z. Jin, J. Yang, Z. Hu, et al. Face Recognition Based on the Uncorrelated Discriminant Transformation[J]. Pattern Recognition,2001,34(7):1405--1416.
    [93]Z. Jin, J. Yang, Z. Tang, et al. A Theorem on the Uncorrelated Optimal Discriminant Vectors[J]. Pattern Recognition,2001,34(10):2041--2047.
    [94]D. Swets, J. Weng. Using Discriminant Eigenfeatures for Image Retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):831--836.
    [95]C. Liu, H. Wechsler. Enhanced Fisher Linear Discriminant Models for Face Recogni-tion[C]//International Conference on Pattern Recognition(ICPR).1998,2:1368--1372.
    [96]R. Huang, Q. Liu, H. Lu, et al. Solving the Small Sample Size Problem of Lda[C]//IEEE International Conference on Pattern Recognition(ICPR).2002,3:29--32.
    [97]W. Zhao, R. Chellappa, A. Krishnaswamy. Discriminant Analysis of Principal Compo-nents for Face Recognition[C]//IEEE International Conference on Automatic Face and Gesture Recognition(FGR).1998:336--341.
    [98]Z. Hong, J. Yang. Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane[J]. pattern recognition,1991,24(4):317-324.
    [99]J. Yang, A. Frangi, J. Yang, et al. Kpca Plus Lda:A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):230--244.
    [100]杨健.线性投影分析的理论与算法及其在特征抽取中的应用研究[d][D]南京:南京理工大学,2002.
    [101]H. Li, T. Jiang, K. Zhang. Efficient and Robust Feature Extraction by Maximum Margin Criterion[J]. IEEE Transactions on Neural Networks,2006,17(1):157--165.
    [102]X. Zhuang, D. Dai. Inverse Fisher Discriminate Criteria for Small Sample Size Problem and its Application to Face Recognition[J]. Pattern Recognition,2005,38(11):2192--2194.
    [103]V. Vapnik. The Nature of Statistical Learning Theory[M]. Springer Verlag,2000.
    [104]B. Scholkopf, S. Mika, C. Burges, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE transactions on neural networks,1999,10(5):1000--1017.
    [105]F. Bach, M. Jordan. Kernel Independent Component Analysis[J]. The Journal of Ma-chine Learning Research,2003,3:1--48.
    [106]D. Zhang, Z. Zhou, S. Chen. Non-negative Matrix Factorization on Kernels[J]. PRICAI 2006:Trends in Artificial Intelligence,2006:404--412.
    [107]S. Mika, G. Ratsch, J. Weston, et al. Fisher Discriminant Analysis with Kernels[J]. 1999:41--48.
    [108]S. Mika, G. Ratsch, K. Muller. A Mathematical Programming Approach to the Kernel Fisher Algorithm[C]//Advances in neural information processing systems(NIPS). MIT Press,2001:591--597.
    [109]S. Mika, A. Smola, B. Scholkopf. An Improved Training Algorithm for Kernel Fisher Discriminants[C]//Proceedings AISTATS.2001,2001:98--104.
    [110]S. Mika, G. Ratsch, J. Weston, et al. Constructing Descriptive and Discriminative Non-linear Features:Rayleigh Coefficients in Kernel Feature Spaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):623--628.
    [111]V. Roth, V. Steinhage. Nonlinear Discriminant Analysis Using Kernel Func-tions[C]//Advances in neural information processing systems(NIPS). MIT Press, 1999:568-574.
    [112]G. Baudat, F. Anouar. Generalized Discriminant Analysis Using a Kernel Approach[J]. Neural computation,2000,12(10):2385--2404.
    [113]J. Ma, S. Perkins, J. Theiler, et al. Modified Kernel-based Nonlinear Feature Extrac-tion[C]//International Conference on Machine Learning and Application (ICMLKA' 02), Las Vegas, NV, USA.2002:127--132.
    [114]F. Zhao, S. Li, B. Sterner, et al. Discriminative Learning for Protein Conformation Sam-pling[J]. Proteins:Structure, Function, and Bioinformatics,2008,73(1):228--240.
    [115]B. Scholkopf, A. Smola, K. Muller. Nonlinear Component Analysis as a Kernel Eigen-value Problem[J]. Neural computation,1998,10(5):1299--1319.
    [116]G. Lanckriet, N. Cristianini, P. Bartlett, et al. Learning the Kernel Matrix with Semidef-inite Programming [J]. The Journal of Machine Learning Research,2004,5:27--72.
    [117]J. Lafferty, G. Lebanon. Diffusion Kernels on Statistical Manifolds[J].2005.
    [118]H. Xiong, M. N. S. Swamy, M. O. Ahmad. Optimizing the Kernel in the Empirical Feature Space.[J]. IEEE Transactions on Neural Networks,2005,16(2):460--474.
    [119]J. Tenenbaum, V. Silva, J. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science,2000,290(5500):2319.
    [120]S. Roweis, L. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embed-ding[J]. Science,2000,290(5500):2323.
    [121]M. Balasubramanian, E. Schwartz. The Isomap Algorithm and Topological Stability[J]. Science,2002,295(5552):7.
    [122]S. Nayar, S. Nene, H. Murase. Subspace Methods for Robot Vision[J], Robotics and Automation, IEEE Transactions on,1996,12(5):750--758.
    [123]H. Seung, D. Lee. The Manifold Ways of Perception[J]. Science,2000,290(5500):2268.
    [124]T. Hastie. Principal Curves and Surfaces[D]. Stanford:Stanford University,1984.
    [125]T. Hastie, W. Stuetzle. Principal Curves[J]. Journal of the American Statistical Associ-ation,1989:502--516.
    [126]R. Tibshirani. Principal Curves Revisited[J]. Statistics and Computing,1992,2(4):183--190.
    [127]B. Kegl, A. Krzyzak, T. Linder, et al. Learning and Design of Principal Curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):281-297.
    [128]P. Delicado. Another Look at Principal Curves and Surfaces[J]. Journal of Multivariate Analysis,2001,77(1):84-116.
    [129]C. Bishop, M. Svensen, C. Williams. Gtm:The Generative Topographic Mapping[J]. Neural computation,1998,10(1):215--234.
    [130]A. Smola, S. Mika, B. Scholkopf, et al. Regularized Principal Manifolds[J]. The Journal of Machine Learning Research,2001,1:179-209.
    [131]V. Silva, J. Tenenbaum. Global Versus Local Methods in Nonlinear Dimensionality Reduction[C]//Advances in neural information processing systems(NIPS). MIT Press, 2003,15:705-712.
    [132]L. Saul, S. Roweis. Think Globally, Fit Locally:Unsupervised Learning of Low Di-mensional Manifolds[J]. The Journal of Machine Learning Research,2003,4:119--155.
    [133]D. Donoho, C. Grimes. Hessian Eigenmaps:Locally Linear Embedding Techniques for High-dimensional Data[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(10):5591-5596.
    [134]M. Belkin, P. Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering[J].2001,14:585-591.
    [135]M. Belkin, P. Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J]. Neural computation,2003,15(6):1373-1396.
    [136]Z. Zhang, H. Zha. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment[J]. SIAM Journal of Scientific Computing,2002,26(1):313--338.
    [137]S. Lafon, A. Lee. Diffusion Maps and Coarse-graining:A Unified Framework for Di-mensionality Reduction, Graph Partitioning, and Data Set Parameterization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(9):1393--1403.
    [138]S. Lafon, Y. Keller, R. Coifman. Data Fusion and Multicue Data Matching by Diffu-sion Maps[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006, 28(11):1784--1797.
    [139]K. Weinberger, F. Sha, L. Saul. Learning a Kernel Matrix for Nonlinear Dimensional-ity Reduction[C]//Proceedings of the twenty-first international conference on Machine learning.2004:106--113.
    [140]K. Weinberger, L. Saul. Unsupervised Learning of Image Manifolds by Semidefinite Programming[J].2004,2:Ⅱ--988---Ⅱ--995.
    [141]G. Hinton, S. Roweis. Stochastic Neighbor Embedding[C]//Advances in neural infor-mation processing systems(NIPS). MIT Press,2002,15:833--840.
    [142]M. Brand. Charting a Manifold[C]//MIT Press,2003,15:961--968.
    [143]J. Tenenbaum. Mapping a Manifold of Perceptual Observations[J].1998:682--688.
    [144]I. Borg, P. Groenen. Modern Multidimensional Scaling:Theory and Applications[M]. Springer Verlag,2005.
    [145]H. Choi, S. Choi. Robust Kernel Isomap[J]. Pattern Recognition,2007,40(3):853--862.
    [146]A. Saxena, A. Gupta, A. Mukerjee. Non-linear Dimensionality Reduction by Locally Linear Isomaps[C]//Neural Information Processing.2004:1038--1043.
    [147]J. Lee, M. Verleysen. Nonlinear Dimensionality Reduction of Data Manifolds with Es-sential Loops[J]. Neurocomputing,2005,67:29--53.
    [148]H. Chang, D. Yeung, Y. Xiong. Super-resolution Through Neighbor Embed-ding[C]//Computer Vision and Pattern Recognition,2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on.2004,1:1--275.
    [149]R. Duraiswami, V. Raykar. The Manifolds of Spatial Hearing[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP).2005,3:285--285.
    [150]O. Jenkins, M. Mataric. Deriving Action and Behavior Primitives from Human Motion Data[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.2002, 3:2551-2556.
    [151]F. Chung. Spectral Graph Theory[M]. Amer Mathematical Society,1997.
    [152]A. Ng, M. Jordan, Y. Weiss. On Spectral Clustering:Analysis and an Algo-rithm[C]//Advances in neural information processing systems(NIPS). MIT Press,2002, 2:849--856.
    [153]X. He, S. Yan, Y. Hu, et al. Face Recognition Using Laplacianfaces[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2005,27(3):328--340.
    [154]A. Brun, H. Park, H. Knutsson, et al. Coloring of Dt-mri Fiber Traces Using Laplacian Eigenmaps[J]. Computer Aided Systems Theory-EUROCAST 2003,2003:518--529.
    [155]J. Costa, A. Hero Ⅲ. Classification Constrained Dimensionality Reduc-tion[C]//Acoustics, Speech, and Signal Processing,2005. Proceedings.(ICASSP'05). IEEE International Conference on.2005,5:v--1077.
    [156]M. Belkin, P. Niyogi. Semi-supervised Learning on Riemannian Manifolds[J]. Machine Learning,2004,56(l):209--239.
    [157]H. Zha, Z. Zhang. Spectral Properties of the Alignment Matrices in Manifold Learn-ing[J]. SIAM review,2009,51(3):545--566.
    [158]Q. Ye, H. Zha, R. Li. Analysis of an Alignment Algorithm for Nonlinear Dimensionality Reduction[J]. BIT Numerical Mathematics,2007,47(4):873--885.
    [159]X. Huo, A. Smith. Matrix Perturbation Analysis of Local Tangent Space Alignment [J]. Linear Algebra and its Applications,2009,430(2-3):732--746.
    [160]Z. Zhang, I Wang, H. Zha. Adaptive Manifold Learning[C]//IEEE,2005:1--1.
    [161]K. Weinberger, L. Saul. An Introduction to Nonlinear Dimensionality Reduction by Maximum Variance Unfolding[C]//Proceedings of the National Conference on Artificial Intelligence.2006,21:1683.
    [162]J. Zhang, L. He, Z. Zhou. Analyzing Magnification Factors and Principal Spread Direc-tions in Manifold Learning[C]//Springer,2006:651--664.
    [163]何力,张军平,周志华.基于放大因子和延伸方向研究流形学习算法[J].计算机学报,2005,28(12):2000--2009.
    [164]J. Park, Z. Zhang, H. Zha, et al. Local Smoothing for Manifold Learning[C]//Computer Vision and Pattern Recognition,2004. CVPR 2004. Proceedings of the 2004 IEEE Com-puter Society Conference on.2004,2:11--452.
    [165]Y. Bengio, O. Delalleau, N. Roux, et al. Learning Eigenfunctions Links Spectral Em-bedding and Kernel Pca[J]. Neural Computation,2004,16(10):2197--2219.
    [166]Y. Bengio, J. Paiement, P. Vincent, et al. Out-of-sample Extensions for Lle, Isomap, Mds, Eigenmaps, and Spectral Clustering[C]//Advances in neural information process-ing systems(NIPS). MIT Press,2004,16:177--184.
    [167]J. Ham, D. Lee, S. Mika, et al. A Kernel View of the Dimensionality Reduction of Man-ifolds[C]//Proceedings of the twenty-first international conference on Machine learning. 2004:47.
    [168]S. Yan, D. Xu, B. Zhang, et al. Graph Embedding:A General Framework for Dimen-sionality Reduction[C]//Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on.2005,2:830--837.
    [169]S. Yan, D. Xu, B. Zhang, et al. Graph Embedding and Extensions:A General Framework for Dimensionality Reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40--51.
    [170]X. Yang, H. Fu, H. Zha, et al. Semi-supervised Nonlinear Dimensionality Re-duction[C]//Proceedings of the 23rd international conference on Machine learning. 2006:1065--1072.
    [171]O. Kouropteva, O. Okun, M. Pietikainen. Supervised Locally Linear Embedding Algo-rithm for Pattern Recognition[C]//Springer,2003:386--394.
    [172]D. De Ridder, O. Kouropteva, O. Okun, et al. Supervised Locally Linear Embed-ding[C]//Springer,2003:175-175.
    [173]C. Li, J. Guo. Supervised Isomap with Explicit Mapping[C]//International Conference on Innovative Computing, Information and Control(ICICIC).2006,3:345--348.
    [174]H. Li, W. Chen, I. Shen, et al. Supervised Local Tangent Space Alignment for Classifi-cation[C]//International Joint Conference on Artificial Intelligence.2005,19:1620.
    [175]X. Niyogi. Locality Preserving Projections[C]//Advances in neural information process-ing systems(NIPS). MIT Press,2004,16:153.
    [176]D. Cai, X. He, J. Han, et al. Orthogonal Laplacianfaces for Face Recognition[J]. IEEE Transactions on Image Processing,2006,15(11):3608--3614.
    [177]E. Kokiopoulou, Y. Saad. Orthogonal Neighborhood Preserving Projections:A Projection-based Dimensionality Reduction Technique[J]. IEEE Transactions on Pat-tern Analysis and Machine Intelligence,2007,29(12):2143--2156.
    [178]X. He, D. Cai, S. Yan, et al. Neighborhood Preserving Embedding[C]//Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on.2005,2:1208--1213.
    [179]T. Zhang, J. Yang, D. Zhao, et al. Linear Local Tangent Space Alignment and Application to Face Recognition[J]. Neurocomputing,2007,70(7-9):1547--1553.
    [180]J. Yang, D. Zhang, J. Yang, et al. Globally Maximizing, Locally Minimizing:Unsuper-vised Discriminant Projection with Applications to Face and Palm Biometrics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(4):650--664.
    [181]J. Ye, R. Janardan, Q. Li. Gpca:An Efficient Dimension Reduction Scheme for Image Compression and Retrieval[C]//Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining(ICKDD).2004:354--363.
    [182]S. Yan, D. Xu, Q. Yang, et al. Multilinear Discriminant Analysis for Face Recognition[J]. IEEE Transactions on Image Processing,2007,16(1):212--220.
    [183]J. Lu, K. Plataniotis, A. Venetsanopoulos. Face Recognition Using Kernel Direct Discriminant Analysis Algorithms[J]. IEEE Transactions on Neural Networks,2003, 14(1):117--126.
    [184]H. Lu, J. Wang, K. Plataniotis. A Review on Face and Gait Recognition:System, Data and Algorithms[J]. Advanced Signal Processing:Theory and Implementation for Sonar, Radar, and Non-Invasive Medical Diagnostic Systems,2009:303--330.
    [185]J. Li, L. Zhang, D. Tao, et al. A Prior Neurophysiologic Knowledge Free Tensor-based Scheme for Single Trial Eeg Classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2009,17(2):107--115.
    [186]H. Lu, K. Plataniotis, A. Venetsanopoulos. Regularized Common Spatial Patterns with Generic Learning for Eeg Signal Classification[C]//Annual International Conference of the IEEE on Engineering in Medicine and Biology Society(EMBC).2009:6599--6602.
    [187]J. Ye, T. Li, T. Xiong, et al. Using Uncorrelated Discriminant Analysis for Tissue Clas-sification with Gene Expression Data[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2004,1(4):181-190.
    [188]H. Sahambi, K. Khorasani. A Neural-network Appearance-based 3-d Obj ect Recognition Using Independent Component Analysis[J]. IEEE Transactions on Neural Networks, 2003,14(1):138--149.
    [189]R. Chellappa, A. Roy-Chowdhury, S. Zhou. Recognition of Humans and Their Activities Using Video[J]. Synthesis Lectures on Image, Video & Multimedia Processing,2005, 1(1):1--173.
    [190]R. Green, L. Guan. Quantifying and Recognizing Human Movement Patterns from Monocular Video Images-part Ii:Applications to Biometrics[J]. IEEE Transactions on Circuits and Systems for Video Technology,2004,14(2):191--198.
    [191]O. Arandjelovic, G. Shakhnarovich, J. Fisher, et al. Face Recognition with Image Sets Using Manifold Density Divergence[C]//IEEE Computer Society Conference on Com-puter Vision and Pattern Recognition(CVPR).2005,1:581-588.
    [192]H. Lu, K. Plataniotis, A. Venetsanopoulos. Mpca:Multilinear Principal Component Analysis of Tensor Objects[J]. IEEE Transactions on Neural Networks,2008,19(1):18--39.
    [193]D. Tao, X. Li, X. Wu, et al. Supervised Tensor Learning[J]. Knowledge and Information Systems,2007,13(1):1-42.
    [194]W. Greub. Multilinear Algebra. Greub[M]. Springer-Verlag,1967.
    [195]L. De Lathauwer, B. De Moor, J. Vandewalle. A Multilinear Singular Value Decompo-sition[J]. SIAM Journal on Matrix Analysis and Applications,2000,21(4):1253--1278.
    [196]L. De Lathauwer, B. De Moor, J. Vandewalle. On the Best Rank-1 and Rank-(ri,r1,...,rN) Approximation of Higher-order Tensors[J]. SIAM Journal on Matrix Analysis and Applications,2000,21(4):1324-1342.
    [197]J. Carroll, J. Chang. Analysis of Individual Differences in Multidimensional Scaling via an N-way Generalization of "eckart-young" Decomposition[J]. Psychometrika,1970, 35(3):283--319.
    [198]R. Bro. Parafac. Tutorial and Applications[J]. Chemometrics and intelligent laboratory systems,1997,38(2):149--171.
    [199]P. Kroonenberg, J. De Leeuw. Principal Component Analysis of Three-mode Data by Means of Alternating Least Squares Algorithms [J]. Psychometrika,1980,45(1):69--97.
    [200]H. Lu, K. Plataniotis, A. Venetsanopoulos. A Taxonomy of Emerging Multilinear Dis-criminant Analysis Solutions for Biometric Signal Recognition, Wiley Online Library, 2009.21--45.
    [201]H. Lu, K. Plataniotis, A. Venetsanopoulos. A Survey of Multilinear Subspace Learning for Tensor Data[J]. Pattern Recognition,2011,44:1540--1551.
    [202]J. Yang, D. Zhang, A. Frangi, et al. Two-dimensional Pca:A New Approach to Appearance-based Face Representation and Recognition[J]. IEEE Transactions on Pat-tern Analysis and Machine Intelligence,2004,26(1):131--137.
    [203]J. Ye. Generalized Low Rank Approximations of Matrices[J]. Machine Learning,2005, 61(1):167--191.
    [204]H. Wang, N. Ahuja. A Tensor Approximation Approach to Dimensionality Reduction[J]. International Journal of Computer Vision,2008,76(3):217--229.
    [205]D. Xu, S. Yan, L. Zhang, et al. Reconstruction and Recognition of Tensor-based Objects with Concurrent Subspaces Analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology,2008,18(1):36--47.
    [206]D. Tao, M. Song, X. Li, et al. Bayesian Tensor Approach for 3-d Face Modeling[J]. IEEE Transactions on Circuits and Systems for Video Technology,2008,18(10):1397--1410.
    [207]C. Bishop. Bayesian Pca[C]//Advances in neural information processing systems(NIPS). MIT Press,1999:382--388.
    [208]K. Inoue, K. Hara, K. Urahama. Robust Multilinear Principal Component Analysis[J]. 2009:591--597.
    [209]Y. Panagakis, C. Kotropoulos, G. Arce. Non-negative Multilinear Principal Component Analysis of Auditory Temporal Modulations for Music Genre Classification[J]. IEEE Transactions on Audio, Speech, and Language Processing,2010,18(3):576--588.
    [210]J. Sun, D. Tao, C. Faloutsos. Beyond Streams and Graphs:Dynamic Tensor Analy-sis[C]//Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining(SIGKDD).2006:374--383.
    [211]J. Sun, D. Tao, C. Faloutsos. Beyond Streams and Graphs:Dynamic Tensor Analy-sis[C]//Knowledge Discovery and Data Mining.2006:374--383.
    [212]S. Papadimitriou, J. Sun, C. Faloutsos. Streaming Pattern Discovery in Multiple Time-series[C]//Proceedings of the 31st international conference on Very large data bases. 2005:697--708.
    [213]J. Ye, R. Janardan, Q. Li. Two-dimensional Linear Discriminant Analysis[C]//Advances in Neural Information Processing Systems(NIPS). MIT Press,2004:1569--1576.
    [214]D. Tao, X. Li, X. Wu, et al. General Tensor Discriminant Analysis and Gabor Features for Gait Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(10):1700--1715.
    [215]Q. Liu, X. Tang, H. Lu, et al. Face Recognition Using Kernel Scatter-difference-based Discriminant Analysis[J]. IEEE Transactions on Neural Networks,2006,17(4):1081--1085.
    [216]X. He, D. Cai, P. Niyogi. Tensor Subspace Analysis[C]//Advances in neural information processing systems(NIPS). MIT Press,2006,18:499--505.
    [217]G. Dai, D. Yeung. Tensor Embedding Methods[C]//Proceedings of the National Confer-ence on Artificial Intelligence(AAAI).2006,21:330.
    [218]J. Zhang, J. Pu, C. Chen, et al. Low-resolution Gait Recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2010,40(4):986--996.
    [219]D. Xu, S. Lin, S. Yan, et al. Rank-one Projections with Adaptive Margins for Face Recognition[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR).2006,1:175--181.
    [220]D. Xu, S. Lin, S. Yan, et al. Rank-one Projections with Adaptive Margins for Face Recog-nition[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2007,37(5):1226--1236.
    [221]A. Shashua, A. Levin. Linear Image Coding for Regression and Classification Using the Tensor-rank Principle[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR).2001,1:42--49.
    [222]H. Lu, K. Plataniotis, A. Venetsanopoulos. Uncorrelated Multilinear Principal Compo-nent Analysis for Unsupervised Multilinear Subspace Learning[J]. IEEE Transactions on Neural Networks,2009,20(11):1820--1836.
    [223]D. Tao, X. Li, X. Wu, et al. Elapsed Time in Human Gait Recognition:A New Ap-proach[J].2006,2:Ⅱ--177--Ⅱ--180.
    [224]H. Lu, K. Plataniotis, A. Venetsanopoulos. Uncorrelated Multilinear Discriminant Anal-ysis with Regularization and Aggregation for Tensor Object Recognition[J]. IEEE Trans-actions on Neural Networks,2009,20(1):103--123.
    [225]J. Ye, R. Janardan, Q. Li, et al. Feature Reduction via Generalized Uncorrelated Lin-ear Discriminant Analysis [J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(10):1312--1322.
    [226]G. Hua, P. Viola, S. Drucker. Face Recognition Using Discriminatively Trained Or-thogonal Rank One Tensor Projections[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2007:1--8.
    [227]H. Chen, T. Liu, C. Fuh. Learning Effective Image Metrics from Few Pairwise Ex-amples[C]//IEEE International Conference on Computer Vision(ICCV).2005,2:1371-1378.
    [228]T. Cox, M. Cox. Multidimensional Scaling[M]. London:Chapman and Hall,1994.
    [229]A. K. Jain, S. Z. Li. Handbook of Face Recognition[M]. Secaucus, NJ, USA:Springer-Verlag New York, Inc.,2005.
    [230]L. van der Maaten, G. Hinton. Visualizing Data Using T-sne[J]. Journal of Machine Learning Research,2008,9(2579-2605):85.
    [231]Z. Yang, I. King, E. Oja, et al. Heavy-tailed Symmetric Stochastic Neighbor Embed-ding[C]//MIT Press,2009,22:2169--2177.
    [232]K. Nam, H. Je, S. Choi. Fast Stochastic Neighbor Embedding:A Trust-region Al-gorithm[C]//IEEE International Joint Conference on Neural Networks(IJCNN).2004, 1:123--128.
    [233]J. Cook, I. Sutskever, A. Mnih, et al. Visualizing Similarity Data with a Mixture of Maps[C]//International Conference on Artificial Intelligence and Statistics.2007,2:67--74.
    [234]B. Zhang, X. Chen, S. Shan, et al. Nonlinear Face Recognition Based on Maximum Average Margin Criterion[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR).2005,1:554-559.
    [235]M. Yamazaki, S. Fels. Local Image Descriptors Using Supervised Kernel Ica[J]. Ad-vances in Image and Video Technology,2009:94-105.
    [236]T. Zhang, D. Tao, X. Li, et al. Patch Alignment for Dimensionality Reduction[J]. IEEE Transactions on Knowledge and Data Engineering,2009,21 (9):1299-1313.
    [237]D. Cai, X. He, K. Zhou, et al. Locality Sensitive Discriminant Analysis[C]//Proceedings of the 20th international joint conference on Artifical intelligence.2007:708--713.
    [238]T. Kim, J. Kittler. Locally Linear Discriminant Analysis for Multimodally Distributed Classes for Face Recognition with a Single Model Image[J]. IEEE Transactions on Pat-tern Analysis and Machine Intelligence,2005,27(3):318-327.
    [239]L. De Lathauwer, J. Vandewalle. Dimensionality Reduction in Higher-order Signal Pro-cessing and Rank-(r1,r2,…,rn) Reduction in Multilinear Algebra[J]. Lin. Alg. Appl., 2004,391:31-55.
    [240]E. Kofidis, P. Regalia. On the Best Rank-1 Approximation of Higher-order Supersym-metric Tensors[J]. SIAM Journal on Matrix Analysis and Applications,2002,23(3):863--884.
    [241]F. Esposito, T. Scarabino, A. Hyvarinen, et al. Independent Component Analysis of Fmri Group Studies by Self-organizing Clustering[J]. Neuroimage,2005,25(1):193-205.
    [242]Q. Gu, J. Zhou. Two Dimensional Nonnegative Matrix Factorization[C]//IEEE interna-tional conference on Image processing(ICIP). IEEE Press,2009:2045--2048.
    [243]A. Shashua, T. Hazan. Non-negative Tensor Factorization with Applications to Statis-tics and Computer Vision[C]//International conference on Machine learning(ICML). 2005:792--799.
    [244]S. Zafeiriou, A. Tefas, I. Buciu, et al. Exploiting Discriminant Information in Non-negative Matrix Factorization with Application to Frontal Face Verification[J]. IEEE Transactions on Neural Networks,2006,17(3):683-695.
    [245]Q. Gu, J. Zhou. Two Dimensional Maximum Margin Criterion[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP). IEEE,2009:1621--1624.
    [246]P. Sanguansat, W. Asdornwised, S. Jitapunkul, et al. Two-dimensional Linear Discrim-inant Analysis of Principle Component Vectors for Face Recognition[J].2006,2.
    [247]D. Tao, X. Li, X. Wu, et al. Tensor Rank One Discriminant Analysis--a Convergent Method for Discriminative Multilinear Subspace Selection[J]. Neurocomputing,2008, 71(10-12):1866--1882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700