柯里拉京在单纯疱疹病毒性脑炎中的抗炎作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究柯里拉京对HSV-1感染后小胶质细胞表达炎性细胞因子及炎性介质的影响。方法小胶质细胞系BV2细胞接种HSV-1制造细胞模型,MTT法选择合适的细胞用药浓度,细胞分为正常对照组、HSV-1感染组、柯里拉京组(20ng/ml)、黄芪多糖组(100ug/ml)、地塞米松组(0.5ug/ml)。使用ELISA法检测各组白细胞介素1β(IL-1β)、白细胞介素10(IL-10)、肿瘤坏死因子α(TNF-α)的表达,采用Griess reagentNO试剂盒检测NO表达。结果病毒感染后,各细胞因子均明显上升;柯里拉京干预后,小胶质细胞IL-1β、TNF-α及NO的表达与病毒组比较减少差异有统计学意义(P<0.01),IL-10升高不显著。结论柯里拉京通过减少小胶质细胞促炎因子及炎性介质的分泌从而减缓病毒诱导的免疫炎性反应。
     目的研究柯里拉京干预对单纯疱疹病毒(HSV-1)诱导的BV2及PC12细胞凋亡的影响。方法PC12细胞及小胶质细胞系BV2细胞接种HSV-1制造细胞模型,MTT法选择合适的细胞用药浓度,细胞分为正常对照组、HSV-1病毒感染组、柯里拉京组(20ng/ml)、黄芪多糖组(100ug/ml)、地塞米松组(0.5ug/ml),采用流式细胞术检测12、24、48h时间点各组BV2及PC12细胞的凋亡率。结果1.BV2细胞被病毒感染后,细胞凋亡率显著增加,与正常组比较(P<0.05);与病毒组比较,柯里拉京组与地塞米松组细胞凋亡率显著增加(P<0.05);APS组对BV2细胞的凋亡影响较小,表现出其阴性对照的作用。12、24及48h时间点均显示出相似的结果。2.病毒感染PC12细胞后,细胞凋亡率显著增加,与正常组比较(P<0.05);与病毒组比较,柯里拉京组、地塞米松组及APS组细胞凋亡率降低(P<0.05)。48h时间点与24h显示出相似的结果。而12h时间点各药物组未显示出明显的抑制作用。结论柯里拉京可以促进HSV-1诱导的小胶质细胞系BV2的凋亡,并且能够抑制病毒诱导的PC12细胞的凋亡。
     目的探讨柯里拉京促进单纯疱疹病毒(HSV-1)诱导的小胶质细胞凋亡途径。方法BV2细胞接种HSV-1制造细胞模型,MTT法选择合适的药物浓度,细胞分为正常对照组、HSV-1病毒感染组、柯里拉京组(20ng/ml)、黄芪多糖组(100ug/ml)、地塞米松组(0.5ug/ml),干预24h后流式细胞学检测各组caspase-3、caspase-8、caspase-9、caspase-12的活性,Western-blot法检测细胞色素C含量。结果1.病毒感染BV2细胞后,caspase-3的表达显著升高,与正常组相比(P<0.05);与病毒组相比,柯里拉京组及地塞米松组表达水平显著增高(P<0.05);作为阴性对照,APS干预后caspase-3表达降低。2.病毒组与正常组比较caspase-8的表达率没有明显差异;与病毒组比较,柯里拉京组及地塞米松组caspase-8的表达率均明显提高(P<0.05); APS组仍然表现出阴性对照的作用,caspase-8的表达水平是降低的。3.与正常组相比较,病毒组caspase-9的表达率显著升高(P<0.05);而且柯里拉京组、地塞米松组及APS组caspase-9的表达率均比病毒组升高(P<0.05):各组细胞色素C的表达与caspase-9表达的趋势一致。4.与正常组比较,病毒组caspase-12的表达没有明显的升高;地塞米松组与病毒组比较其表达也没有明显的差异;而柯里拉京组与病毒组比较caspase-12的表达显著增加(P<0.05);APS组与病毒组比较caspase-12也是显著增加的(P<0.05)。结论凋亡的三个主要途径:线粒体途径、死亡受体途径及内质网途径,在柯里拉京促进HSV-1诱导的小胶质细胞凋亡的过程中均发挥着重要的作用。而HSV-1诱导小胶质细胞凋亡主要是通过细胞色素C及caspase-9介导的线粒体途径来实现的。
     目的研究柯里拉京治疗单纯疱疹病毒性脑炎的可行性,为其临床应用提供实验依据。方法Balb/c小鼠颅内注射HSV-1制造小鼠单纯疱疹病毒性脑炎(herpes simplex encephalitis, HSE)模型,随机分成5组:正常组、感染组、柯里拉京组(0.4mg/只)、地塞米松组(2ug/只)、黄芪多糖组(0.8mg/只)。采用ELISA试剂盒检测脑组织TNF-a表达,硝酸还原酶法检测NO含量,通过HE染色观察脑组织形态学,TUNEL法观察脑细胞的凋亡。结果病毒感染后第四天:1.感染组、柯里拉京组、地塞米松组及黄芪多糖(APS)组TNF-a表达较正常对照组明显增加(P<0.01);与感染组比较,柯里拉京组、地塞米松组TNF-a表达降低有统计学差异(分别为P<0.01、P<0.05)。2.感染组、柯里拉京组、地塞米松组及黄芪多糖(APS)组NO表达较正常对照组明显增加(P<0.01):与感染组比较,柯里拉京组、地塞米松组、APS组NO表达降低有统计学差异(分别为P<0.01、P<0.01、P<0.05)。3.各药物干预组小鼠脑组织病理改变减轻。4.各药物干预组较病毒组TUNEL阳性细胞明显减少。结论柯里拉京能够有力的防治HSV-1病毒感染继发的脑损伤,改善单纯疱疹病毒性脑炎的预后。
Aims:1.Assessment of regulation and expression of cytokines IL-1β、IL-10、TNF-αand NO in HSV-1 infected microglia 2. Effect of Corilagin on microglial production of cytokines Methods:Microglial cells were divided in 5 groups namely,1. control group,2.HSV-1 infected group,3.HSV-1 infected+ Coraligin (20ng/ml)group,4. HSV-1 infected+ Dexamethasone (0.5ug/ml)group,5.HSV-1 infected+APS(100ug/ml) group. ELISA was used to detect IL-1β、IL-10、TNF-αexpression and Griess reagent NO to detect NO.Results:HSV-1 infected group showed increase in expression of all cytokines named above.HSV-1 infected group with Coraligin showed significant decrease in IL-1β、TNF-αand NO expressions(P<0.01).while IL-10 increase was insignificant. Conclusions:Coraligin has inhibitory effects on microglial chemokines production following HSV-1 central nervous infection
     Aims:To study the effects of Corilagin on the apoptosis of HSV-1 stimulated BV2 cells and HSV-1 infected PC 12 cells. Methods:PC 12 and BV2 cells were divided into 5 groups namely,1.Normal control group (non-HSV-1 infected),2.HSV-1 infected group 3.HSV-1 infected+ Corilagin (20ng/ml))group 4. HSV-1 infected+ APS(100ug/ml) group.5. HSV-1 infected+ Dexamethasone(0.5ug/ml) group. Apoptotic rate of these BV2 and PC12 cells were determined at 12h,24h,48h intervals. Flow cytometry assay for examining apoptosis rate. Results:1. Compared to the control group, the HSV-infected group showed significant BV2 cells apoptosis(P<0.05).When the same HSV-infected group was compared to the Corilagin group and Dexamethasone group, the latter 2 groups displayed even more significant BV2 apoptosis(P<0.05).Nevertheless, comparison between APS group and HSV-infected group showed little difference of BV2 cells apoptosis; hence, this group served as a negative control in this experiment.All results were uniformly present during each of the 12h,24h and 48 h cells viability testing. 2. Following infection with HSV-1, PC12 cells death in the HSV-1 infected group was significant as compared to the control group(P<0.05).However, PC12 cells death was significantly reduced in the Corilagin group and Dexamethasone group (P<0.05)as compared to the HSV-1 infected group. These results were present at the 24h and 48h cells count intervals.At the 12h cells count interval no significant difference in the apoptotic ratee of the PC12 cells was noted between all the treated groups and the HSV-1-infected group.Conclusions:Corilagin can induce apoptosis of HSV-1 stimulated microglial BV2 cells and at the same time can inhibit HSV-1 induced PC12 cells apoptosis
     Aims:To investigate the apoptotic pathway involved in Hsv-1 stimulated microglias following corilagin intervention. Methods:Model of HSV-1 stimulated BV2 cells was set-up.These BV2 cells were then divided into the following groups:1.Normal control group,2.HSV-1 infected group,3.HSV-1 infected+ Corilagin (20ng/ml)group,4. HSV-1 infected+ APS (100ug/ml)) group,5.HSV-1 infected+Dexamethasone(0.5ug/ml) group.A control group consisting of normal BV2 cells was also included. After a time lapse of 24h, cysteine proteases:caspase-3,caspase-8,caspase-9 and caspase-12 activities were analysed.using Flow cytometry assay., cytochrome c level was also determined by western-blot. Results:1. In the HSV-1 infected group, caspase-3 expression was markedly increase as compared to the control group (P<0.05).In the Corilagin group and Dexamethasone group expression of caspase-3 was more than the HSV-1 infected group(P<0.05).Acting as a negative control caspase 3 expression in the APS group was decreased.2. Caspase-8 expression between the control group and HSV-1 infected group was insignificant(P>0.05)In the Corilagin group and Dexamethasone group, expression of caspase-8 was significantly increased as compared to that of the HSV-1 infected group(P<0.05). Acting as a negative control caspase 8 expression in the APS group was again decreased.3. In the HSV-1 infected group caspase-9 expression was markedly increase as compared to the control group (P<0.05).By contrast, in the Corilagin group, Dexamethasone group and APS group expression of caspase-9 was increased as compared to that of the HSV-1 infected group(P<0.05).In each group, the level of cytochrome c was consistent with its respective caspase-9 expression level.4. Caspase-12 expression between the HSV-1 infected group and control group did not show any significant increase. Caspase-12 expression between the HSV-1 infected group and Dexamethasone was also insignificant. By contrast, in the Corilagin group, expression of caspase-12 was increased as compared to that of the HSV-1 infected group(P<0.05). Furthemore, in the APS group, expression of caspase-12 was also increased as compared to that of the HSV-1 infected group(P<0.05).Conclusions:Alone HSV-1 stimulated microglias apoptosis follows the cytc and caspase-9 initiated mitochondrial pathway.However,following Corilagin intervention, all the 3 main apoptotic pathways(mitochondrial,death receptor and endoplasmic) are involved.
     Aim:To provide laboratory evidence for possible clinical use of Coraligin through its application on HSV-1 infected murine brain. Methods:Murine model of HSV-1 encephalitis was set up following injection of HSV-1 samples in Balb/c mice brains.These subjects were then randomly divided in the following groups according to the various additional treatments given:1.virus group 2.infected+ Corilagin(0.4mg/per mouse) group 3. infected+ Dexamethasone(2ug/per mouse) group 4. infected+ APS (0.8mg/per mouse) group. A fifth group of uninfected mice acting as control was also included. Following sacrifice of a number of mice in each group at day 4 of experiment, ELISA method was used to detect TNF-a, NO level in the mice brains. HE stain was also used to study brain samples. Brain cells necrosis was observed using TUNEL method. Results:1.Of those sacrificed animals on day 4, levels of TNF-a in the infected group, Corilagin group, Dexamethasone group, APS group were greater when compared to the control group(P<0.01);when Corilagin group,Dexamethasone group were compared to the infected group, TNF-a levels were lower(P<0.01、P<0.05)2. Levels of NO in the infected group, Corilagin group Dexamethasone group,APS group were also greater when compared to the control group(P<0.01);when the Corilagin group, Dexamethasone group,and APS group were compared to the infected group,NO levels were lower(P<0.01、P<0.05)3.In all the intervened groups(Corilagin,APS,Dexamethasone), those sacrificed pathological changes in the brain tissues were minimum. When compared to the infected group, these intervened groups TUNEL positive cells were also lesser.Conclusions:Corilagin can effectively prevent HSV-1 induced brain damage and hence improve prognosis of HSV-1 encephalitis in this study of murine model.
引文
1. Stone MJ,Hawkins CP.A medical overview of encephalitis.Neuropsychol Rehabil,2007,17(4-5):429-449.
    2. Buursma AR,de Vries EF,Garssen J,et al.[18F]FHPG positron emission tomography for detection of herpes simplex virus(HSV) in experimental HSV encephalitis.J Virol,2005,79(12):7721-7727.
    3. De Tiege X, Rozenberg F, Heron B. The spectrum of herpes simplex ence-phalitis in children. Eur J Paediatr Neurol,2008,12(2):72-81.
    4. Nguyen ML,Blaho JA.Apoptosis during herpes simplex virus infection.Adv Virus Res,2007,69:67-97.
    5. Whitley RJ. Therapy of herpes virus infections in children.Adv Exp Med Biol,2008,609:216-232.
    6. Marques CP, Hu S,Sheng W, et al.Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection.Virus Res, 2006,121(1):1-10.
    7. Lellouch-Tubiana A, Fohlen M, Robain O, et al.Immunocytochemical characterization of long-term persistent immune activation in human brain after herpes simplex encephalitis. Neuropathol Appl Neurobiol,2000,26(3):285-294.
    8. Touitou I, Kone-Paut I.Autoinflammatory diseases.Best Pract Res Clin Rheumatol.2008,22(5):811-829.
    9. Marques CP,Cheeran MC,Palmquist JM,et al.Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis.J Immunol,2008,181(9):6417-6426.
    10. Marques CP,Cheeran MC,Palmquist JM,et al. Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis.J Neurovirol,2008,14(3):229-238.
    11. Schwartz M,Butovsky O,Bruck W,et al.Microglial phenotype is the commitment reversible?. Trends Neurosci,2006,29(2):68-74.
    12. Raschilas F, Wolff M, Delatour F, et al.Outcome of and prognostic factors for herpes simplex encephalitis in adult patients:results of a multicenter study.Clin Infect Dis,2002,35(3):254-260.
    13. Kennedy PG. Viral encephalitis.J Neurol,2005,252(3):206-224.
    14. Shen ZQ,Dong ZJ,Peng H,Liu JK.Modulation of PAI-1 and tPA activity and thrombolytic effects of corilagin.Planta Med,2003,69(12):1109-1112.
    15. Duan W,Yu Y,Zhang L.Antiatherogenic effects of phyllanthus emblica associated with corilagin and its analogue.Yakugaku Zasshi,2005,125(7):587-591.
    16. Yang CM, Cheng HY, Lin TC,et al.The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-beta-D-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J Ethnopharmacol,2007,110(3):555-558.
    17. Kinoshita S,Inoue Y,Nakama S,et al.Antioxidant and hepatoprotective actions of medicinal herb,Terminalia catappa L.from Okinawa Island and its tannin corilagin. Phytomedicine,2007,14(11):755-762.
    18. Cheng JT,Lin TC,Hsu FL.Antihypertensive effect of corilagin in the rat.Can J Physiol Pharmacol,1995,73(10):1425-1429.
    19. Okabe S, Suganuma M, Imayoshi Y,et al.New TNF-alpha releasing inhibitors, geraniin and corilagin,in leaves of Acer nikoense,Megusurino-ki.Biol Pharm Bull,2001,24(10):1145-1148.
    20. Zhao L, Zhang SL, Tao JY,et al. Preliminary exploration on anti-inflammatory mechanism of Corilagin (beta-0-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-D-glucose) in vitro. Int Immunopharmacol,2008,8(7):1059-1064.
    1. Kimberlin DW.Management of HSV encephalitis in adults and neonates:diagnosis, prognosis and treatment.Herpes,2007,14(1):11-16.
    2. Lokensgard JR,Hu S,Sheng W,et al.Robust expression of TNF-α,IL-1β,RANTES,and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol,2001,7(3):208-219.
    3. Lundberg P,Welander P,Han X,et al.Herpes simplex virus type 1 DNA is immunostimulatory in vitro and in vivo.J Virol,2003,77(20):11158-11169.
    4. Shao BM, Xu W, Dai H, et al. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb.Biochem. Biophys Res Commun,2004,320(4):1103-1111.
    5. Stone MJ, Hawkins CP.A medical overview of encephalitis. Neuropsychol.Rehabil,2007,17(4-5):429-449.
    6. Marques CP,Cheeran MC,Palmquist JM,et al.Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis.J Immunol,2008,181 (9):6417-6426.
    7. Marques CP,Cheeran MC,et al. Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis.J Neurovirol,2008,14(3):229-238.
    8. Shen ZQ,Dong ZJ,Peng H,Liu JK.Modulation of PAI-1 and tPA activity and thrombolytic effects of corilagin.Planta Med,2003,69(12):1109-1112.
    9. Duan W,Yu Y,Zhang L. Antiatherogenic effects of phyllanthus emblica associated with corilagin and its analogue.Yakugaku Zasshi,2005,125(7):587-591.
    10. Kinoshita S,Inoue Y,Nakama S,et al.Antioxidant and hepatoprotective actions of medicinal herb,Terminalia catappa L.from Okinawa Island and its tannin corilagin.Phytomedicine,2007,14(11):755-762.
    11. Cheng JT,Lin TC,Hsu FL.Antihypertensive effect of corilagin in the rat.Can J Physiol Pharmacol,1995,73(10):1425-1429.
    12. Okabe S, Suganuma M, Imayoshi Y,et al.New TNF-alpha releasing inhibitors, geraniin and corilagin, in leaves of Acer nikoense, Megusurino-ki.Biol Pharm Bull,2001,24(10):1145-1148.
    13. Zhao L, Zhang SL, Tao JY,et al.Preliminary exploration on anti-inflammatory mechanism of Corilagin (beta-1-0-galloyl-3,6-(R)-hexahydroxydiphenoyl-D-glucose) in vitro.Int Immunopharmacol,2008,8(7):1059-1064.
    14. Marques CP,Hu S,Sheng W,et al.Microglial cells nitiate vigorous yet non-protective immune responses during HSV-1 brain infection.Virus Res,2006,121(1):1-10.
    15. Schwartz M,Butovsky O,Bruck W,et al.Microglial phenotype is the commitment reversible?.Trends Neurosci,2006,29(2):68-74.
    16.孙欣,张敏,梅元武.HSV-1感染后小胶质细胞炎性因子分泌特点研究.中国康复,2009,24(5):303-306
    17. Jackson JM.TNF-alpha inhibitors.Dermatol Ther,2007,20(4):251-264.
    18. Brabers NA,Nottet HS.Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia.Eur J Clin Invest,2006,36(7):447-458.
    19. Toussirot E, Wendling D.The use of TNF-alpha blocking agents in rheumatoid arthritis:an update.Expert Opin Pharmacother,2007,8(13):2089-2107.
    20. Paul AT,Gohil VM,Bhutani KK.Modulating TNF-alpha signaling with natural products.Drug Discov Today,2006,11(15-16):725-732.
    21. Kuldo JM,Westra J,Asgeirsdottir SA,et al.Differential effects of NF-{kappa} B and p38 MAPK inhibitors and combinations thereof on TNF-{alpha}-and IL-1{beta}-induced proinflammatory status of endothelial cells in vitro.Am J Physiol Cell Physiol,2005,289(5):C1229-C1239.
    22. Lu JP,Ma ZC,Yang J,et al.Ginsenoside Rgl-induced alterations in gene expression in TNF-alpha stimulated endothelial cells.Chin Med J (Engl),2004,117(6):871-876.
    23.常健,张一宁,贾飞勇,等.急性病毒性脑炎血清、脑脊液TNF-a的变化及其意义.白求恩医科大学学报,2000,26(3):280-281.
    24. Silveira RC,Procianoy RS.Interleukin-6 and tumor necrosis factor-alpha levels in plasma and eerebrospinal fluid of term newborn infants with hypoxic-ischemic eneephalopathy.J Pediatr,2003,143(5):625-629.
    25. Mo LY,Zhao R,Ye ZD,et al.A comparison between sera TNF-alpha,IL-6,and CRP in serum of patients with acute infection. China Journal of Modern Medicine,2000,10(8):78.
    26. Jacques C,Gosset M,Berenbaum F,et al.The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation.Vitam Horm,2006,74:371-403.
    27. Narcisse L,Scemes E,Zhao Y,et al.The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes.Glia,2005,49(2):245-258.
    28. Dinarello CA.Therapeutic strategies to reduce IL-1 activity in treating local and systemic inflammation.Curr Opin Pharmacol,2004,4(4):378-385.
    29. Moller B, Villiger PM. Inhibition of IL-1, IL-6, and TNF-alpha in immune-mediated inflammatory diseases.Springer Semin Immunopathol,2006,27(4):391-408.
    30. Burger D, Dayer JM, Palmer G,et al. Is IL-1 a good therapeutic target in the treatment of arthritis?.Best Pract Res Clin Rheumatol,2006,20(5):879-896.
    31. Sharma JN, Al-Omran A,Parvathy SS.Role of nitric oxide in inflammatorydiseases.Inflammopharmacology,2007,15(6):252-259.
    32. Farias AS, de la Hoz C, Castro FR,et al. Nitric oxide and TNFalpha effects in experimental autoimmune encephalomyelitis demyelination. Neuroimmunomodulation,2007,14(1):32-38.
    33. Tllel VE, Audus KL.Nitric oxide and blood-brain barrier integrity.Antioxid Redox Signal,2001,3(2):273-278.
    34.陈春美,杨卫忠.一氧化氮及一氧化氮合酶在脑缺血再灌注损伤中的作用.国际神经病学神经外科学杂志,2005,11(12):1057-1059.
    35. Marques CP, Hu S, Sheng W,et al. Interleukin-10 attenuates production of HSV-induced inflammatory mediators by human microglia.Glia,2004,9(47):358-366.
    36. Ogawa Y, Duru EA, Ameredes BT.Role of IL-10 in the resolution of airway inflammation.Curr Mol Med,2008,8(5):437-445.
    37. Hawrylowicz CM. Regulatory T cells and IL-10 in allergic inflammation.J Exp Med,2005,11(202):1459-1463.
    38. Conti P,Kempuraj D,Kandere K,et al. IL-10,an inflammatory/inhibitory cytokine, but not always.Immunol Lett,2003,86(2):123-129.
    39. Van Exel E,Gussekloo J,de Craen AJ,et al.Inflammation and stroke:the Leiden 85-Plus Study. Stroke,2002,33(4):1135-1138.
    1. Liu B and Hong JS.Role of microglia in inflammation-mediated neurodege-nerative diseases:mechanisms and strategies for therapeutic intervention.J Pharmacol Exp Ther,2003,304(1):1-7.
    2. Lokensgard JR, Hu S, Sheng W, et al.Robust expression of TNF-α,IL-1β, RANTES,and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus.J Neurovirol,2001,7(3):208-219.
    3. Lundberg P, Welander P, Han X, et al.Herpes simplex virus typel DNA is immunostimulatory in vitro and in vivo. J Virol,2003,77(20):11158-11169.
    4. Shao BM, Xu W, Dai H,et al. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb.Biochem.Biophys Res Commun,2004,320(4):1103-1111.
    5. Nagai A, Nakagawa E, Hatori K, et al.Generation and characterization of immortalized human microglial cell lines:expression of cytokines and chemokines. Neurobiol Dis,2001,8(6):1057-1068.
    6. Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the brain diseases.Curr Med Chem,2007,14(11):1189-1197.
    7. Marques CP, Hu S, Sheng W, et al.Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection.Virus Res,2006, 121(1):1-10.
    8. Rezaie P,Tfillo PG,Everall IP,et al.Expression of beta-chemokines and chemokine receptors in human fetal astrocyte and microglial co-cultures:potential role of chemokines in the developing CNS.Glia,2002,37(1):64-75.
    9. Hao AJ,Dheen ST,Ling EA.Induction of eytokine expression in the brain maerophages/amocboid mieroglia of the fetal rat exposed to a teratogen.Neuroreport,2001,12(7):1391-1397.
    10. Hao AJ, Dheen ST, Ling EA. Expression of maerophage colony-stimulating factor and its receptor in mieroglia activation is linked to eratogen-induced nelirenal damage.Neuroscienee,2002,112(4):889-900.
    11. Mun-Bryce S,Lukes A,Wallace J,et al.Stromelysin-1 an dgelatinise A,up-regulated before TNF-alpha in LPS-stimulated neuroinfammation.Brain Res,2002,933(1):42-49.
    12. Planas AM,Sole S,Justicia C.Expression and activation of matrix Metalloproteinase-2 and-9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis,2001,8(5):834-846.
    13. Rossi AG, Sawatzky DA, Walker A, et al.Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis.Nat Med,2006,12(9):1056-1064.
    14. Pyeongjae L,Jongseok L,Sunshin K,et al.NO as an autocrine mediator in the apo ptosis of activated microglialcells:correlation betwen activation and apo ptosis of microglial cells.Brain Research,2001,892(3):380-385.
    15. Kawahara K,Mori M,Nakayama H.NO-induced apo ptosis and ER stress in microglia. Japanese Journal of Pharmacology,2004,124(6):399-406.
    16. Thomas M,James JC,David B,et al.Expression and Function Of Lysophosphatidic Acid Receptors in Cultured Rod ent Microglial Ceils.J Biol Chem,2001,276(22):25946-25952
    17. Fuchs SA, Berger R, Klomp LW, et al. D-amino acids in the central nervous system in health and disease.Mol Genet Metab,2005,85(3):168-180.
    18. Salinska E, Danysz W, Lazarewicz JW. The role of excitotoxicity in neurodegeneration. Folia Neuropathol,2005,43(4):322-339.
    19. Nicotera P,Ankarcrona M,Bonfoco E,et al.Neuronal apoptosis Versus necrosis induced by glutamate or free radicals.Apoptosis,1996,(1):5-10.
    20.杨卫东,朱鸿良,赵保路.丹参的氧自由基清除作用.中国药理学通 报.1990,6:118-120.
    21. Kinoshita S, Inoue Y, Nakama S,et al. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine.,2007;14(11):755-762.
    1. Clarke P, Tyler KL.Apoptosis in animal models of virus-induced disease.Nat Rev Microbiol.2009,7(2):144-155.
    2. Adams JM. Ways of dying:muLtiple pathways to apoptosis. Genes.Dev,2003,17(20): 22481-22495.
    3. Movassagh M, Foo RS.Simplified apoptotic cascades.Heart Fail Rev.2008,13:111-119.
    4. Dseagher S,Martinou JC.Mitochondria as the central control point of apoptosis.Trends Cell Biol,2000,10(9):369-377.
    5. Ashkenazi A, Dixit VM. Death receptors:signaling and modulation.Science,1998,2 81(5381):1305-1308.
    6. Nakamura K,Bossy-Wetzel E,Bums K,et al.Changes in endo plasmic reficulum luminal environment afect cell sensitivity to apoptosis. J Cell Biol,2000,150(4):731-740.
    7. Alnemri ES,Livingston Dk, Nicholson DW,et al.Human ICE/CED-3 protease nomenclature. Cell,1996,87(2):171.
    8. Verkhratsky A.Toeseu EC.Endoplasmie retieulum Ca2+ homeostasis and neuronal death.Cell Mol Med,2003,7(4):351-361
    9. Kaufmann SH, Lee SH, Meng XW,et al.Apoptosis-associated caspase activation assays. Methods,2008;44(3):262-272.
    10.袁长青,丁振华Caspase的结构和功能.国外医学分子生物学分册,2002,24(3):146-151.
    11. Chang HY, Yang X.Proteases for cell suicide:fuctions and regulation of caspase. Micro Mol Biol Rev,2000,64(4):821-846:
    12. Sandra F,Hendarmin L,Nakao Y,et al.TRAIL cleaves caspase-8,-9 and-3 of AM-1 cells:a possible pathway for TRAIL to induce apoptosis in meloblastoma.Tumour Biol,2005,26(5):258-264.
    13. Weng C,Li Y,Xu D,et al.Specific cleavage of Mcl-1 by caspase-3 in tumor necr osis factor-related apoptosis-inducing ligand(TRAIL)-induced apoptosis in Jurkat 1 eukemia T cells.J Biol Chem,2005,280(11):10491-10500.
    14. Fan Z,Beresford PJ,Oh DY,et al.Tumor suppressor NM23-H1 is a granzyme A-activated DNASE during CTL-mediated apoptosis and the nucleosome assembly protein SET is its inhibitor.Cell,2003,112(3):659-672.
    15. Fox R, Aubert M. Flow cytometric detection of activated caspase-3. Methods Mol Biol, 2008,414:47-56.
    16. Fernandes-Alnemri T,Litwack G,Alnemri ES,et al. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein CED-3 and mam malian interleukin-1 beta-converting enzyme.J Biol Chem,1994,269(49):30761-30764.
    17. Niwa M,Hara A,Lwai T,et al.Caspase activation as an apoptotic evidence in the gerbil hippocampal CAI pyramidal ceHs following transient forebrain ischemia.Neurosci Lett,2001,300(2):103-106.
    18. Yakovlev AG,Knoblach SM,Fan L,et al.Activation of CPP-32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury.Neurosci,1997,17(19):7415-7419.
    19. Clark RS,Kochanek PM,Watkins SC, et al.Caspase-3 mediated neuronal death after traumatic brain injury in rats.Neurochem,2000,74(2):740-749.
    20. Pike BR,Zhao X,Newcomb JK, et al. Stretch injury causes calpain and caspase-3 activation and necrotic and apoptotic cell death in septo-hippocampal cell cultures. Neurotrauma,2000,17(4):283-298.
    21. Garden GA,Budd SL,Tsai E.Caspase cascades in human immunodeficiency virus-ssociated neurodegeneration.J Neurosci,2002,22(10),4015-4024.
    22. Fulda S.Caspase-8 in cancer biology and therapy.Cancer Lett,2009,281(2):128-133.
    23. Scaffidi C,Medema JP,Krammer PH,et al.FLICE is predominantly expressed as two functionally active isoforms,caspase-8/a and caspase-8/b. J Bio chem,1997,272(43):26953-26958.
    24. Wertz IE, Dixit VM. Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ.,2010,17(1):14-24.
    25. Zhang W,Shi HY,Zhang M.Maspin overexpression modulates tumor cell apoptosis through the regulation of Bcl-2 family proteins.BMC Cancer,2005,5:50.
    26. Budihardjo I,Oliver H,Lutter M,et al.Biochemical pathways of caspase actvation during apoptosis.Annu Rev Cell Dev Biol,1999,15:269-290.
    27. Nakagawa T,Zhu H,Morishima N,et al.Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity amyloid-beta.Nature,2000,403(6765):98-103.
    28. Haixia Tong,Chunwei Lu,Jihong Zhang,et al.Combination of-y inteferon with TRAIL and cisplatin of etoposide induces apoptosis in neuroblastoma cell line SH-SY5Y.Chinese Med Sci J,2007,22(1):38-43.
    29. Chou JJ,LiH,Salvesen GS,et al.Solution structure of BID,an intracellular amplifier of apoptotic signaling.Cell,1999,96(5):615-624.
    30. Gervais FG, Singaraja R, Xanthoudakis S,et al.Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi.Nat Cell Biol,2002,4(2):95-105.
    31. Helen MB, Douglas RG.Stress management-heat shock protein-70 and the regulation of apoptosis. Trends in Cell Biol,2001,11(1):6-10.
    32. Gottlieb RA, Granllive DJ, et al. Analyzing mitochondrial changes during apoptosis. Methods,2002,26 (4):341-347.
    33. Riedl SJ, Salvesen GS.The apoptosome:signalling platform of cell death. Nat Rev Mol Cell Biol,2007,8(5):405-413.
    34. Lemaire C,Godefroy N,Costina-Parvu I,et al.Caspase-9 can antagonize p53-induced apoptosis by generating a p76(Rb) truncated form of Rb.Oncogene 2005,24(20):3297-3308.
    35. Pawlowski J, Kraft AS.Bax-induced apoptotic cell death.Proc Natl Acad Sci USA,2000,97(2):529-531.
    36. Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis:the story so far. Ann N Y Acad Sci,2003,1010:186-194.
    37. Hitomi J,katayama T,Taniguchi M,et al.Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12.Neurosci Lett,2004,357(2):127-130.
    38. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways.Nat Cell Biol,2001,31(11):E255-263.
    39. Rao RV, HermeL E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program.J Biol Chem,2001,276(36):33869-33874.
    40. Xie Q, Khaoustov VI, Chung CC, et al.Effect of tauroursodeoxycholic acid on ER stress-induced Caspase-12 activation.Hepatology,2002,36(3):592-601.
    41. Rizzuto R, Pinton P, Carrington W, et al.Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 1998,280(5370):1763-1766.
    42. Morishima N, Nakanishi K, Takenouchi H, et al.An endoplasmic reticulum stress-specific caspase cascade in apoptosis.Cytochrome cindependent activation of caspase-9 by caspase-12. J Biol Chem,2002,277(37):34287-34294.
    1. Stone MJ,Hawkins CP.A medical overview of encephalitis.Neuropsychol Rehabil,2007,17(4-5):429-449.
    2. Whitley RJ. Therapy of herpes virus infections in children.Adv Exp Med Biol,2008,609:216-232.
    3. Shen ZQ,Dong ZJ,Peng H,Liu JK.Modulation of PAI-1 and tPA activity and thrombolytic effects of corilagin.Planta Med,2003,69(12):1109-1112.
    4. Duan W,Yu Y,Zhang L.Antiatherogenic effects of phyllanthus emblica associated with corilagin and its analogue.Yakugaku Zasshi,2005,125(7):587-591.
    5. Yang CM, Cheng HY,Lin TC,et al.The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-beta-D-glucose isolated from Phyllanthus urinaria against herpes simplex virus typel and type2 infection. J Ethnopharmacol,2007,110(3):555-558.
    6. Kinoshita S,Inoue Y,Nakama S,et al.Antioxidant and hepatoprotective actions of medicinal herb,Terminalia catappa L.from Okinawa Island and its tannin corilagin.Phytomedicine,2007,14(11):755-762.
    7. Cheng JT,Lin TC,Hsu FL.Antihypertensive effect of corilagin in the rat.Can J Physiol Pharmacol,1995,73(10):1425-1429.
    8. Lellouch-Tubiana A, Fohlen M, Robain O, et al. Immunocytochemical characterization of long-term persistent immune activation in human brain after herpes simplex encephalitis.Neuropathol Appl Neurobiol,2000,26(3):285-294.
    9. Touitou I, Kone-Paut I. Auto inflammatory diseases.Best Pract Res Clin Rheumatol,2008,22(5):811-829.
    10. Zheng W X,Liu P,Sun XG.Relation of neurologic impairment and volum of cerebral infarction with serum ferrittin and tumor necrosis factor.Chin J Clin Rehabilitation,2005,9(5):100-101.
    11. Marques CP, Cheeran MC, Palmquist JM,et al. Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis.J Immunol,2008,181(9):6417-6426.
    12. Vilela MC, Mansur DS, Lacerda-Queiroz N,et al.Traffic of leukocytes in the central nervous system is associated with chemokine up-regulation in a severe model of herpes simplex encephalitis:an intravital microscopy study.Neurosci Lett,2008,445(1):18-22.
    13. Silveira RC,Procianoy RS.Interleukin-6 and tumor necrosis factor-alfar levels in plasma and eerebrospinal fluid of term newborn infants with hypoxic-ischemic eneephalopathy.J Pediatr,2003,143(5):625-629.
    14. Mo LY,Zhao R,Ye ZD,et al.A comparison between sera TNF-alfar,IL-6,and CRP in serum of patients with acute infection. China Journal of Modern Medicine,2000,10(8):78.
    15.常健,张一宁,贾飞勇,等.急性病毒性脑炎血清、脑脊液TNF-α的变化及其意义.白求恩医科大学学报,2000,26(3):280-281.
    16. Marques CP, Cheeran MC, Palmquist JM,et al. Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis. J Neurovirol,2008,14(3):229-238.
    17. Haas J, Meyding-Lamade U, Fath A, et al.Acyclovir treatment of experimentally induced herpes simplex virus encephalitis:monitoring the changes in immunologic NO synthase expression and viral load within brain tissue of SJL mice. Neurosci Lett,1999,264(1-3):129-232.
    18. Fujii S, Akaike T, Maeda H.Role of nitric oxide in pathogenesis of herpes si mplex virus encephalitis in rats.Virology,1999,256(2):203-212.
    19. Marques CP, Hu S, Sheng W, et al.Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection.Virus Res,2006,121 (1):1-10.
    1. Kamei S, Takasu T,et al. Evaluation of combination therapy using aciclovir and corticosteroid in adult patients with herpes simplex virus encephalitis.J Neurosurg Psychiatry,2005,76(11):1469-1544.
    2. Meunier M, Nalwa V, et al. Reactions to familiar and novel objects in infant monkeys with neonatal temporal lesions. Hippocampus,2003,13(4):489-493.
    3. Ozawa H, Sasaki M, Sugai K, et al. Siblings of Schwartz-Jampel syndrome with abnormal computed tomographic findings. Brain,2000,22(8):494-497.
    4. Stevenson J, Hymas W, Hillyard D, et al. Effect of sequence polymorphisms on performance of two real-time PCR assays for detection of herpes simplex virus. J Clin Microbiol,2005,43(5):2391-2398.
    5. Zunt JR, Marra CM, et al. Changes in CSF and plasma HIV-1RNA and cognition after potent antiretroviral therapy.Neurology,2003,60(8):1388-1390.
    6. Mitchell PS, Espy MJ, Smith TF, et al. Diagnosis of herpes simplex virus infections in the clinical laboratory by LightCycler PCR. J Clin Microbiol,2000,38(2):759-759.
    7. Hokkanen L, Launes J. Cognitive recovery instead of decline after acute encephalitis: a prospective follow up study.J Nneurol Neurosurg Psychiatry,1997,63(2):222-227.
    8. Mao H, Rosenthal KS. Strain-dependent structural variants of herpes simplex virus type 1 ICP34.5 determine viral plaque size, efficiency of glycoprotein processing, and viral release and neuroinvasive disease potential.J Virol,2003,77(6):3409-3417.
    9. Johnson RT, Emery D, Power C, et al. Acute disseminated encephalomyelitis: clinical and pathogenesis features. Neurol Clin,2008,26(3):759-780.
    10. Cassady KA,Gross M. The herpes simplex virus type 1 U(S)11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. J Virol,2002,76(5):2029-2035.
    11. Montine KS, Milatovic D, Zhang Y, et al. Herpes simplex virus type 1 encephalitis is associated with elevated levels of F2-isoprostanes and F4-neuroprostanes.J Neurovirol,2002,8(4):295-305.
    12. Zucker KE, Kamberi P, Sobel PA, et al. Temporal expression of inflammatory mediators in brain basilar artery vasculitis and cerebrospinal fluid of rabbits with coccidioidal meningitis.Clin Exp Immunol,2006,143(3):458-466.
    13. Lewandowski GA, Shim JS. Comparison of various measures of microbial growth kinetics in suspended and biofilm cultures during biodegradation of naphthalene.Water Environ Res,2002,74(3):272-279.
    14. Peter A, Laura H, Stephen A, et al. Herpes Simplex Virus Type 1 ICP27 Induces p38 Mitogen-Activated Protein Kinase Signaling and Apoptosis in HeLa Cells.J Viro 1,2009,83(4):1767-1777.
    15. Hargett D, Rice S, Bachenheimer SL. Herpes simplex virus type 1 ICP27-dependent activation of NF-kappaB. J Virol,2006,80(21):10565-10578.
    16. Leib DA, Alexander DE, Cox D, et al. Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses.J Virol,2009,83(23):12164-12171.
    17. Talloczy Z, Klionsky DJ, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes.Autophagy,2008,4(2):151-175.
    18. Talloczy Z, Levine B, Sun Q, et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe,2007,1(1):23-35.
    19. Crawford AC, Riggins RB, Shajahan AN, et al. Co-inhibition of BCL-W and BCL2 restores antiestrogen sensitivity through BECN1 and promotes an autophagy-associated necrosis. PLoS One,2010,5(1):e8604.
    20. Nash AA, Dutia BM, Reid SJ, et al. A novel Cre recombinase imaging system for tracking lymphotropic virus infection in vivo, PLoS One.2009,4(8):e6492.
    21. Halford WP, Schaffer PA. ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency.J Virol,2001,75(7):3240-3249.
    22. Thompson RL, Sawtell NM, Preston CM. De novo synthesis of VP16 coordinates the exit from HSV latency in vivo.PLoS Pathog,2009,5(3):e1000352.
    23. Maillet S, Naas T, Crepin S, et al. Herpes simplex virus type 1 latently infected neurons differentially express latency-associated and ICPO transcripts.J Virol,2006, 80(18):9310-9321.
    24. Kent JR, Zeng PY, Huang J, et al. Trimethylation of histone H3 lysine 4 by Set1 in the lytic infection of human herpes simplex virus 1.J Virol,2006,80(12):5740-5746.
    25. Everett RD, Parsy ML, Orr A. Analysis of the functions of herpes simplex virus type 1 regulatory protein ICPO that are critical for lytic infection and derepression of quiescent viral genomes.J Virol,2009,83(10):4963-4977
    26. Kilareski EM, Shah S, Nonnemacher MR, et al. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage.Retrovirology,2009,6:118.
    27. Everett RD, Lukashchuk V. Regulation of ICPO-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx.J Virol,2010, 84(8):4026-4040.
    28. Halford WP, Liu M, Rakowski B, et al. ICPO antagonizes ICP4-dependent silencing of the herpes simplex virus ICPO gene. PLoS One,2010,5(1):e883.
    29. Wysocka J, Herr W. The herpes simplex virus VP16-induced complex:the makings of a regulatory switch.Trends Biochem Sci,2003,28(6):294-304.
    30. Kwun HJ, Jang KL. Transcriptional regulation of herpes simplex virus type 1 ICPO promoter by virion protein 16. Mol Cell Biol Res Commun,2000,3:15-19.
    31. Kwun HJ, Jang KL, Min DS, et al. Transcriptional repression of cyclin-dependent kinase inhibitor p21 gene by phospholipase D1 and D2. FEBS Lett,2003,544(1-3): 38-44.
    32. Kutluay SB, Triezenberg SJ. Regulation of histone deposition on the herpes simplex virus type 1 genome during lytic infection. J Virol,2009,83(11):5835-5845.
    33. Preston CM. Reactivation of expression from quiescent herpes simplex virus type 1 genomes in the absence of immediate-early protein ICPO.J Virol,2007,81(21):11781--11788.
    34. Iizuka M, Smith MM, Lizuka M. et al. Histone acetyltransferase Hbol:catalytic activity,cellular abundance, and links to primary cancers.Gene,2009,436(1-2):108-114.
    35. Kubat NJ, Amelio AL, Giordani NV, et al. Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICPO transcriptional permissiveness at early times postexplant. J Virol,2006,80(4):2063-2068.
    36. Everett RD,Boutell C, Grant L, et al. Comparison of the biological and biochemical activities of several members of the alphaherpesvirus ICPO family of proteins.J Virol,2010,84(7):3476-3487.
    37. Mark KE, Wald A, Magaret AS, et al. Rapidly cleared episodes of herpes simplex virus reactivation in immunocompetent adults. J Infect Dis,2008,198(8):1141-1149.
    38. Ghiasi H, Perng G, Mott KR, et al. A recombinant herpes simplex virus type 1 expressing two additional copies of gK is more pathogenic than wild-type virus in two different strains of mice.J Virol,2007,81 (23):12962-12972.
    39. Suzutani T, Saijo M, Kurane L, et al. Characterization and susceptibility to antiviral agents of herpes simplex virus type 1 containing a unique thymidine kinase gene with an amber codon between the first and the second initiation codons.Arch Virol,2008,153(2):303-314.
    40. Suzutani T, Ishioka K, Ohno S, et al. Evaluation of mixed infection cases with both herpes simplex virus types 1 and 2. J Med Virol,2008,80(5):883-887.
    41. Hwang YT, Tian W, Hwang CB. The enhanced DNA replication fidelity of a mutant herpes simplex virus type 1 DNA polymerase is mediated by an improved nucleotide selectivity and reduced mismatch extension ability.J Viro 1,2008,82(17):8937-8941.
    42. Saijo M, Suzutani T, Morikawa S, et al.Genotypic characterization of the DNA polymerase and sensitivity to antiviral compounds of foscarnet-resistant herpes simplex virus type 1 (HSV-1) derived from a foscarnet-sensitive HSV-1 strain.Antimicrob Agents Chemother,2005,49(2):606-611.
    43. National Center for Biological Information. International Nucleotide Sequence Database Collaboration, GenBank. Available at http://www.ncbi.nlm.nih.gov (last accessed 24 June 2003).
    44. European Bio informatics Institute (EMBL-EBI).Available at http://www.ebi.ac.uk (last accessed 24 June 2003).
    45. DNA Data Bank of Japan (DDBJ).Available at http://www.ddbj.nig.ac.jp (last accessed 24 June 2003).
    46. Kumar M, Kaufman HE, Clement C, et al. Effect of high versus low oral doses of valacyclovir on herpes simplex virus-1 DNA shedding into tears of latently infected rabbits. Invest Ophthalmol Vis Sci,2010,Apr 14. [Epub ahead of print].
    47. De Clercq E. In search of a selective antiviral chemotherapy.Clin Microbiol Rev,1997,10(4):674-693.
    48. Andronova VL, Pchelintseva AA, Ustinoy AV, et al.Antiherpetic activity of 5-alkynyl derivatives of 2'-deoxyuridine. Vopr Viruso 1,2006,51(1):34-38.
    49. Kleymann G. Agents and strategies in development for improved management of herpes simplex virus infection and disease. Expert Opin Investig Drugs,2005,14(2):135-161.
    50. Baumeister J, Fischer R, Kleymann G, et al. Superior efficacy of helicase-primase inhibitor BAY 57-1293 for herpes infection and latency in the guinea pig model of human genital herpes disease. Anrivir Chem Chemother,2007,18(1):35-48.
    51. Koelle DM, Corey L. Herpes simplex:insights on pathogenesis and possible vaccines. Annu Rev Med,2008,59:381-395.
    52. Awasthi S, Lubinski JM, Friedman HM. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine.Vaccine,2009,27(49):6845-6853.
    53. Geinben-Lynn R, Greenland JR, Frimpong-Boateng K, et al. CD4+Tlymphocytes mediate in vivo clearance of plasmid DNA vaccine antigen expression and potentiate CD8+T-cell immune responses. Blood,2008,112 (12):4585-4590.
    54. Charo J, Lindencrona JA, Carison LM, et al. Protective efficacy of a DNA influenza virus vaccine is markedly increased by the coadministration of a Schiff base-forming drug. J Virol,2004,78(20):11321-11326.
    55. Rajcani J, Durmanova V. Developments in herpes simplex virus vaccines:old problems and new challenges.Folia Microbiol (Praha),2006,51 (2):67-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700