基于高斯和柱矢量光束光镊的微纳粒子光学捕获及操控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光镊是利用高度聚焦的激光微束形成的光学梯度力势阱来实现对微纳量级粒子的捕获与操控的技术,它所产生的皮牛量级的力正好适用于操控微纳量级的粒子。随着光镊技术的发展,它已经广泛应用在物理学、生物医学、化学以及精密加工等领域。随着这些领域的发展,人们对光学捕获和操控的效率、范围和精度等不断提出新的要求。本论文就是以满足这些新要求为目标,对粒子的精确定向操控、角向操控,以及多粒子的集体操控和分立操控等进行了相关研究,并引入新的捕获光模式,优化光镊系统性能。
     聚焦光斑形状和偏振状态是影响粒子定向操控的主要因素,本论文通过调整聚焦光斑形状和捕获光偏振态实现了三维方向上对粒子的定向操控,尤其是对生物粒子的定向操控。圆形光斑可以操控圆柱状粒子(生物粒子大肠杆菌和碳纳米管)使其完成竖直取向,而线形光斑可以操控圆柱状粒子使其水平取向。对于具有电学各向异性的粒子而言,如碳纳米管,其在光阱中的取向还受线偏振方向的影响。通过调节线偏振方向,能够按特定方式排列多根碳纳米管,使其沉积在衬底上并组装成固定结构。此外,利用激光携带能量这一特点,还成功地实现了对菲醌(PQ)的诱导定向生长。
     通过引入不同捕获光,改变捕获光强度分布等方法研究捕获光性质对光镊性能的影响。本论文利用液晶偏振转换器实现了两种具有特殊偏振和强度分布的柱矢量光束——方位角偏振光束和径向偏振光束,从理论和实验上分析了它们的聚焦特性。方位角偏振光束聚焦后整个聚焦场都是横向分布,轴上光强为零,形成中空环形光斑;而径向偏振光束则形成实心聚焦光斑,其尺寸小于一般高斯光束的聚焦光斑。将方位角偏振光束、径向偏振光束和高斯光束作为捕获光引入光镊系统,首次搭建了捕获模式间可互相切换的新型三模式光镊系统,分别测量了三种捕获模式下光镊系统的轴向和横向捕获效率。实验结果显示:径向偏振捕获光的轴向捕获效率依次大于方位角偏振光束和高斯光束,而横向捕获效率刚好相反,高斯捕获光带来的横向捕获效率依次大于方位角偏振光束和径向偏振光束。基于方位角偏振光束中空环形聚焦光斑的独特性,利用方位角偏振捕获光束分别实现了微米量级金属粒子的稳定捕获和对粒子位置的精细调控,扩大了光镊操控粒子的范围以及控制粒子的精度,并证明了方位角偏振捕获光的使用可以有效减少光镊对所操控粒子的热损伤。
     利用光束的角动量实现了对粒子的角向操控,并研究了引起光致旋转的机理及影响旋转速度的因素。自旋角动量引起的光致旋转可以使粒子获得较高的转速,通过调控激光功率可以控制粒子的旋转速度,溶液粘滞系数和粒子的几何尺寸也是影响旋转速度的重要因素。而轨道角动量引起的光致旋转则可以带动多粒子共同旋转。随后,我们提出了利用主动粒子带动从动粒子旋转和定向的新方法,并成功运用该方法实现了生物粒子大肠杆菌和碳纳米管的旋转。此外,根据其中一种主动粒子Rubrene微粒特有的荧光性质,提出了分选和操控其他荧光微粒的构想。
     采用传统单光阱光镊系统实现了微米量级和纳米量级多粒子的集体捕获和操控,其中纳米粒子的聚集数量的动态变化过程是由粒子极性和热扩散情况决定的。此外还实现了多个粒子的聚集翻转。提出利用棱镜对生成一维光束阵列(包括一维中空光束阵列和一维线形阵列)的简单、廉价的实验方法,并利用其作为光源构建了新型的多光阱光镊系统,初步实现了多粒子的分立捕获和操控。
Optical tweezers are the beam gradient optical traps where micro particles could be trapped by focusing the laser beam using a microscope objective. The gradient force generated by optical tweezers is suitable to trap and manipulate micro- and nano- particles. Optical tweezers had become a versatile tool for researches in many science fields including physics, biomedicine, and fine machining. With the development of these fields, there are new needs to optical tweezers technique. In this thesis, we realized the orientation and angular manipulation of particles, the collective and separate manipulation of multi-particle to meet these increasing requests. We also had introduced new trapping beam mode to optimize system performance.
     The shape of the optical trap and the polarization of the laser are important factors for the orientating manipulation of particles. Orientating manipulation of particles especially biological particles were performed in three-dimension by optical tweezers. Vertical and horizontal manipulations of cylindrical particles (Escherichia coli and carbon nanotubes) were achieved by dot-shaped and line-shaped optical trap. The particles with the anisotropic electric characters such as carbon nanotubes (CNTs) could be orientated by linear polarized optical trap. CNTs could be oriented and assembled in the two-dimensional plane by controlling the polarization direction. By using of the highly focused heat energy at the optical trap, orientating grown of phenanthrenequinone (PQ) was realized successfully by optical tweezers.
     The properties of trapping beam are the main factor which influencing the system performance of optical tweezers. Cylindrical-vector beams including azimuthally polarized beam and radially polarized beam were formed by the liquid-crystal polarization converter. The intensity distribution near the focal region of these beams were calculated and analyzed theoretically and then verified experimentally. The azimuthally polarized beam is distinguished by a purely transverse annular focal region, and the radially polarized beam is distinguished by its longitudinal field at high numerical apertures. The focus spot size of radially polarized beam is smaller than the focused Gauss beam. We had constructed a new three-mode optical tweezers system, which consisted of the azimuthally polarized trapping beam, the radially polarized trapping beam, and the Gauss trapping beam. The radial and axial trapping efficiency were measured under these three trapping modes, respectively. In axial direction, the radially polarized trapping beam resulted in the best trapping, followed by azimuthally polarized trapping beam and Gauss trapping beam in the order. On the contrary, the Gauss trapping beam resulted in the best trapping in radial direction. Due to the unique hollow focus spot, the stable trapping of metallic particles and fine controlling of particles were demonstrated by azimuthally polarized trapping beam. In addition, azimuthally polarized trapping beam could improve the trapping effect while reducing the risk heat damage.
     Angular manipulations of particles were achieved by optical tweezers due to the transfer of angular momentum from light to particles. We had discussed the principle of the light-induced rotation caused by spin angular manipulation. The results showed that the rotation speed depended on the incident laser power, the size and the rotational symmetry of the particles. The rotation speed of particles induced by spin angular momentum of light was higher than that caused by orbital angular momentum. And optical rotation induced by orbital angular momentum could promote multi-particle co-rotating. Then we had proposed a novel method to rotate driven particles via combining it with drive particles. Most importantly, there were no special requirements for the shape of the driven particles. The biological particle (E. coli) and CNTs can be continuous rotated by optical tweezers using this method. Moreover, the Rubrene particles could emit strong fluorescence exciting by the laser at the wavelength of 532nm, and it could provide a potential application to sort and manipulate other particles with the fluorescence characteristics.
     The collective trapping and manipulation of micro- and nano- multi-particle were achieved by traditional single optical trap system. The molecular polarization and thermal diffusion of nanoparticles played crucial roles in the light-induced agglomeration and diffusion process. Moreover, we had proposed a simple and inexpensive method to achieve one-dimension beam array including Gauss beam, hollow core beam and line-shape beam using a couple of prisms. A novel multi-trap optical tweezers system was constructed by inserting a couple of prisms based on the previous traditional optical tweezers system. The separate optical trapping and manipulation of multi-particle were achieved preliminary by this new system.
引文
1 K. Svoboda and S. K. Block. Biological Application of Optical Forces. Annu. Rev. Biophys. Biomol. Struct. 1994, 23: 247-285.
    2 A. Ashkin. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 1970, 24: 156-159.
    3 S. H. Xu, Y. M. Li, L. R. Lou, H. T. Chen, and Z. W. Sun. Steady Patterns of Microparticles Formed by Optical Tweezers. Jpn. J. Appl. Phys. 2002, 41(1): 166-168.
    4 C. X. Liu, H. L. Guo, Y. Q. Jiang, Z. L. Li, B. Y. Cheng, and D. Z. Zhang. Effect of Optical Magnifications on the Displacement Measurements in Optical Tweezers System. Acta Phys. Sinica. 2005, 54(3): 1162-1166.
    5 H. L. Guo, X. C. Yao, Z. L. Li, B. Y. Cheng, X. H. Han, and D. Z. Zhang. Measurements of Displacement and Trapping Force on Micron-Sized Particles in Optical Tweezers System. Sci. China Ser. A. 2002, 45(7): 919-925.
    6 E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksor, and A. Graneli. A Microfluidic Device for Reversible Environmental Changes around Single Cells Using Optical Tweezers for Cell Selection and Positioning. Lab on a Chip. 2010, 10(5): 617-625.
    7 H. C. Lin and L. Hsu. Study of the Line Optical Tweezers Characteristics Using a Novel Method and Establishing a Model for Cell Sorting. Jpn. J. Appl. Phys. 2009, 48(7): 072502.
    8 E. Eriksson, D. Engstrom, J. Scrimgeour, and M. Goksor. Automated Focusing of Nuclei for Time Lapse Experiments on Single Cells Using Holographic Optical Tweezers. Opt. Express. 2009, 17(7): 5585-5594.
    9 T. T. Perkins. Optical Traps for Single Molecule Biophysics: A Primer. Laser & Photonics Rev. 2009, 3(1-2): 203-220.
    10 H. D. Ou-Yang and M. T. Wei. Complex Fluids: Probing Mechanical Properties of Biological Systems with Optical Tweezers. Annu. Rev. Phys. Chem. 2010, 61: 421-440.
    11 A. Ashkin and J. M. Dziedzic. Optical Levitation by Radiation Pressure. Appl.Phys. Lett. 1971, 19: 283-285.
    12 A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 1986, 11(5): 288-290.
    13 K. C. Neuman and S. M. Block. Optical Trapping. Rev. Sci. Instrum. 2004, 75(9): 2787-2809.
    14 A. Ashkin. Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime. Biophys. J. 1992, 61(2): 569-582.
    15 L. A. Ambrosio and H. E. Hernandez-Figueroa. Trapping Double Negative Particles in the Ray Optics Regime Using Optical Tweezers with Focused Beams. Opt. Express. 2009, 17(24): 21918-21924.
    16 J. P. Barton, D. R. Alexander, and S. A. Schaub. Theoretical Determination of Net-Radiation Force and Torque for a Spherical-Particle Illuminated by a Focused Laser-Beam. J. Appl. Phys. 1989, 66(10): 4594-4602.
    17 G. Gouesbet, B. Maheu, and G. Grehan. Light-Scattering from a Sphere Arbitrarily Located in a Gaussian-Beam, Using a Bromwich Formulation. J. Opt. Soc. Am. A. 1988, 5(9): 1427-1443.
    18 J. A. Lock and G. Gouesbet. Generalized Lorenz-Mie Theory and Applications. J. Quant. Spectrosc. Radiat. Transfer. 2009, 110(11): 800-807.
    19 G. Gouesbet. Generalized Lorenz-Mie Theory and Applications. Part. Part. Syst. Char. 1994, 11(1): 22-34.
    20 R. W. Steubing, S. Cheng, W. H. Wright, Y. Numajiri, and M. W. Berns. Laser-Induced Cell-Fusion in Combination with Optical Tweezers - the Laser Cell-Fusion Trap. Cytometry. 1991, 12(6): 505-510.
    21 B. Richards and E. Wolf. Electromagnetic Diffraction in Optical Systems Ii. Structure of the Image Field in an Aplanatic System. Proc. R. Soc. A. 1959, 253: 358-379.
    22 Y. Harada and T. Asakura. Radiation Forces on a Dielectric Sphere in the Rayleigh Scattering Regime. Opt. Commun. 1996, 124(5-6): 529-541.
    23 Y. K. Nahmias and D. J. Odde. Analysis of Radiation Forces in Laser Trapping and Laser-Guided Direct Writing Applications. IEEE J. Quantum Electron. 2002, 38(2): 131-141.
    24 G. Gouesbet. Debye Series Formulation for Generalized Lorenz-Mie Theory with the Bromwich Method. Part. Part. Syst. Char. 2004, 20(6): 382-386.
    25 M. Persson, D. Engstrom, A. Frank, J. Backsten, J. Bengtsson, and M. Goksor. Minimizing Intensity Fluctuations in Dynamic Holographic Optical Tweezers by Restricted Phase Change. Opt. Express. 2010, 18(11): 11250-11263.
    26 A. Farre, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde. Stretching Single DNA Molecules to Demonstrate High-Force Capabilities of Holographic Optical Tweezers. J. Biophotonics. 2010, 3(4): 224-233.
    27 F. Schaal, M. Warber, S. Zwick, H. van der Kuip, T. Haist, and W. Osten. Marker-Free Cell Discrimination by Holographic Optical Tweezers. J. Eur. Opt. Soc. 2009, 4: 09028.
    28 J. A. Grieve, A. Ulcinas, S. Subramanian, G. M. Gibson, M. J. Padgett, D. M. Carberry, and M. J. Miles. Hands-on with Optical Tweezers: A Multitouch Interface for Holographic Optical Trapping. Opt. Express. 2009, 17(5): 3595-3602.
    29 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354(6348): 56-58.
    30 C. Shi, Y. Zhang, C. Gu, L. Seballos, and J. Z. Zhang. Manipulation and Light-Induced Agglomeration of Carbon Nanotubes through Optical Trapping of Attached Silver Nanoparticles. Nanotechnology. 2008, 19(21): 215304.
    31 M. Khan, A. K. Sood, S. K. Mohanty, P. K. Gupta, G. V. Arabale, K. Vijaymohanan, and C. N. R. Rao. Optical Trapping and Transportation of Carbon Nanotubes Made Easy by Decorating with Palladium. Opt. Express. 2006, 14(1): 424-429.
    32 S. D. Tan, H. A. Lopez, C. W. Cai, and Y. G. Zhang. Optical Trapping of Single-Walled Carbon Nanotubes. Nano Lett. 2004, 4(8): 1415-1419.
    33 O. M. Marago, P. G. Gucciardi, F. Bonaccorso, G. Calogero, V. Scardaci, A. G. Rozhin, A. C. Ferrari, P. H. Jones, R. Saija, F. Borghese, P. Denti, and M. A. Iati. Optical Trapping of Carbon Nanotubes. Physica E-Low-Dimensional Systems & Nanostructures. 2008, 40(7): 2347-2351.
    34 P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt. Optical Trapping and Integration of Semiconductor NanowireAssemblies in Water. Nat. Mater. 2006, 5(2): 97-101.
    35 A. Graneli, E. Eriksson, J. Enger, K. Ramser, M. Goksor, S. Hohmann, and D. Hanstorp. A Micro-Fluidic System for Studies of Stress Response in Single Cells Using Optical Tweezers. Optical Trapping and Optical Micromanipulation III. 2006, 6326: 142-150.
    36 E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstrop, and M. Goksor. Optical Manipulation and Microfluidics for Studies of Single Cell Dynamics. J. Opt. A. 2007, 9(8): 113-121.
    37 N. Reihani, L. Bosanac, T. M. Hansen, and L. B. Oddershede. Stretching Short DNA Tethers Using Optical Tweezers. Optical Trapping and Optical Micromanipulation III. 2006, 6326: 501-508.
    38 C. U. Murade, V. Subramaniam, C. Otto, and M. L. Bennik. Combination of Optical Tweezers and Fluorescence Microscopy to Study DNA Protein Interactions. Biophys. J. 2007: 50-51.
    39 Y. F. Chen, G. Blab, and J. C. Meiners. Stretching Sub-Micron DNA Fragments with Optical Tweezers. Biophys. J. 2007: 166.
    40 M. J. McCauley and M. C. Williams. Mechanisms of DNA Binding Determined in Optical Tweezers Experiments. Biopolymers. 2007, 85(2): 154-168.
    41 K. Visscher, M. J. Schnitzer, and S. M. Block. Single Kinesin Molecules Studied with a Molecular Force Clamp. Nature. 1999, 400(6740): 184-189.
    42 M. J. Schnitzer, K. Visscher, and S. M. Block. Force Production by Single Kinesin Motors. Nature Cell Biology. 2000, 2(10): 718-723.
    43 K. Visscher, M. J. Schnitzer, and S. M. Block. Mechanism of Force Production by Single Kinesin Molecules. Biophys. J. 2000, 78(1): 121-121.
    44 C. Bustamante, S. B. Smith, J. Liphardt, and D. Smith. Single-Molecule Studies of DNA Mechanics. Curr. Opin. Struc. Biol. 2000, 10(3): 279-285.
    45 C. Veigel, L. M. Coluccio, J. D. Jontes, J. C. Sparrow, R. A. Milligan, and J. E. Molloy. The Motor Protein Myosin-I Produces Its Working Stroke in Two Steps. Nature. 1999, 398(6727): 530-533.
    46 K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block. Direct Observation of Kinesin Stepping by Optical Trapping Interferometry. Nature. 1993, 365(6448): 721-727.
    47 M. S. Z. Kellermayer, S. Smith, C. Bustamante, and H. L. Granzier. Force-Driven Folding and Unfolding Transitions in Single Titin Molecules Single Polymer Strand Manipulation. Structure and Dynamics of Confined Polymers. 2002, 87: 311-326.
    48 M. S. Z. Kellermayer, S. Smith, C. Bustamante, and H. L. Granzier. Mechanical Manipulation of Single Titin Molecules with Laser Tweezers. Elastic Filaments of the Cell. 2000, 481: 111-128.
    49 M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante. Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser Tweezers. Science. 1997, 276(5315): 1112-1116.
    50 Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh. Tying a Molecular Knot with Optical Tweezers. Nature. 1999, 399(6735): 446-448.
    51 X. W. Zhuang and M. Rief. Single-Molecule Folding. Curr. Opin. Struc. Biol. 2003, 13(1): 88-97.
    52 F. Gallet. Applications of Optical Tweezers and Microspheres for the Micromanipulation of Biomolecules and Cells. Annales De Biologie Clinique. 2004, 62(1): 85-86.
    53 Y. Arai, R. Yasuda, Y. Harada, H. Itoh, and K. Kinosita. Tying a Molecular Knot: Measurement of Bending Stiffness and Fracture Stress of an Actin Filament at Controlled Curvatures. Biophys. J. 1999, 76(1): A40-A40.
    54 H. W. Wang, X. H. Liu, Y. M. Li, B. Han, L. R. Lou, and K. J. Wang. Isolation of a Single Rice Chromosome by Optical Micromanipulation. J. Opt. A. 2004, 6(1): 89-93.
    55盖保康,程关锠,郑道声.激光剪和激光镊在细胞生物学中的应用.应用激光. 1998, 18(6): 283-285.
    56 E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor. Holographic Optical Tweezers Combined with a Microfluidic Device for Exposing Cells to Fast Environmental Changes - Art. Bioengineered and Bioinspired Systems III. 2007, 6592: 5920.
    57 M. Goksor, J. Enger, K. Ramser, and D. Hanstorp. An Experimental Setup for Combining Optical Tweezers and Laser Scalpels with Advanced ImagingTechniques. Microarrays and Combinatorial Technologies for Biomedical Applications: Design, Fabrication, and Analysis. 2003, 4966: 50-57.
    58 J. H. G. Huisstede, V. Subramaniam, and M. L. Bennink. Combining Optical Tweezers and Scanning Probe Microscopy to Study DNA-Protein Interactions. Microsc. Res. Tech. 2007, 70(1): 26-33.
    59 C. S. Buer, K. T. Gahagan, A. Grover, and P. J. Weathers. Insertion of Agrobacterium Rhizogenes into Ginkgo Biloba Using Lasers as Optical Tweezers and Scalpel. Plant Physiol. 1997, 114(3): 1613-1613.
    60 H. Liang, W. H. Wright, S. Cheng, W. He, and M. W. Berns. Micromanipulation of Chromosomes in Ptk2 Cells Using Laser Microsurgery (Optical Scalpel) in Combination with Laser-Induced Optical Force (Optical Tweezers). Exp. Cell Res. 1993, 204(1): 110-120.
    61李岩,张书练,孟祥旺,张志诚,欧家鸣,刘静华.激光微束细胞操作系统.激光技术. 2001, 25(2): 90-94.
    62 M. B. Einarson and J. C. Berg. Electrosteric Stabilization of Colloidal Latex Dispersions. J. Colloid Interface Sci. 1993, 155(1): 165-172.
    63 R. Amal, J. R. Coury, J. A. Raper, W. P. Walsh, and T. D. Waite. Structure and Kinetics of Aggregating Colloidal Hematite. Colloids Surf. 1990, 46(1): 1-19.
    64 J. C. Crocker. Measurement of the Hydrodynamic Corrections to the Brownian Motion of Two Colloidal Spheres. J. Chem. Phys. 1997, 106(7): 2837-2840.
    65 B. H. Lin, J. Yu, and S. A. Rice. Direct Measurements of Constrained Brownian Motion of an Isolated Sphere between Two Walls. Phys. Rev. E. 2000, 62(3): 3909-3919.
    66 J. C. Crocker and D. G. Grier. When Like Charges Attract: The Effects of Geometrical Confinement on Long-Range Colloidal Interactions. Phys. Rev. Lett. 1996, 77(9): 1897-1900.
    67 J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh. Entropic Attraction and Repulsion in Binary Colloids Probed with a Line Optical Tweezer. Phys. Rev. Lett. 1999, 82(21): 4352-4355.
    68 E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier. Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface. Phys. Rev. Lett. 2000, 85(15): 3317-3320.
    69 R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. Entropic Colloidal Interactions in Concentrated DNA Solutions. Phys. Rev. Lett. 1998, 81(18): 4004-4007.
    70 S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, F. Bonaccorso, K. P. Bohnen, H. von Lohneysen, M. M. Kappes, P. M. Ajayan, M. C. Hersam, A. C. Ferrari, and R. Krupke. Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene. Nano Lett. 2010, 10(5): 1589-1594.
    71 F. F. Zhou, D. Xing, B. Y. Wu, S. N. Wu, Z. M. Ou, and W. R. Chen. New Insights of Transmembranal Mechanism and Subcellular Localization of Noncovalently Modified Single-Walled Carbon Nanotubes. Nano Lett. 2010, 10(5): 1677-1681.
    72 J. A. Weldon, B. Aleman, A. Sussman, W. Gannett, and A. K. Zettl. Sustained Mechanical Self-Oscillations in Carbon Nanotubes. Nano Lett. 2010, 10(5): 1728-1733.
    73 Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang. Highly Sensitive Surface-Enhanced Raman Scattering Substrate Made from Superaligned Carbon Nanotubes. Nano Lett. 2010, 10(5): 1747-1753.
    74 S. Lyonnais, C. L. Chung, L. Goux-Capes, C. Escude, O. Pietrement, S. Baconnais, E. Le Cam, J. P. Bourgoin, and A. Filoramo. A Three-Branched DNA Template for Carbon Nanotube Self-Assembly into Nanodevice Configuration. Chem. Commun. 2009, (6): 683-685.
    75 P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley. Nanotube Nanodevice. Science. 1997, 278(5335): 100-103.
    76 L. X. Benedict, S. G. Louie, and M. L. Cohen. Static Polarizabilities of Single-Wall Carbon Nanotubes. Phys. Rev. B. 1995, 52(11): 8541-8549.
    77 B. Kozinsky and N. Marzari. Static Dielectric Properties of Carbon Nanotubes from First Principles. Phys. Rev. Lett. 2006, 96(16): 166801.
    78 M. Ichida, S. Mizuno, K. Tani, Y. Saito, and A. Nakamura. Exciton Effects of Optical Transitions in Single-Wall Carbon Nanotubes. J. Phys. Soc. Jpn. 1999, 68(10): 3131-3133.
    79胡慧君,王蜀霞,杨云青,牛君杰,饶早英.碳纳米管光学各向异性的解释.材料导报. 2007, 21: 125-126.
    80 M. Stalder and M. Schadt. Linearly Polarized Light with Axial Symmetry Generated by Liquid-Crystal Polarization Converters. Opt. Lett. 1996, 21(23): 1948-1950.
    81 Y. Kozawa and S. Sato. Optical Trapping of Micrometer-Sized Dielectric Particles by Cylindrical Vector Beams. Opt. Express. 2010, 18(10): 10828-10833.
    82 F. Wang, M. Xiao, K. Sun, and Q. H. Wei. Generation of Radially and Azimuthally Polarized Light by Optical Transmission through Concentric Circular Nanoslits in Ag Films. Opt. Express. 2010, 18(1): 63-71.
    83 X. M. Gao, S. Hu, and J. Wang. Optical Manipulation of Azimuthally Polarized Beam Altered by Phase Plate. Proceedings of the International Conference on Biomedical Engineering and Informatics. 2008, 2: 657-661.
    84 K. Yonezawa, Y. Kozawa, and S. Sato. Focusing of Radially and Azimuthally Polarized Beams through a Uniaxial Crystal. J. Opt. Soc. Am. A. 2008, 25(2): 469-472.
    85 K. Yonezawa, Y. Kozawa, T. Nakamura, and S. Sato. Generation of a Radially Polarized Nd : Yvo4 Laser Beam. Eighth Conference on Optics. 2007, 6785: 78507-78507.
    86 H. Kano, S. Mizuguchi, and S. Kawata. Excitation of Surface-Plasmon Polaritons by a Focused Laser Beam. J. Opt. Soc. Am. B. 1998, 15(4): 1381-1386.
    87 B. Hafizi, E. Esarey, and P. Sprangle. Laser-Driven Acceleration with Bessel Beams. Phys. Rev. E. 1997, 55(3): 3539-3545.
    88 Y. I. Salamin. Acceleration in Vacuum of Bare Nuclei by Tightly Focused Radially Polarized Laser Light. Opt. Lett. 2008, 33(15): 1662-1662.
    89 Y. I. Salamin. Acceleration in Vacuum of Bare Nuclei by Tightly Focused Radially Polarized Laser Light. Opt. Lett. 2007, 32(23): 3462-3464.
    90 V. G. Niziev and A. V. Nesterov. Influence of Beam Polarization on Laser Cutting Efficiency. J. Phys. D. 1999, 32(13): 1455-1461.
    91 Q. W. Zhan. Radiation Forces on a Dielectric Sphere Produced by HighlyFocused Cylindrical Vector Beams. J. Opt. A. 2003, 5(3): 229-232.
    92 Q. W. Zhan and J. R. Leger. Focus Shaping Using Cylindrical Vector Beams. Opt. Express. 2002, 10(7): 324-331.
    93 F. Peng, B. L. Yao, S. H. Yan, W. Zhao, and M. Lei. Trapping of Low-Refractive-Index Particles with Azimuthally Polarized Beam. J. Opt. Soc. Am. B. 2009, 26(12): 2242-2247.
    94 Y. J. Zhang. Simple and Rigorous Analytical Expression of the Propagating Field Behind an Axicon Illuminated by an Azimuthally Polarized Beam. Appl. Optics. 2007, 46(29): 7252-7257.
    95 K. Sakai, K. Kitamura, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda. Radially Polarized Doughnut Beam Emitted by a Two-Dimensional Photonic-Crystal Laser. Conference on Lasers & Electro-Optics/Quantum Electronics and Laser Science Conference. 2007, 1-5: 261-262.
    96 S. H. Yan and B. L. Yao. Accurate Description of a Radially Polarized Gaussian Beam. Phys. Rev. A. 2008, 77(2): 023827.
    97 G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel. Spatially-Variable Retardation Plate for Efficient Generation of Radially- and Azimuthally- Polarized Beams. Opt. Commun. 2008, 281(4): 732-738.
    98 I. Moshe, S. Jackel, and A. Meir. Production of Radially or Azimuthally Polarized Beams in Solid-State Lasers and the Elimination of Thermally Induced Birefringence Effects. Opt. Lett. 2003, 28(10): 807-809.
    99 T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf. Polarization-Selective Grating Mirrors Used in the Generation of Radial Polarization. Appl. Phys. B. 2005, 80(6): 707-713.
    100 Y. Kozawa and S. Sato. Generation of a Radially Polarized Laser Beam by Use of a Conical Brewster Prism. Opt. Lett. 2005, 30(22): 3063-3065.
    101 R. Dorn, S. Quabis, and G. Leuchs. Sharper Focus for a Radially Polarized Light Beam. Phys. Rev. Lett. 2003, 91(23): 233901.
    102 S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs. Focusing Light to a Tighter Spot. Opt. Commun. 2000, 179(1-6): 1-7.
    103 K. S. Youngworth and T. G. Brown. Focusing of High Numerical Aperture Cylindrical-Vector Beams. Opt. Express. 2000, 7(2): 77-87.
    104 T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop. Forces in Optical Tweezers with Radially and Azimuthally Polarized Trapping Beams. Opt. Lett. 2008, 33(2): 122-124.
    105 H. Felgner, O. Muller, and M. Schliwa. Calibration of Light Forces in Optical Tweezers. Appl. Optics. 1995, 34(6): 977-982.
    106 H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato. Calculation of Optical Trapping Forces on a Dielectric Sphere in the Ray Optics Regime Produced by a Radially Polarized Laser Beam. Opt. Lett. 2007, 32(13): 1839-1841.
    107 P. C. Chaumet and M. Nieto-Vesperinas. Time-Averaged Total Force on a Dipolar Sphere in an Electromagnetic Field. Opt. Lett. 2000, 25(15): 1065-1067.
    108 P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede. Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Lett. 2005, 5(10): 1937-1942.
    109 M. E. J. Friese, J. Enger, H. RubinszteinDunlop, and N. R. Heckenberg. Optical Angular-Momentum Transfer to Trapped Absorbing Particles. Phys. Rev. A. 1996, 54(2): 1593-1596.
    110 J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett. Rotational Frequency Shift of a Light Beam. Phys. Rev. Lett. 1998, 81(22): 4828-4830.
    111 J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J. Padgett. Measurement of the Rotational Frequency Shift Imparted to a Rotating Light Beam Possessing Orbital Angular Momentum. Phys. Rev. Lett. 1998, 80(15): 3217-3219.
    112 P. Galajda and P. Ormos. Rotation of Microscopic Propellers in Laser Tweezers. J. Opt. B. 2002, 4(2): 78-81.
    113 P. Galajda and P. Ormos. Complex Micromachines Produced and Driven by Light. Appl. Phys. Lett. 2001, 78(2): 249-251.
    114 L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman. Orbital Angular-Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Phys. Rev. A. 1992, 45(11): 8185-8189.
    115 T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, andH. Rubinsztein-Dunlop. Optical Angular Momentum Transfer to Microrotors Fabricated by Two-Photon Photopolymerization. New J. Phys. 2009, 11: 093021.
    116 K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia. Orbital Angular Momentum of a High-Order Bessel Light Beam. J. Opt. B. 2002, 4(2): 82-89.
    117 K. Dholakia, G. Spalding, and M. MacDonald. Optical Tweezers: The Next Generation. Phys. World. 2002, 15(10): 31-35.
    118 N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett. Mechanical Equivalence of Spin and Orbital Angular Momentum of Light: An Optical Spanner. Opt. Lett. 1997, 22(1): 52-54.
    119 A. T. O'Neil and M. J. Padgett. Rotational Control within Optical Tweezers by Use of a Rotating Aperture. Opt. Lett. 2002, 27(9): 743-745.
    120 V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett. Optically Controlled Three-Dimensional Rotation of Microscopic Objects. Appl. Phys. Lett. 2003, 82(5): 829-831.
    121 K. Dholakia, M. MacDonald, S. Neale, S. McGreehin, L. Paterson, and T. F. Krauss. Novel Optical Micromanipulation and Rotation in Microfluidic Environments. IEEE LEOS Annual Meeting Conference Proceedings. 2005: 374-375.
    122 L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia. Controlled Rotation of Optically Trapped Microscopic Particles. Science. 2001, 292(5518): 912-914.
    123 T. A. Nieminen, T. Asavei, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop. Symmetry and the Generation and Measurement of Optical Torque. J. Quant. Spectrosc. Radiat. Transfer. 2009, 110(14-16): 1472-1482.
    124 T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop. Optical Measurement of Microscopic Torques. J. Mod. Opt. 2001, 48(3): 405-413.
    125 K. D. Bonin, B. Kourmanov, and T. G. Walker. Light Torque Nanocontrol, Nanomotors and Nanorockers. Opt. Express. 2002, 10(19): 984-989.
    126 E. Higurashi, R. Sawada, and T. Ito. Optically Induced Angular Alignment ofTrapped Birefringent Micro-Objects by Linearly Polarized Light. Phys. Rev. E. 1999, 59(3): 3676-3681.
    127 S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa. High-Efficiency Optical Transfer of Torque to a Nematic Liquid Crystal Droplet. Appl. Phys. Lett. 2003, 82(26): 4657-4659.
    128 M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp. Optically Driven Micromachine Elements. Appl. Phys. Lett. 2001, 78(4): 547-549.
    129 J. Han, A. Globus, R. Jaffe, and G. Deardorff. Molecular Dynamics Simulations of Carbon Nanotube-Based Gears. Nanotechnology. 1997, 8(3): 95-102.
    130 C. Q. Gao, G. H. Wei, and H. Weber. Orbital Angular Momentum of the Laser Beam and the Second Order Intensity Moments. Sci. China Ser. A. 2000, 43(12): 1306-1311.
    131 F. Arai, K. Onda, R. Iitsuka, and H. Maruyama. Multi-Beam Laser Micromanipulation of Microtool by Integrated Optical Tweezers. IEEE International Conference on Robotics and Automation. 2009, 1-7: 2779-2784.
    132 Y. Tanaka, H. Kawada, S. Tsutsui, M. Ishikawa, and H. Kitajima. Dynamic Micro-Bead Arrays Using Optical Tweezers Combined with Intelligent Control Techniques. Opt. Express. 2009, 17(26): 24102-24111.
    133 P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad. Interactive Light-Driven and Parallel Manipulation of Inhomogeneous Particles. Opt. Express. 2002, 10(26): 1550-1556.
    134 P. T. Korda, M. B. Taylor, and D. G. Grier. Kinetically Locked-in Colloidal Transport in an Array of Optical Tweezers. Phys. Rev. Lett. 2002, 89(12): 128301.
    135 N. G. Dagalakis, T. LeBrun, and J. Lippiatt. Micro-Mirror Array Control of Optical Tweezer Trapping Beams. IEEE Conference on Nanotechnology. 2002: 177-180.
    136 J. M. Tam, I. Biran, and D. R. Walt. Parallel Microparticle Manipulation Using an Imaging Fiber-Bundle-Based Optical Tweezer Array and a Digital Micromirror Device. Appl. Phys. Lett. 2006, 89(19): 194101.
    137 J. M. Tam, I. Biran, and D. R. Walt. An Imaging Fiber-Based Optical TweezerArray for Microparticle Array Assembly. Appl. Phys. Lett. 2004, 84(21): 4289-4291.
    138 V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan. Multi Force Optical Tweezers to Generate Gradients of Forces. Opt. Express. 2004, 12(17): 3906-3910.
    139 M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia. Creation and Manipulation of Three-Dimensional Optically Trapped Structures. Science. 2002, 296(5570): 1101-1103.
    140 E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block. Direct Observation of Base-Pair Stepping by Rna Polymerase. Nature. 2005, 438(7067): 460-465.
    141 D. G. Grier. A Revolution in Optical Manipulation. Nature. 2003, 424(6950): 810-816.
    142 J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley. Fullerene Pipes. Science. 1998, 280(5367): 1253-1256.
    143 S. Duhr and D. Braun. Why Molecules Move Along a Temperature Gradient. Proc. Natl. Acad. Sci. U.S.A. 2006, 103(52): 19678-19682.
    144 S. Duhr and D. Braun. Two-Dimensional Colloidal Crystals Formed by Thermophoresis and Convection. Appl. Phys. Lett. 2005, 86(13): 131921.
    145 S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss. Inexpensive Optical Tweezers for Undergraduate Laboratories. Am. J. Phys. 1999, 67(1): 26-35.
    146 E. J. G. Peterman, F. Gittes, and C. F. Schmidt. Laser-Induced Heating in Optical Traps. Biophys. J. 2003, 84(2): 1308-1316.
    147 S. Berber, Y. K. Kwon, and D. Tomanek. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 2000, 84(20): 4613-4616.
    148 F. Caruso, R. A. Caruso, and H. Mohwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science. 1998, 282(5391): 1111-1114.
    149 L. Arthur, A. Read, M. Wong, and G. E. Reesor. Displacement of anElecromagnetic Beam Upon Reflection from a Dielectric Slab. J. Opt. Soc. Am. A. 1978, 68: 319-323.
    150 E. R. Dufresne and D. G. Grier. Optical Tweezer Arrays and Optical Substrates Created with Diffractive. Optics. Rev. Sci. Instrum. 1998, 69(5): 1974-1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700