高功率板条CO_2激光器射频放电技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率射频板条CO2激光器是工业应用CO2激光器非常重要的一种类型,已经成为激光焊接和切割的主力光源和重要发展方向。本文针对高功率板条CO2激光器的射频放电特性,系统分析并实验研究了射频激励气体放电特性、大功率射频电源及传输匹配、大面积射频放电的平板电极、激光器功率控制及抗干扰措施。论文主要内容包括以下几个方面:(1)根据射频放电气体理论模型,指出射频激励板条激光器需工作在a放电模式,给出了一维射频放电模型。通过实验分析激励频率对放电特性的影响,主要包括频率对击穿电压的影响、频率对射频辉光放电区结构的影响,在此基础上总结了一些选择放电频率的规律。在大量实验数据的基础上给出了气体配比和气压选择的方法。(2)针对高功率射频板条CO2激光器的射频功率源的要求,设计了基于电子管的大功率自激式射频电源,包括直流高压回路、灯丝加热电路、栅极调制电路以及产生射频功率的振荡放大电路。在振荡和功放电路部分,计算了电子管的工作模型和元件参数。确定了射频电源和放电负载直流的阻抗匹配方案,并给出了计算匹配参数的方法。提出了纵向采用并联谐振电感的均压方式,当电极纵向和横向分别为中间馈入和侧面馈入方式时,在电极侧面电感不对称分布条件下通过计算,得到了整个电极的二维均压模型,并通过实验进行了验证。(3)针对扩散冷却平板电极的结构和热环境,设计了蛇形和改进的蛇形等电极的冷却水流道方案,通过仿真得到电极的温度场分布并进行比较,得知最理想的流道方案为改进的蛇形方案。通过对不同流道设计的电极进行放电出光实验,改进蛇形水道电极在高占空比时,激光功率增益饱和的现象没有出现,可以认为该流道设计满足了在最大占空比条件下冷却气体温度的要求。(4)通过对激光器功率控制方式的研究,设计了基于透过率0.5%的球面取样镜和热电偶堆的功率取样单元,采用改变脉冲宽度对注入的射频功率进行调节,考虑到产生PWM波的稳定性和实时反馈的要求,设计了专用的功率控制电路板,通过上位机PLC和下位机CPLD的通讯,完成了优化的激光功率反馈控制,提高了激光功率的稳定性,功率波动<±1.5%。(5)采用“简易点测法”对板条激光器进行电磁辐射强度检测,通过屏蔽及接地措施将整机电磁辐射值降为0.04W/m2。根据屏极高压供电电路、灯丝大电流供电电路、栅极脉冲调制信号驱动电路三个电路的传导干扰路径,分别设计了衰减抑制比达55dB、40dB、30dB的LC低通滤波器,解决了射频传导干扰。
High power radio-frequency (RF) slab CO2laser is a very important type of industrial CO2laser. It becomes one of the main industrial laser sources, and an important trend for laser welding and cutting. To investigate the discharging behavior in the RF slab CO2laser in this paper, the RF excited gas discharge characteristics, the RF high power supply and the transmission matching, the discharge plate electrodes with large area, the laser power control and the anti-jamming measures are analyzed theoretically and experimentally. The main contents include the following aspects:(1) According to the theoretical model of RF discharge gas, it points out that the RF-excited slab laser needs to work in the a-discharge mode. A one-dimensional RF discharge model is given. Experimental researches mainly discuss the effects of excited frequency to the discharging quality. It contains the relationship between the breakdown voltage and the excited frequency, and the effect of exited frequency to the property of plasma in the discharge area. Furthermore, several rules for selecting the excited frequency are obtained. Through a series of experiments, the optimal scheme to choose the air mixture and the atmospheric pressure are obtained.(2) RF power sources for high power RF slab CO2laser requirements is designed based on high-power self-excited RF power which include amplifier circuit including the DC high voltage circuit, the filament heating circuit, the gate modulation circuit and a RF power oscillation. Oscillation and amplifier circuit section has calculated the tube model and component parameters. Determine the RF power and dc discharge load impedance matching, and calculate the matching parameters. Pressure longitudinal parallel resonant inductor, when the electrode vertical and horizontal, respectively, for intermediate feed and side feed into, by calculating the electrode side inductance asymmetric distribution, get the entire electrode two-dimensional pressure model and verified through experiments.(3) According to the structure and thermal environment of the electrode, the heat exchanger for the electrodes has been calculated and analyzed. The finite element theory of temperature field is discussed. By designing different flowing channels, a series of discharging and lasing experiments have been taken. When improving the serpentine waterways at high duty cycle, the laser power gain saturation phenomenon will not appear. It proves that the flowing channel design meets the cooling gas temperature requirements at the maximum RF power injection.(4) RF slab CO2laser power control, power sampling unit sampling based on the transmittance of0.5%of the spherical mirror and thermocouple heap, changing the pulse width adjustment of the injected RF power, taking into account generate PWM wave stability and the requirements of real-time feedback, the design of a dedicated power control circuit board, through the host computer, PLC and lower machine CPLD communication, the optimized laser power feedback control, to improve the stability of the laser power, the power fluctuations<±1.5%.(5) The simple point measure on the slab laser electromagnetic radiation detection, shielding and grounding the whole electromagnetic radiation is reduced to0.04W/m2. According to the conductive interference paths of anode high voltage power supply circuit, the filament current supply circuit and gate pulse modulation signal drive circuit, LC low-pass filter for attenuation of suppression ratio up to55dB,40dB,30dB are designed to solve the conducted RF interference.
引文
[1] 唐霞辉.高功率横流CO2激光器及其应用.华中科技大学出版社,2008:23-26
    [2] 王吉,林辉.CO2气体激光器的激励技术及其发展趋势.中国仪器仪表,2005(8):42-45
    [3] K. M. Abramski, H. J. Baker, A. D. Colley, et al. Single-Mode Selection Using Coherent Imaging within a Slab Waveguide CO2 Laser. Applied physics letters, 1992,60(20):2469-2471
    [4] D. A. Wojaczek, E. F. Plinski, J. S. Witkowski. Thermodynamic and Optical Parameters of the Rf Pulse Excited Slab-Waveguide Co 2 Laser. Optica Applicata, 2005,35(2):215
    [5] G. N. Pearson, D. R. Hall. Carbon Monoxide Laser Excited by Radio-Frequency Discharge. Applied physics letters,1987,50(18):1222-1224
    [6] J. D Strohschein, W. D. Bilida, H. Seguin, et al. Enhancing Discharge Uniformity in a Multi-Kilowatt Radio Frequency Excited CO2 Slab Laser Array. Applied physics letters,1996,68(8):1043-1045
    [7] P. P. Vitruk, H. J. Baker, D. R. Hall. Similarity and Scaling in Diffusion-Cooled Rf-Excited Carbon Dioxide Lasers. Quantum Electronics, IEEE Journal of,1994, 30(7):1623-1634
    [8] A. I. Dutov, A. A. Kuleshov, V. N. Sokolov. Slab waveguide RF-excited CO2 laser for material processing. Proc. SPJE,1995,2713:51-57
    [9] 王建银,周鼎富,陈建国.脉宽可控的腔倒空射频波导CO2激光器.激光技术,2007,31(1):25-28
    [10] B. I. llukhin, Y. B. Udalov, I. V. Koehetov, et al. Witteman. Theoretical and experimental investigation of a waveguide CO2 laser with radio-frequency excitation. Appl. Phys. B,1996,62:113-127
    [11] P. P. Vitruk, H. J. Baker, D. R. Hall. The Characteristics and Stability of High Power Transverse Radio Frequency Discharges for Waveguide CO2 Slab Laser Excitation. J. Phys. D:Appl. Phys.,1992,25:1767-1776
    [12]朱钧,杨风雷,范希智等.环射频激励CO2波导激光器的放电技术.真空科学与技术,2000,20(4):290-292
    [13] R. Nowack, H. Opower, U. Schaefer, et al. High Power CO2 Waveguide Laser of the 1 kW Category. SPIE,1990,1276:18-28
    [14] A. D. Colley, H. J. Baker, D. R. Hall. Planar waveguide,1 kW cw, carbon dioxide laser excited by a single transverse rf discharge. Appl. Phys. Lett.,1992,61(2): 136-138
    [15] D. Efrlichmann, U. Habich U, H. D. Plum, et al. High power CO2 laser with coaxial waveguide and diffufision cooling. IEEE J. Quant. Electron.,1993,29(7): 2211-2219
    [16] S. Selleri, L. Vincetti, A. Cucinotta, et al. Complex FEM modal solver of optical waveguides with PML boundary conditions. Opt Quantum Electron,2001,33: 359-371
    [17] D. Efrlichmann, U. Habich, H. D. Plum, et al. Azimuthal mode discrim ination of annular resonators,1993,32(33):6582-6586
    [18] P. E. Jackson, H. J. Baker, D. R. Hall. CO2 large-area discharge laser using an unstable-waveguide hybrid resonator. Appl. Phys. Lett.,1989,54(20):1950-1952
    [19] S. Kobayashi., K. Terai. 1kW slab CO2 Laser excited by a Self-excited RF Generator. GCL/HPL'96, Edinburgh U. K, August,1996:25-30
    [20] D. R. Hall, H. J. Baker, F. Villarreal. High power RF excited planar waveguide carbon dioxide lasers for microprocessing applications. Proceedings of SPIE,2003, 5120:23-29
    [21] W. D. Bilida, H. J. J. Seguin, C. E. Capjack. Resonant cavity excitation system for radial array slab CO2 lasers. J. Appl. Phys.,1995,78(7):4319-4322
    [22] A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, et al. High-power high optical quality RF-excited slab CO2 lasers. Proc. SPIE,2000,4351:104-109
    [23] R. Abram, D. R. Hall.2-Didimensional Waveguide CO2 laser Arrays and Beam Reforming. GCL/HPL'96, Edinburgh U. K, August,1996:25-30
    [24] A. I. Dutov, I. Yu. Evstratov, V. N. Ivanova, et al. Experimental investigation and numerical simulation of slab waveguide CO2 laser with if pumping. Quantum Electronics,1996,26(6):484-488
    [25] E. F. Yelden, H. J. Seguin, C. E. Capjack, et al. Phase-locking phenomena in a radial multislot CO2 laser array. J. Opt. Soc. Am(B),1993,10(8):1475-1482
    [26] A. lapucci, G. Cangioli. Phase-locked operation of a compact three-slab-sections radiofrequency discharge CO2 laser. IEEE. J. Quant Electron,1993, QE-29(12): 2962-2971
    [27] D. Ehrlichmann, U. Habich, H. D. Plum, et al. Annular resonators for diffusion cooled CO2 lasers. CLEO'94 Amsterdam, Netherlands, August,1994:400-401
    [28] R. Nowack, H. Bochum. High Power Coaxial CO2 waveguide laser. GCL/HPL'96, Edinburgh U. K, August,1996:25-30
    [29]饶恒锐.高功率板条波导CO2激光器电极结构分析与设计:[硕士学位论文].武汉:华中科技大学图书馆,2008
    [30]苏红新,高允贵.射频板条CO2激光器波导耦合损耗的理论研究.量子电子学报,2000,17(3):226-230
    [31]李贵安,宋建平,张相臣等.射频激励平板CO2激光器放电机理的理论研究.激光杂志,2002,23(6):16-17
    [32] V. N. Ochkin, W. J. Witteman, B. I. Ilukhin, et al. Influence of the electric field frequency on the performance of a RF excited CO2 waveguide laser. Applied Physics B,1996,63:575-583
    [33] R. L. Sinclair, J. Tulip. Parameters Affecting the Performance of a RF excited CO2 Waveguide Laser. App 1. Phys.,1984,56(9):2498-2501
    [34]刘玉华,唐令西,阮双琛.影响RF激励CO2波导激光器高效运转的因素.激光与红外,1999,29(3):157-160
    [35] Peter P. Vitruk, H. J. Baker, D. R. Hall. Similarity and Scaling in Diffusion-Cooled RF-Excited Carbon Dioxide Lasers. IEEE Journal of Quantum Electronics,1994, 7(30):1623-1634
    [36] E. F. Plinski, J. S. Witkowski, K. M. Abramski. Algorithm of RF-excited slab-waveguide laser design. J. Phys, D:Appl. Phys.,2000,33:1823-1826
    [37] A. Szameit, T. Pertsch, F. Dreisow, et al. Light Evolution in Arbitrary Two-Dimensional Waveguide Arrays. Physical Review A,2007,75(5):5381
    [38] E. F. Plinski, D. A. Wojaczek, J. S. Witkowski, et al. Spectral and thermodynamic
    effects in pulsed RF excited CO2 slab-waveguide laser. Proc. SPIE,2005,5777: 479-484
    [39] S. F. Helefert, R. Pregla. A finite difference beam progation algorithm based on generalized transmission line equations. Opt. Quantum Electron.,2000,32(6): 681-690
    [40] J. S. Witkowski, E. F. Plinski, B. W. Majewski, et al. Spectral aspects of a CO2 slab waveguide laser design. Proc. SPIE,2003,5120:202-205
    [41] S. J. Polychronopoulos, G B. Athanasoulias, N. K. Uzunoglu. Advanced mode solver using an integral equation technique and entire domain plane wave basis functions. Opt Quantum Electron,1997,29:127-137
    [42] A. B. Manenkov, A. G Rozhnev. Ptical dielectric waveguide analysis based on the modified finite element and integral equation methods. Opt Quantum Electron,1998, 30:31-70
    [43] H. Bochum. Near-and Far-field Properties of Annular CO2 Waveguide Lasers. Appl. Opt.,1997,36 (15):3349-3356
    [44] H. Zhao, H. J. Baker, D. R. Hall. Area Scaling in Slab rf-Excited Carbon Monoxide Lasers. Appl. Phys. Lett,1991,59(11):1281-1283
    [45]逮贵祯.射频电路的分析与设计(第一版).北京:北京广播学院出版社会,2003:112-121
    [46] W. Marshall Leach, Jr. Spice Models for Vacuum-Tube Amplifiers J. Audio Eng. Soc,1995,43(3):488-489
    [47] M. B. Heeman, Yu. B. Udalov, W. J. Witteman. New trend in the technology of cw RF-exited sealed CO2 waveguide lasers.230 I SPIE,2118:104-108
    [48] B. Abdul Ghani, M. Hammadi. Mathematical modeling of hybrid CO2 laser. Optics and Laser Technology,2001(33):243-247
    [49] Alexander, S. Smirnov, Lev. D. Tsendin. The space-time-averaging procedure and modeling of the RF discharge. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1989,19(2):128-139
    [50] D. He, D. R Hall. Frequency dependence in RF discharge excited waveguide CO2 lasers. IEEE JOURNAL OF QUANTUM ELECTRONICS, QE-20(5):32-39
    [51] P. P. Vitruck, H. J. Baker, D. R. Hall. The characteristics and stability of high power
    transverse radio frequency discharges for waveguide CO2 slab lasers excitation. J. Phys. D:Appl. Phys.,25(1992) 1767-1776
    [52] P. L. Sinclair, J. Tulip. Parameters affecting the performance of a rf excited CO2 waveguide laser. J. Appl. Phys.,56(9):1459-1467
    [53] D. He, C. J. Baker, D. H. Hall. Discharge striations in rf excited waveguide lasers. J. Appl. Phys.,55(11):1035-1046
    [54]肖喻.高功率射频CO2激光器气体放电研究:[硕士学位论文].武汉:华中科技大学图书馆,2008
    [55]丘军林.气体电子学.武汉:华中科技大学出版社,1999:133-159
    [56] J. G. Xin, P. Yan, G. H. Wei. Rf-Excited All-Metal Waveguide CO2 Laser. Applied physics letters,1991,59(26):3363-3365
    [57] H. Zhao, H. J Baker, D. R. Hall. Area scaling in slab rf-excited carbon monoxide lasers. Appl. Phys. Lett.1996,59(11),12-15
    [58] Z. Tian, Z. Sun, S. Qu. Tunable Pulse-Width, Electro-Optically Cavity-Dumped, Rf-Excited Z-Fold Waveguide CO2 Laser. Review of scientific instruments,2005, 76(8):83110
    [59]王新兵.室温工作的射频放电激励板条CO激光器.华中科技大学学报:自然科学版,2006,34(1):87-89
    [60] H. Zhao, H. J. Baker, D. R. Hall. Area Scaling in Slab Rf-Excited Carbon Monoxide Lasers. Applied physics letters,1991,59(11):1281-1283
    [61]谭明磊.高功率CO2激光器射频电源分析和设计:[硕士学位论文].武汉:华中科技大学图书馆,2008
    [62] J. D. Strohschein, W. D. Bilida, H. J. J. Seguin, et al. Enhancing discharge uniformity in a multi-kilowatt radio frequency exc'ited CO2 slab array. Appl. Phys. Lett.,1996,68(8):1043-1045
    [63] D. He, D. R. Hall. Longitudinal Voltage Distribution in Transverse Rf Discharge Waveguide Lasers. Journal of applied physics,1983,54(,8):4367-4373
    [64]王又青,安承武,李再光.RF激励CO2激光器中的阻抗匹配分析.中国激光,1997,24(3):202-208
    [65] A. D. Colley, K. M. Abramski, H. J. Baker, et al. Discharge-Induced Frequency Modulation of Rf Excited CO2 Waveguide Lasers. Quantum Electronics, IEEE Journal of,1991,27(7):1939-194
    [66]柳娟.大功率射频CO2激光器激励特性研究.[博士学位论文].武汉:华中科技大学图书馆,2009
    [67]王又良,吴恒莱等.射频激励CO2激光器综述.激光与红外,2001,31(1):10-12
    [68] J. D. Strohschein, W. D. Bailida, H. J. J. Seguin, et al. Computational Model of Longitudinal Discharge Uniformity in RF-Excited CO2 Slab Lasers. IEEE Journal of Quantum Electronics,1996,32(8):1289-1298
    [69]王又青,吴龟灵,安承武等.高频气体激光器功率传输的匹配.激光杂志,1998,19(3):11-16
    [70] K. M. Abramski, A. D. Colley, H. J. Baker. D. R. Hall. Power scaling of large-area transverse radio frequency discharge CO2 lasers. Appl. Phys. Lett.,1989,54(19): 1833~1835
    [71]王润富,陈国荣.温度场和温度应力.北京:科学出版社,2005:1-5
    [72] H. S. Carslaw, J. C. Jaeger. Conduct of Heat in Solids. Cacendon Press Oxford, 1986:388-397
    [73]张炎.射频激励CO2激光器的流道设计与反射镜变形分析:[硕士学位论文].武汉:华中科技大学图书馆,2009
    [74] F. P. Incropera, D. P. Witt. Introduction to Heat Transfer. John Willey& Sons,2001: 134-136
    [75] Gu, Bei, Phelan, E. Patrick. Thermal Peeling Stress Analysis of Thin-film High-temperature Superconductors Using FEA. American Society of Mechanical Engineers, Heat Transfer Division,1996:103-109
    [76] F. H. William, J. A. Brighton, Schanm. Outline of theory and problems of fluid dynamics. McGraw-Hill Companies, Inc,1999:452-467
    [77]陆培华,王润文.高功率CO2激光器热平衡分析及热交换器换热计算.中国激光,2001,28(9):775-778
    [78] D. He, C. J. Baker, D. H. Hall. Discharge Striations in rf Excited Waveguide Lasers. J. Appl. Phys.,1997,55(11):1035-1046
    [79]胡红军,杨明波,张丁非ANSYS10.0材料工程有限元分析实例教程.电子工业出版社,2008:20-21
    [80] J. D. Strohschein, W D Bilida, H Seguin, et al. Enhancing Discharge Uniformity in a Multi-Kilowatt Radio Frequency Excited CO2 Slab Laser Array. Applied physics letters,1996,68(8):1043-1045
    [81] W. S. Mefferd. Rf Excited Co. Sub.2 Slab Waveguide Laser. Google Patents,1992
    [82]彭登峰,王又青,李波.高功率激光实时检测与控制系统的研究.激光技术,2006,30(5):483-485
    [83] A. W. Van Herwaarden, P. M. Sarro. Thermal sensors based on the seebeck effect. Sensors and Actuators,1986(10):321-346
    [84] S. Franco. Design with operational amplifiers and analog integrated circuits. (Third Edition). New York:McGraw-Hill,2002,15(4):211-244
    [85]王惠林,齐华,纪明.基于SPRITE探测器的低噪声前置放大器的设计.西安工业学院学报,2001,21(4):288-291
    [86] A. M. Wu, Xiao Jinwen, D. Markovic, et al. Digital PWM control:application in voltage regulation modules. IEEE PESC'99,1999(1):77-83
    [87]叶向阳,汪盛烈,何云贵.射频激励CO2激光器功率控制及其控制器设计.光电子.激光,2001,12(2):151-153
    [88] A. W. Van Herwaarden, P. M. Sarro. Thermal sensors based on the seebeck effect. Sensors and Actuators,1986(10):321-346
    [89] Laakmann, Katherine D. Waveguide gas laser with high frequency transverse discharge excitation. U. S. Pat,1979(4):169,251
    [90] R. Ludwig, P. Bretchko. RF Circuit Design:Theory and Applications. (First Edition).北京:电子工业出版社,2011:59-60
    [91] American Radio Relay League. RF Radiation and Electromagnetic Field Safety. ARRL HandBook for Radio Amateurs,1997
    [92]姚耿东,姜槐.关于电磁辐射危害的研究现状与展望.环境与健康杂志,2000,17(5):259-260
    [93]李贵山,杨建平等.电磁干扰(EMID和射频干扰(RFID及其抑制措施研究.电力系统及其自动化学报,2002,14(4):36-44
    [94]杨继深.EMC教室.安全与电磁兼容,2002:41-42
    [95] R. A. Stevenson. Isolated Ground Ceramic Feed-through Capacitor-EMI Filter.18th Capacitor and Resistor Technology Symposium,1998:101-107
    [96] B. Christopher. RF Circuit Design. (Second Edition). Newnes,2007:35-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700