矢量光束的表征及无衍射矢量光束
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了当今光学领域的一个热点问题—矢量光束的表征问题。首先,基于光束的精确表征,分析了Jones矢量在任意矢量光束中应具有的形式,在此基础上研究了具有螺旋相位的柱矢量光束的性质;其次,研究了一般无衍射矢量光束的表征方法及其性质,并探讨了将它们作为表示任意矢量光束的正交完备基的条件;另外,还改进了一个描述光束近轴度的参数;最后研究了矢量光束的级数表示。本文的主要工作和创新点如下:
     一,仔细分析了李的表征方法中的广义Jones矢量,指出Jones矢量在任意矢量光束中应具有的形式,并纠正了文献中对偏振椭圆度的误解。另外,研究发现,具有螺旋相位的柱矢量光束是总角动量算符沿着传播方向分量的本征态。
     二,研究了一般无衍射矢量光束的表征方法及其性质,并探讨了将它们作为表示任意矢量光束的正交完备基的条件。在用它们作为一组正交完备基来表征任意矢量光束的时候,分析了我们提出的一个特征单位矢量I的作用。另外,讨论了和I相关的电场的纵向场分量,纵向场和总场的相对大小可以体现光束的矢量性。最后,推导了无衍射光束的横向位移和角动量。
     三,改进了Gawhary和Severini提出的光束的近轴度,通过比较光束能量的纵向分量和横向分量来定义描述光束近轴度的参数。它的值只和矢量角谱的绝对值有关,和其矢量性无关。该值的范围从0到1,值越大,光束的近轴性越好。文中通过分析无衍射矢量光束和角谱分布为高斯函数的矢量光束的近轴性,来论证该定义的正确性。通过分析,我们发现该定义可以很方便地推广到多色场情况。
     四,从光束的表征理论出发,通过选择不同的参数I,和标量角谱函数f,可以得到不同矢量光束关于一个参量s的级数表示。当特征单位矢量和传播轴垂直,得到和文献中自洽的结果,电场的横向场仅仅是s的偶阶项,而纵向场仅仅是s的奇阶项;当特征单位矢量和传播轴平行,电场的横向场是s的偶阶项,纵向场没有高阶修正,角向偏振光束的电场没有纵向场;当特征单位矢量和传播轴既不垂直也不平行,如果采用一阶近似,发现电场的横向场不仅包括s的偶阶项也包括其奇阶项。
This thesis is concerned mainly with one of the hot topics, the characterization ofvector light beams. First of all, the form of Jones vector for arbitrary vector beams isstudied on the basis of the accurate representation theory for the light beams and thecylindrical vector beams with a helical phase structure are analyzed carefully; Then,the characterization and properties of general vector diffraction-free beams arestudied and the condition of the diffraction-free beams to expand a finite vectorbeam as a complete orthonormal set is discussed here; In addition, a recentlyadvanced parameter, called degree of paraxiality, is refined; Finally, the power-seriesexpansion of the electromagnetic beams is investigated. The main results andinnovations are as follows:
     First, the generalized Jones vector in Li’s representation theory is analyzedcarefully and the form of Jones vector for arbitrary vector beams is studied. Also, themisunderstanding of the polarization ellipticity in the previous work is corrected. Itshows that cylindrical vector beams with a helical phase structure are the eigenstatesof total angular momentum in the propagation direction.
     Second, the characterization and properties of general vector diffraction-freebeams are studied here. And the condition of the diffraction-free beams to expand afinite vector beam as a complete orthonormal set is discussed here. The importanceof the so-called characteristic unit vector I for the complete orthonormal set isinvestigated. Also, the I-dependence of the longitudinal component of thediffraction-free beam is analyzed. The relative strength of the longitudinalcomponent with the total component for the electric field can reflect its vectorialproperty. At last, the transverse displacement and angular momentum for thenon-diffracting beams are given.
     Third, a recently advanced parameter given by Gawhary and Severini, calleddegree of paraxiality, is refined. By examining the property of the energies originatingfrom the longitudinal as well as the transverse components, we can define the parameter. It is shown that this parameter is determined by the magnitude of theangular spectrum, without depending on the vectorial feature of it. Its value rangesfrom0to1. A larger value stands for a more paraxial beam. As an application, twoexamples, the family of diffraction-free beams and a class of beams that has aGaussian-like angular spectrum are examined. Also, this definition can be generalizedto polychromatic beams without any difficulty.
     Fourth, from the representation theory, power-series expansion according to aparameter s for all kinds of beams can be obtained by choosing differentparameters I, and the scalar angular spectrum f. When the characteristic unitvector is vertical to the propagation direction, the consistent result is achieved withthe previous work. The transverse component of the electric field involves only evenpowers of s, while the longitudinal component of it involves only odd powers of s.When the characteristic unit vector is parallel to the propagation direction, there isno high-order correction to the longitudinal component of the electric field, still thetransverse component of it involves only even powers of s. It is found that theelectric field of the azimuthally polarized beam has no longitudinal component.When the characteristic unit vector is neither vertical nor parallel to the propagationdirection, in the first-order approximation, it is noticed that the transverse componentof it contains not only the even powers but also the odd powers of s.
引文
[1] J. N. Brittingham, Focus wave mode in homogeneous Maxwell’s equation: transverse electricmode, J. Appl. Phys.,1983,54,1179-1189.
    [2] R. W. Ziollkowski, Exact solutions of the wave equation with complex source locations, J.Appl. Phys.,1985,26,861-863.
    [3] J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A,1987,4,65l-654.
    [4] J. Durnin, J. J. Miceli, Jr. and J. H. Eberly, Diffraction-free beams, Phys. Rev. Lett.,1987,58,1499-1501.
    [5] J. C. Gutiérrez-Vega, M. D. Iturbe-Castullo and S. Chávez-Cerda, Alternative formulation forinvariant optical fields: Mathieu beams, Opt. Lett.,2000,25,1493-1495.
    [6] M. A. Bandres, J. C. Gutiérrez-Vega and S. Chávez-Cerda, Parabolic non-diffracting opticalwave fields, Opt. Lett.,2004,29,44-46.
    [7] E. Gawhary and S. Severini, Lorentz beams and symmetry properties in paraxial optics, J.Opt. A: Pure Appl. Opt.,2006,8,409-414.
    [8] L. Vicari, Truncation of non-diffracting beams, Opt. Commun.,1989,70,263-266.
    [9] P. L. Overfelt and C. S. Kenney, Comparision of the propagation characteristics of Bessel,Bessel-Gauss, and Gaussian beams diffracted by a circular aperture, J. Opt. Soc. Am. A,1991,8,732-745.
    [10] J. Rosen, B. Salik and A. Yariv, Pseudo-nondiffracting beams generated by radial harmonicfunctions, J. Opt. Soc. Am. A,1995,12,2446-2457.
    [11] R. Liu, B. Y. Gu, B. Z. Dong and G. Z. Yang, Diffractive phase elements that synthesizecolor pseudo-nondiffracting beams, Opt. Lett.,1998,23,633-635.
    [12] Z. Bouchal, Vortex array carried by a pseudo-nondiffracting beam, J. Opt. Soc. Am. A,2004,21,1694-1702.
    [13] Z. Bouchal, Composition of angular spectrum of the pseudo-nondiffracting beams, Opt.Commun.,2001,197,23-25.
    [14] S. R. Mishra, A vector wave analysis of a Bessel beam, Opt. Commun.,1991,85,159-161.
    [15] J. Turunen and A. T. Friberg, Self-imaging and propagation-invariance in electromagneticfields, Pure Appl. Opt.,1993,2,51-60.
    [16] Z. Bouchal, J. Bajer and M. Bertolotti, Vectorial spectral analysis of the nonstationaryelectromagnetic field, J. Opt. Soc. Am. A,1998,15,2172-2181.
    [17] R. D. Romea and W. D. Kimura, Modeling of inverse erenkov laser acceleration withaxicon laser-beam focusing, Phys. Rev. D,1990,42,1807-1818.
    [18] S. C. Tidwell, D. H. Ford and W. D. Kimura, Transporting and focusing radially polarizedlaser beams, Opt. Eng.,1992,31,1527-1531.
    [19] Z. Bouchal and M. Olivík, Non-diffractive vector Bessel beams, J. Mod. Opt.,1995,42,1555-1566.
    [20] M. A. Bandres and J. C. Gutiérrez-Vega, Vector Helmholtz-Gauss and vector Laplace-Gaussbeams, Opt. Lett.,2005,30,2155-2157.
    [21] J. Lekner, Invariants of three types of generalized Bessel beams, J. Opt. A: Pure Appl. Opt.,2004,6,837-843.
    [22] J. Lu and J. F. Greenleaf, Ultrasonic nondiffracting transducer for medical imaging, IEEETrans. Ultrason. Ferroelec. Freq. Contr.,1990,37,438-447.
    [23] J. Lu and J. F. Greenleaf, Nondiffracting X waves-exact solutions to free-space scalar waveequation and their finite aperture realizations, IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,1992,39,19-31.
    [24] J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan and M. M. Salomaa, Angularspectrum representation of nondiffracting X waves, Phys. Rev. E,1996,54,4347-4352.
    [25] J. Salo, J. Fagerholm, A. T. Friberg and M. M. Salomaa, Unified description ofnondiffracting X and Y waves, Phys. Rev. E,2000,62,4261-4275.
    [26] J. Davila-Rodriguez and J. C. Gutiérrez-Vega, Helical Mathieu and Parabolic localized pulses,J. Opt. Soc. Am. A,2007,24,3449-3455.
    [27] H. E. Hernández-Figueroa, M. Zamboni-Rached and E. Recami, Localized Waves, New York:Wiley,2008.
    [28] R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski and B. A. Syrett, Interboardoptical data distribution by Bessel beam shadowing, Opt. Commun.,1996,122,169-177.
    [29] Z. Bouchal, J. Wagner and M. Chlup, Self-reconstruction of a distorted nondiffracting beam,Opt. Commun.,1998,151,207-211.
    [30] P. Szwaykowski and J. Ojeda-Ceataneda, Nondiffracting beams and the self-imagingphenomenon, Opt. Commun.,1991,83,1-4.
    [31] G. Indebetouw, Nondiffracting optical fields: some remarks on their analysis and synthesis, J.Opt. Soc. Am. A,1989,6,150-152.
    [32] A. Vasara, J. Turunen and A. T. Friberg, Realization of general nondiffracting beams withcomputer-generated holograms, J. Opt. Soc. Am. A,1989,6,1748-1754.
    [33] G. Scott and N. McArdle, Efficient generation of nearly diffraction-free beams using anaxicon, Opt. Eng.,1992,31,2640-2643.
    [34] A. J. Cox and D. C. Dibble, Nondiffracting beam from a spatially filtered fabry-perotresonator, J. Opt. Soc. Am. A,1994,9,282-286.
    [35] R. M. Herman and T. A. Wiggins, High-efficiency diffractionless beams of constant size andintensity, Appl. Opt.,1994,33,7297-7306.
    [36] J. A. Davis, E. Carcole and D. M. Cottrell, Nondiffracting interference patterns generatedwith programmable spatial light modulators, Appl. Opt.,1996,35,599-602.
    [37] J. Turunen, A. Vasara and A. T. Friberg, Propagation invariance and self-imaging invariable-coherence optics, J. Opt. Soc. Am. A,1991,8,282-289.
    [38] A. T. Friberg, A. Vasara and J. Turunen, Partially coherent propagation-invariant beams:passage through paraxial optical systems, Phys. Rev. A,1991,43,7079-7082.
    [39] I. Alexeev, K. Y. Kim and H. M. Milchberg, Measurement of the superluminal groupvelocity of an ultrashort Bessel beam pulse, Phys. Rev. Lett.,2002,88,073901.
    [40] S. Ruschin, Modified Bessel nondiffracting beams, J. Opt. Soc. Am. A,1994,11,3224-3228.
    [41] P. Vahimaa, V. Kettunen, M. Kuittinen, J. Turunen and A. T. Friberg, Electromagneticanalysis of nonparaxial Bessel beams generated by diffractive axicons, J. Opt. Soc. Am. A,1997,14,1817-1824.
    [42] S. Chavez-Cerda, A new approach to Bessel beams, J. Mod. Opt.,1999,46,923-930.
    [43] Z. Bouchal, Nondiffracting optical beams: physical properties, experiments, and applications,Czech. J. Phys.,2003,53,537-624.
    [44] D. Mcgloin and K. Dholakia, Bessel beams: diffraction in a new light, Contemp. Phys.,2005,46,15-28.
    [45] G. Rousseau, D. Gay and M. Piche, One-dimensional description of cylindrically symmetriclaser beams: application to Bessel-type nondiffracting beams, J. Opt. Soc. Am. A,2005,22,1274-1287.
    [46] J. Turunen and A. T. Friberg, Propagation-invariant optical fields, Progress in Optics,2009,54,1-81.
    [47] R. P. MacDonald, J. Chrostowski, S. A. Boothyod and B. A. Syrett, Holographic formation ofa diode laser nondiffracting beam, Appl. Opt.,1993,32,6470-6474.
    [48] Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel and J. R. Cavallaro, Generation ofnearly nondiffracting Bessel beams with a Fabry–Perot interferometer, J. Opt. Soc. Am. A,1997,14,3009-3013.
    [49] N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill and R. Roy, Generation ofnondiffracting Bessel beams by use of a spatial light modulator, Opt. Lett.,2003,28,2183-2185.
    [50] J. A. Ferrari, E. Garbusi and E. M. Frins, Generation of nondiffracting beams by spiral fields,Phys. Rev. E,2003,67,036619.
    [51] S. H. Tao, X. C. Yuan and B. S. Ahluwalia, The generation of an array of nondiffractingbeams by a single composite computer generated hologram, J. Opt. A,2005,7,40-47.
    [52] M. Brunel and S. Coetmellec, Generation of nondiffracting beams through an opaque disk, J.Opt. Soc. Am. A,2007,24,3753-3761.
    [53] V. N. Belyi, N. S. Kazak, S. N. Kurilkina and N. A. Khilo, Generation of TE-andTH-polarized Bessel beams using one-dimensional photonic crystal, Opt. Commun.,2009,282,1998-2008.
    [54] M. U. Shaukat, P. Dean, S. P. Khanna, M. Lachab, S. Chakraborty, E. H. Linfield and A. G.Davies, Generation of Bessel beams using a terahertz quantum cascade laser, Opt. Lett.,2009,34,1030-1032.
    [55] Z. Y. Liu and D. Y. Fan, Propagation of pulsed zeroth-order Bessel beams, J. Mod. Opt.,1998,45,17-21.
    [56] Z. P. Jiang, Q. S. Lu and Z. J. Liu, Propagation of apertured Bessel beams, Appl. Opt.,1995,34,7183-7185.
    [57] M. Arif, M. M. Hossain, A. A. S. Awwal and M. N. Islam, Refracting system for annularGaussian-to-Bessel beam transformation, Appl. Opt.,1998,37,649-652.
    [58] S. Chávez-Cerda, M. A. Meneses-Nava and J. M. Hickmann, Interference of travelingnondiffracting beams, Opt. Lett.,1998,23,1871-1873.
    [59] R. M. Herman and T. A. Wiggins, Propagation and focusing of Bessel–Gauss, generalizedBessel–Gauss, and modified Bessel–Gauss beams, J. Opt. Soc. Am. A,2001,18,170-176.
    [60] Y. J. Li, V. Gurevich, M. Krichever, J. Katz and E. Marom, Propagation of anisotropicBessel–Gaussian beams: sidelobe control, mode selection, and field depth, Appl. Opt.,2001,40,2709-2721.
    [61] L. Wang, X. Q. Wang and B. D. Lü, Propagation properties of partially coherent modifiedBessel–Gauss beams, Optik,2005,116,65-70.
    [62] C. A. Dartora, K. Z. Nobrega, A. Dartora and H. E. Hernandez-Figueroa, Superposition ofmonochromatic Bessel beams in (k,kz)-plane to obtain wave focusing: Spatial localizedwaves, Opt. Commun.,2005,249,407-413.
    [63] A. V. Novitsky and D. V. Novitsky, Negative propagation of vector Bessel beams, J. Opt.Soc. Am. A,2007,24,2844-2849.
    [64] S. Orlov, K. Regelskis, V. Smilgevi ius and A. Stabinis, Propagation of Bessel beamscarrying optical vortices, Opt. Commun.,2002,209,155-165.
    [65] Z. Bouchal and J. Courtial, The connection of singular and nondiffracting optics, J. Opt. A:Pure Appl. Opt.,2004,6, S184-S188.
    [66] J. C. Gutiérrez-Vega and C. Lopez-Mariscal, Nondiffracting vortex beams with continuousorbital angular momentum order dependence, J. Opt. A: Pure Appl. Opt.,2008,10,015009.
    [67] J. A. Davis, E. Carcole and D. M. Cottrell, Range-finding by triangulation withnondiffracting beams, Appl. Opt.,1996,35,2159-2161.
    [68] I. Velchev and W. Ubachs, Higher-order stimulated Brillouin scattering with nondiffractingbeams, Opt. Lett.,2001,26,530-532.
    [69] J. Amako, D. Sawaki and E. Fujii, Microstructuring transparent materials by use ofnondiffracting ultrashort pulse beams generated by diffractive optics, J. Opt. Soc. Am. B,2003,20,2562-2568.
    [70] J. Je ek, T. i már, V. Neděla and P. Zemnek, Formation of long and thin polymer fiberusing nondiffracting beam, Opt. Express,2006,14,8506-8515.
    [71] H. Kogelnik, On the propagation of Gaussian beams of light through lenslike media includingthose with a loss or gain variation, Appl. Opt.,1965,4,1562-1569.
    [72] E. Zauderer, Complex argument Hermite-Gaussian and Laguerre-Gaussian beams, J. Opt.Soc. Am. A,1986,3,465-469.
    [73] R. L. Phillips and L. C. Andrews, Spot size and divergence for Laguerre Gaussian beams ofany order, Appl. Opt.,1983,22,643-644.
    [74] F. Gori, G. Guattari and C. Padovani, Bessel-Gauss beams, Opt. Commun.,1987,64,491-495.
    [75] E. Karimi, G. Zito, B. Piccirillo, L. Marrucci and E. Santamato, Hypergeometric-Gaussianmodes, Opt. Lett.,2007,32,3053-3055.
    [76] Q. W. Zhan, Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt.Photon.,2009,1,1-57.
    [77] K. S. Youngworth and T. G. Brown, Focusing of high numerical aperture cylindrical-vectorbeams, Opt. Express,2000,7,77-87.
    [78] L. W. Davis and G. Patsakos, TM and TE electromagnetic beams in free space, Opt. Lett.,1981,6,22-23.
    [79] L. W. Davis, Theory of electromagnetic beams, Phys. Rev. A,1979,19,1177-1179.
    [80] D. N. Pattanayak and G. P. Agrawal, Representation of vector electromagnetic beams, Phys.Rev. A,1980,22,1159-1164.
    [81] L. W. Davis and G. Patsakos, Comment on “Representation of vector electromagnetic beams”,Phys. Rev. A,1982,26,3702-3703.
    [82] R. H. Jordan and D. G. Hall, Free-space azimuthal paraxial wave equation: The azimuthalBessel-Gauss beam solution, Opt. Lett.,1994,19,427-429.
    [83] D. G. Hall, Vector-beam solutions of Maxwell’s wave equation, Opt. Lett.,1996,21,9-11.
    [84] M. Stalder and M. Schadt, Linearly polarized light with axial symmetry generated byliquid-crystal polarization converters, Opt. Lett.,1996,21,1948-1950.
    [85] T. V. Higgins, Spiral wave-plate design produces radially polarized laser light, Laser FocusWorld,1992,28,18-20.
    [86] Y. Kozawa and S. Sato, Generation of a radially polarized laser beam by use of a conicalbrewster prism, Opt. Lett.,2005,30,3063-3065.
    [87] C. F. Li, Integral transformation solution of free-space cylindrical vector beams andprediction of modified Bessel–Gaussian vector beams, Opt. Lett.,2007,32,3543-3545.
    [88] M. Lax, W. H. Louisell and W. B. McKnigh, From Maxwell to paraxial wave optics, Phys.Rev. A,1975,11,1365-1370.
    [89] W. H. Carter, Electromagnetic field of a Gaussian beam with an elliptical cross section, J.Opt. Soc. Am.,1972,62,1195-1201.
    [90] G. P. Agrawal and D. N. Pattanayak, Gaussian beam propagation beyond the paraxialapproximation, J. Opt. Soc. Am.,1979,69,575-578.
    [91] C. G. Chen, P. T. Konkola, J. Ferrera, R. K. Heilmann and M. L. Schattenburg, Analyses ofvector Gaussian beam propagation and the validity of paraxial and spherical approximations,J. Opt. Soc. Am. A,2002,19,404-412.
    [92] G. P. Agrawal and M. Lax, Free-space wave propagation beyond the paraxial approximation,Phys. Rev. A,1983,27,1693-1695.
    [93] T. Takenaka, M. Yokota and O. Fukumitsu, Propagation of light beams beyond the paraxial,J. Opt. Soc. Am. A,1985,2,826-829.
    [94] A. Wünsche, Transition from the paraxial approximation to exact solutions of the waveequation and application to Gaussian beams, J. Opt. Soc. Am. A,1992,9,765-774.
    [95] H. Laabs and A. T. Friberg, Nonparaxial eigenmodes of stable reasonators, IEEE J.Quantum Electron,1999,35,198-207.
    [96] K. L. Duan, B. D. Lü, Propagation properties of vectorial elliptical Gaussian beams beyondthe paraxial approximation, Opt.&Laser Tech.,2004,36,489-496.
    [97] S. R. Seshadri, Virtual source for the Bessel-Gaussian beam, Opt. Lett.,2002,27,988-1000.
    [98] Y. C. Zhang and B. D. Lü, Propagation of the Wigner distribution function for partiallycoherent nonparaxial beams, Opt. Lett.,2004,29,2710-2712.
    [99] C. F. Li, Representation theory for vector electromagnetic beams, Phys. Rev. A,2008,78,063831.
    [100] C. F. Li, Physical evidence for a new symmetry axis of electromagnetic beams, Phys. Rev. A,2009,79,053819.
    [101] O. Hosten and P. Kwiat, Observation of the spin hall effect of light via weak measurements,Science,2008,319,787-790.
    [102] C. F. Li, Spin and orbital angular momentum of a class of nonparaxial light beams having aglobally defined polarization, Phys. Rev. A,2009,80,063914.
    [103] Z. Y. Guo, S. L. Qu and S. T. Liu, Generating optical vortex with computer-generatedhologram fabricated inside glass by femtosecond laser pulses, Opt. Commun.,2007,273,286-289.
    [104] V. V. Kotlyar, S. N. Khonina, A. A. Kovalev and V. A. Soife, Diffraction of a plane,finite-radius wave by a spiral phase plate, Opt. Lett.,2006,31,1597-1599.
    [105] Q. W. Zhan, Properties of circularly polarized vortex beams, Opt. Lett.,2006,31,867-869.
    [106] M. S. Soskin and M. V. Vasnetsov, Singular optics, Progress in Optics,2001,42,219-276.
    [107] M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos and N. R. Heckenberg,Topological charge and angular momentum of light beams carrying optical vortices, Phys.Rev. A,1997,56,4064-4075.
    [108] R. A. Beth, Mechanical detection and measurement of the angular momentum of light,Phys. Rev.,1936,50,115-127.
    [109] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw and J. P. Woerdman, Orbital angularmomentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev.A,1992,45,8185-8189.
    [110] S. J. van Enk and G. Nienhuis, Eigenfunction description of laser beams and orbital angularmomentum of light, Opt. Commun.,1992,94,147-158.
    [111] M. V. Berry, Paraxial beams of spinning light, Proc. SPIE,1998,3487,6-11.
    [112] L. Allen, M. J. Padgett and M. Babiker, The orbital angular momentum of light, Progress inoptics,1999,39,291-372.
    [113] M. P. Padgett and L. Allen, Light with a twist in its tail, Contemp. Phys.,2000,41,275-285.
    [114] S. M. Barnett and L. Allen, Orbital angular momentum and nonparaxial light beams, Opt.Commun.,1994,110,670-678.
    [115] S. M. Barnett, Optical angular-momentum flux, J. Opt. B: Quantum Semiclassical Opt.,2002,4, S7-S16.
    [116] A. T. O’Neil, I. MacVicar, L. Allen and M. J. Padgett, Intrinsic and extrinsic nature of theorbital angular momentum of a light beam, Phys. Rev. Lett.,2002,88,053601.
    [117] V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer and K. Dholakia,Observation of the transfer of the local angular momentum density of a multiringed lightbeam to an optically trapped particle, Phys. Rev. Lett.,2003,91,093602.
    [118] Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin and D. T. Chiu, Spin-to-Orbitalangular momentum conversion in a strongly focused optical beam, Phys. Rev. Lett.,2007,99,073901.
    [119] M. E. Rose, Elementary Theory of Angular Momentum, New York: Wiley,1957,98-106.
    [120] S. J. van Enk and G. Nienhuis, Commutation rules and eigenvalues of spin and orbitalangular momentum of radiation fields, J. Mod. Opt.,1994,41,963-977.
    [121] J. D. Jackson, Classical Electrodynamics, New York: Wiley,1962,543-548.
    [122] J. A. Stratton, Electromagnetic Theory, MaGraw-Hill,1941,83-156.
    [123] M. H. L. Pryce, The mass-centre in the restricted theory of relativity and its connexionwith the quantum theory of elementary particles, Proc. R. Soc. Lond. A,1948,195,62-81.
    [124] M. Hawton and W. E. Baylis, Angular momentum and the geometrical gauge of localizedphoton states, Phys. Rev. A,2005,71,033816.
    [125] F. I. Fedorov, K teorii polnovo otrazenija, Dold. Akad. Nauk. SSSR,1955,105,465-467.
    [126] C. Imbert, Calculation and experimental proof of the transverse shift induced by totalinternal reflection of a circularly polarized light beam, Phys. Rev. D,1972,5,787-796.
    [1] C. F. Li, Representation theory for vector electromagnetic beams, Phys. Rev. A,2008,78,063831.
    [2] A. G. Fox and T. Li, Resonant modes in an optical maser, Proc. IRE(Correspondence),1961,48,1904-1905.
    [3] H. Kogelnik and T. Li, Laser beams and resonator, Appl. Opt.,1966,5,1550-1567.
    [4] D. G. Hall, Vector-beam solutions of Maxwell’s wave equation, Opt. Lett.,1996,21,9-11.
    [5] K. S. Youngworth and T. G. Brown, Focusing of high numerical aperture cylindrical vectorbeams, Opt. Express,2000,7,77-87.
    [6] Q. W. Zhan, Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt.Photon.,2009,1,1-57.
    [7] C. F. Li, Physical evidence for a new symmetry axis of electromagnetic beams, Phys. Rev. A,2009,79,053819.
    [8] O. Hosten and P. Kwiat, Observation of the spin hall effect of light via weak measurements,Science,2008,319,787-790.
    [9] A. I. Akchiezer and V. B. Berestekii, Quantum Electrodynamics, Interscience Publishers,New York,1965.
    [10] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, Photons and Atoms, New York: Wiley,1989,45-50.
    [11] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw and J. P. Woerdman, Orbital angularmomentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A,1992,45,8185-8189.
    [12] A. T. O’Neil, I. MacVicar, L. Allen and M. J. Padgett, Intrinsic and extrinsic nature of theorbital angular momentum of a light beam, Phys. Rev. Lett.,2002,88,053601.
    [13] V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer and K. Dholakia,Observation of the transfer of the local angular momentum density of a multiringed lightbeam to an optically trapped particle, Phys. Rev. Lett.,2003,91,093602.
    [14] L. Marrucci, C. Manzo and D. Paparo, Optical spin-to-orbital angular momentum conversionin inhomogeneous anisotropic media, Phys. Rev. Lett.,2006,96,163905.
    [15] Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin and D. T. Chiu, Spin-to-Orbitalangular momentum conversion in a strongly focused optical beam, Phys. Rev. Lett.,2007,99,073901.
    [16] S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. DeRosa, E. Genin, L. Milanoand E. Santarmato, Photon self-induced spin-to-orbital conversion in aterbium-gallium-garnet crystal at high laser power, Phys. Rev. A,2010,82,043806.
    [17] S. M. Barnett and L. Allen, Orbital angular momentum and nonparaxial light beams, Opt.Commun.,1994,110,670-678.
    [18] C. F. Li, Spin and orbital angular momentum of a class of nonparaxial light beams having aglobally defined polarization, Phys. Rev. A,2009,80,063914.
    [19] S. M. Barnett, Optical angular-momentum flux, J. Opt. B: Quantum semiclass. Opt.,2002,4,S7-S16.
    [20]廖延彪,偏振光学,科学出版社,2003,47-55.
    [21] D. N. Pattanayak and G. P. Agrawal, Representation of vector electromagnetic beams, Phys.Rev. A,1980,22,1159-1164.
    [22] A. F. Abouraddy and K. C. Toussaint. Jr, Three-dimensional polarization control inmicroscopy, Phys. Rev. Lett.,2006,96,153901.
    [23] R. C. Jones, A new calculus for the treatment of optical systems, J. Opt. Soc. Am.,1941,31,500-503.
    [24] V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii, Quantum Electrodynamics, Oxford:Pergamon,1982,1-14.
    [25] M. E. Rose, Elementary Theory of Angular Momentum, New York: Wiley,1957,98-106.
    [26] S. J. van Enk and G. Nienhuis, Commutation rules and eigenvalues of spin and orbitalangular momentum of radiation fields, J. Mod. Opt.,1994,41,963-977.
    [27] J. D. Jackson, Classical Electrodynamics, New York: Wiley,1962,543-548.
    [28] Q. W. Zhan, Properties of circularly polarized vortex beams, Opt. Lett.,2006,31,867-869.
    [1] J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A,1987,4,65l-654.
    [2] J. Durnin, J. J. Miceli, Jr. and J. H. Eberly, Diffraction-free beams, Phys. Rev. Lett.,1987,58,1499-1501.
    [3] Z. Bouchal, Nondiffracting optical beams: physical properties, experiments, and applications,Czech. J. Phys.,2003,53,537-624.
    [4] J. Turunen and A. T. Friberg, Propagation-invariant optical fields, Progress in Optics,2009,54,1-81.
    [5] J. C. Gutiérrez-Vega, M. D. Iturbe-Castullo and S. Chávez-Cerda, Alternative formulation forinvariant optical fields: Mathieu beams, Opt. Lett.,2000,25,1493-1495.
    [6] M. A. Bandres, J. C. Gutiérrez-Vega and S. Chávez-Cerda, Parabolic non-diffracting opticalwave fields, Opt. Lett.,2004,29,44-46.
    [7] E. Gawhary and S. Severini, Lorentz beams and symmetry properties in paraxial optics, J.Opt. A: Pure Appl. Opt.,2006,8,409-414.
    [8] J. C. Gutiérrez-Vega and C. López-Mariscal, Nondiffracting vortex beams with continuousorbital angular momentum order dependence, J. Opt. A: Pure Appl. Opt.,2008,10,015009.
    [9] Z. Bouchal and M. Olivík, Non-diffractive vector Bessel beams, J. Mod. Opt.,1995,42,1555-1566.
    [10] S. R. Mishra, A vector wave analysis of a Bessel beam, Opt. Commun.,1991,85,159-161.
    [11] J. Turunen and A. T. Friberg, Self-imaging and propagation-invariance in electromagneticfields, Pure Appl. Opt.,1993,2,51-60.
    [12] Z. Bouchal, J. Bajer and M. Bertolotti, Vectorial spectral analysis of the nonstationaryelectromagnetic field, J. Opt. Soc. Am. A,1998,15,2172-2181.
    [13] J. Bajer and R. Horák, Nondiffractive fields, Phys. Rev. E,1996,54,3052-3054.
    [14] J. Lekner, Invariants of three types of generalized Bessel beams, J. Opt. A: Pure Appl. Opt.,2004,6,837-843.
    [15] M. A. Bandres and J. C. Gutiérrez-Vega, Vector Helmholtz-Gauss and vector Laplace-Gaussbeams, Opt. Lett.,2005,30,2155-2157.
    [16] A. Chafiq, Z. Hricha and A. Belafhal, Propagation properties of vector Mathieu-Gauss beams,Opt. Commun.,2007,275,165-169.
    [17] L. W. Davis and G. Patsakos, TM and TE electromagnetic beams in free space, Opt. Lett.,1981,6,22-23.
    [18] D. G. Hall, Vector-beam solutions of Maxwell’s wave equation, Opt. Lett.,1996,21,9-11.
    [19] K. S. Youngworth and T. G. Brown, Focusing of high numerical aperture cylindrical vectorbeams, Opt. Express,2000,7,77-87.
    [20] Q. W. Zhan, Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt.Photon.,2009,1,1-57.
    [21] M. Lax, W. H. Louisell and W. B. McKnigh, From Maxwell to paraxial wave optics, Phys.Rev. A,1975,11,1365-1370.
    [22] C. F. Li, Representation theory for vector electromagnetic beams, Phys. Rev. A,2008,78,063831.
    [23] G. Scott and N. McArdle, Efficient generation of nearly diffraction-free beams using anaxicon, Opt. Eng.,1992,31,2640-2643.
    [24] J. Lu and J. F. Greenleaf, Nondiffracting X waves-exact solutions to free-space scalar waveequation and their finite aperture realizations, IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,1992,39,19-31.
    [25] J. Davila-Rodriguez and J. C. Gutiérrez-Vega, Helical Mathieu and Parabolic localized pulses,J. Opt. Soc. Am. A,2007,24,3449-3455.
    [26] A. Ciattoni, C. Conti and P. D. Porto, Vector electromagnetic X waves, Phys. Rev. E,2004,69,036608.
    [27] A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, Interscience Publishers,1965.
    [28] J. A. Stratton, Electromagnetic Theory, MaGraw-Hill,1941.
    [29] C. J. Zapata-Rodríguez and J. J. Miret, Diffraction-free beams in thin films, J. Opt. Soc. Am.A,2010,27,663-670.
    [30] S. J. van Enk and G. Nienhuis, Commutation rules and eigenvalues of spin and orbitalangular momentum of radiation fields, J. Mod. Opt.,1994,41,963-977.
    [31]同济大学数学教研室,高等数学,高等教育出版社,第四版,2001,297-298.
    [32] C. F. Li, Spin and orbital angular momentum of a class of nonparaxial light beams having aglobally defined polarization, Phys. Rev. A,2009,80,063914.
    [33] R. Martínez-Herrero, P. M. Mejías and G. Piquero, Characterization of Partially PolarizedLight Fields, Springer-Verlag,2009.
    [34] O. E. Gawhary and S. Severini, Localization and paraxiality of pseudo-nondiffracting fields,Opt. Commun.,2010,283,2481-2487.
    [1] R. Martínez-Herrero, P. M. Mejías and G. Piquero, Characterization of Partially PolarizedLight Fields, Springer-Verlag,2009.
    [2] K. S. Youngworth and T. G. Brown, Focusing of high numerical aperture cylindrical vectorbeams, Opt. Express,2000,7,77-87.
    [3] L. W. Davis and G. Patsakos, TM and TE electromagnetic beams in free space, Opt. Lett.,1981,6,22-23.
    [4] H. A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall, Inc.,1984,82-83.
    [5] M. Lax, W. H. Louisell and W. B. McKnigh, From Maxwell to paraxial wave optics, Phys.Rev. A,1975,11,1365-1370.
    [6] S. Nemoto, Nonparaxial Gaussian beams, Appl. Opt.,1990,29,1940-1946.
    [7] S. R. Seshadri, Quality of paraxial electromagnetic beams, Appl. Opt.,2006,45,5335-5345.
    [8] P. Vaveliuk, B. Ruiz and A. Lencina, Limits of the paraxial approximation in laser beams, Opt.Lett.,2007,32,927-929.
    [9] P. Vaveliuk, Quantifying the paraxiality for laser beams from theM2factor, Opt. Lett.,2009,34,340-342.
    [10] O. E. Gawhary and S. Severini, Degree of paraxiality for monochromatic light beams, Opt.Lett.,2008,33,1360-1362.P. Vaveliuk, Comment on “Degree of paraxiality for monochromatic light beams”, Opt. Lett.,2008,33,3004-3005.O. E. Gawhary and S. Severini, Reply to comment on “Degree of paraxiality formonochromatic light beams”, Opt. Lett.,2008,33,3006.
    [11] O. E. Gawhary and S. Severini, Dependence of the degree of paraxiality on field correlations,Opt. Lett.,2008,33,1866-1868.
    [12] O. E. Gawhary and S. Severini, Localization and paraxiality of pseudo-nondiffracting fields,Opt. Commun.,2010,283,2481-2487.
    [13] H. Kogelnik and T. Li, Laser beams and resonator, Proc. IEEE,1966,54,1312-1329.
    [14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press Inc.,1975.
    [15] J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A,1987,4,65l-654.
    [16] Z. Bouchal and M. Olivík, Non-diffractive vector Bessel beams, J. Mod. Opt.,1995,42,1555-1566.
    [17] H. Kogelnik and T. Li, Laser beams and resonator, Appl. Opt.,1966,5,1550-1567.
    [18] C. F. Li, Integral transformation solution of free-space cylindrical vector beams andprediction of modified Bessel–Gaussian vector beams, Opt. Lett.,2007,32,3543-3545.
    [1] C. F. Li, Representation theory for vector electromagnetic beams, Phys. Rev. A,2008,78,063831.
    [2] M. Lax, W. H. Louisell and W. B. McKnigh, From Maxwell to paraxial wave optics, Phys.Rev. A,1975,11,1365-1370.
    [3] G. Goubau and F. Schwering, On the guided propagation of electromagnetic wave beams, IRETrans. AP,1961,9,248-256.
    [4] L. W. Davis, Theory of electromagnetic beams, Phys. Rev. A,1979,19,1177-1179.
    [5] G. P. Agrawal and D. N. Pattanayak, Gaussian beam propagation beyond the paraxialapproximation, J. Opt. Soc. Am.,1979,69,575-578.
    [6] C. G. Chen, P. T. Konkola, J. Ferrera, R. K. Heilmann and M. L. Schattenburg, Analyses ofvector Gaussian beam propagation and the validity of paraxial and spherical approximations,J. Opt. Soc. Am. A,2002,19,404-412.
    [7]段开椋,吕百达,非傍轴光束级数修正解的有效性,中国激光,2002,31,432-436.
    [8] Q. W. Zhan, Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt.Photon.,2009,1,1-57.
    [9]梁昆淼,数学物理方法,第三版,高等教育出版社,1998,341.
    [10] C. F. Li, Physical evidence for a new symmetry axis of electromagnetic beams, Phys. Rev. A,2009,79,053819.
    [11] F. I. Fedorov, K teorii polnovo otrazenija, Dold. Akad. Nauk. SSSR,1955,105,465-467.
    [12] C. Imbert, Calculation and experimental proof of the transverse shift induced by totalinternal reflection of a circularly polarized light beam, Phys. Rev. D,1972,5,787-796.
    [13] O. Hosten and P. Kwiat, Observation of the spin hall effect of light via weak measurements,Science,2008,319,787-790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700