格斗对抗性项目代谢调节与适应的核磁共振代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动训练和竞赛对新陈代谢产生系统性、整体性的影响。通过几个指标的检测难以反映运动产生的代谢变化的全貌,因此,引入系统生物学的思路和方法来研究运动训练的代谢问题,具有明显的方法学优势。代谢组学(metabonomics/metabolomics)是继基因组学和蛋白质组学之后发展起来的一门新学科,通过“全景式”地扫描代谢物的变化,对所获得的高通量生物学信息进行分析,以研究运动对机体的整体影响,是揭示运动过程中代谢变化规律的强有力的分析方法。
     本文采用基于核磁共振(NMR)的代谢组学、模式识别和化学计量学等方法,选择了击剑和散打等两个格斗对抗性项目(以下简称格斗项目),研究:1)竞技比赛中代谢的调节及其机制;2)长期训练和比赛引起的代谢适应及其机制。
     绪论主要对研究问题进行综述,指出目前研究存在的不足并进行展望。同时对本文研究思路进行了概括性的论述。
     第一章第一节研究了击剑项目竞赛中的代谢调控及分子机制。观察了全国击剑赛花剑运动员比赛前后尿液中代谢物的变化。结果显示,比赛前后运动员的代谢模式发生了明显的变化,造成这一变化的特征性代谢物涉及肌酸代谢、三羧酸循环、糖代谢、氨基酸代谢、酮体代谢、嘌呤核苷酸代谢等途径,N-氧化三甲胺(TMAO)浓度下降,氧化应激增强。此外,一些氨基酸类神经递质的含量发生了明显的变化。研究提示,花剑比赛是以有氧供能为主的运动项目;神经系统的活动、体内氨的生成和清除对于花剑竞赛具有重要的意义。本研究为花剑竞赛和训练中的监控提供了新的技术手段。
     第一章第二节研究散打竞赛的代谢调控及分子机制。同时,我们也研究了训练中常用的三种类型的训练(一般性体能训练、专项体能训练和队内教学比赛)对代谢模式的影响,并与正式比赛后代谢模式的变化进行比较,分析不同类型训练方案的有效性。结果表明,正式比赛中代谢模式的变化大于三种类型的训练,主要体现在整体能量代谢和内源性神经递质的变化更明显,提示神经系统活动加强会造成能量代谢的增加,这是格斗项目重要的代谢特征,也是格斗项目训练方案设计时需要引起高度关注的问题。此外,NMR代谢组学技术和方法可以为训练方案的选择、制定和效果验证提供全新的思路。
     第二章研究了格斗运动员(散打和击剑)长期训练所致的代谢适应的特征及机制。分别比较格斗运动员与普通人之间、以及格斗运动员与短跑运动员之间尿液中代谢物的差异,连续3周收集周一上午的晨尿,寻找在连续3次的检测中均发现组间差异的特征性代谢物,分析长期训练引起的相对稳定的代谢特征,并讨论其形成机制。结果显示,格斗运动员在肌酸代谢、氨基酸代谢和肠道菌群代谢方面具有不同于普通人的一般性适应特征,而在能量储备种类、占优势的代谢类型、抗氧化能力、神经递质的浓度等方面具有不同于短跑运动员的专项性适应特征。研究提示,代谢适应是长期专项训练和竞赛累积的效应,是运动员适应专项需要的表现。本研究筛选出的代谢物可以作为格斗对抗性项目训练监控、优秀运动员选材、训练效果评价的潜在的生化指标。
     第三章跟踪观察了一例由于赛前快速减体重造成运动能力下降的典型个案。第一节和第二节分别动态观察了这名散打运动员在减体重过程中的不同阶段,静态(安静状态下)和动态(训练前后及恢复前后)的代谢模式的变化及其时间轨迹。结果显示,在快速减体重过程中,体内整体的能量代谢经历了先升后降的过程;减体重后期酮体代谢占据重要地位。禁食状态下进行训练,机体不仅出现代谢紊乱,而且内环境稳态受到破坏,并危害身体健康。基于NMR的代谢组学技术,比传统的监控指标分析能够更加敏感和全面地进行个体训练监控和评价,为个体化训练监控和科技服务提供了强有力的技术平台和研究方法。
Sports training and competition have a systemic impact on metabolism, which can not be clari Sports training and competition have a systemic impact on metabolism. Metabolism of sport and training has been intensively studied nearly100years through traditional biochemical methods. However, the systemic effects of training cannot be clarified by several indicators. Metabonomics (Metabolomics) is proven to be a powerful strategy to reveal the mechanisms involved in systemic metabolic responses induced by sports training and competition through studying global changes of endogenous metabolites.
     In this thesis, nuclear magnetic resonance (NMR)-based metabonomics, along with pattern recognition was employed to reveal:1) metabolic regulation during competitions of combat sport;2) metabolic adaptation induced by long-term training in fencers and Sanda players.
     In the introduction, I reviewed the recent literature on using a metabonomic approach in sport and exercise field, analyzed the major findings, shortcomings, and its potential applications in the future.
     In the first section of Chapter I, we studied the metabolic regulation during a national fencing competition, analyzed its molecular mechanisms. Urinary metabolites were examined by NMR before and after the competition. Metabolic profiling revealed pronounced shifts in the several metabolic pathways during the competition, including the citric acid cycle, metabolism of creatine, amino acid, ketone body and purine nucleotide. Trimethylamine-N-oxide (TMAO) concentration decreased, and metabolic biomarkers of oxidative stress increased after the competition. Interestingly, we found several amino acid neurotransmitters which suggested an inhibition of nervous regulation. Furthermore, the generation and removal of ammonia may be important in foil competition.
     In the second section of Chapter I, we studied the metabolic regulation during a Sanda competition. Furthermore, we examined metabolic reactions of three training procedures, and compared them with those of a Sanda competition, so as to analyze the effectiveness of the training procedures. Results showed that the metabolic patterns were different between them. In the Sanda competition, the global energy metabolism changed much more than training. Amino acid contributed more in the competition than in the training procedures. Heart rate variability analysis also expressed a lower down-regulation of parasympathetic activity in the competition, indicating the energy consumption increase derived from the neural activity might be an important feature in combat sport.
     Chapter Ⅱ focused on the metabolic adaptation by long-term specific combat training and its underlying regulatory mechanisms. Fencing and Sanda's athletes were compared to a gender, age-paired healthy control, and to sprinters as athlete control. Fasting urinary samples were collected in three consecutive Monday morning, to find metabolites, which were distinctive between the groups. We tried to find biomarkers of metabolic adaptation in combat sport. Results showed that the metabolic patterns of the combat athletes were different from healthy control, and from sprinting athletes as well. Some metabolic biomarkers were identified which relevant to creatine metabolism, amino acid metabolism and intestinal flora metabolism between combat athletes with non-athletes. Type of energy storage, the dominant metabolic pathways, antioxidant capacity, neurotransmitter concentrations were different between combat sport athletes with sprinting athletes. The metabolic adaptations are accumulating effects of long-term discipline-specific training and competition. The identified metabolites can serve as potential biochemical indicators in training monitoring and evaluating.
     Chapter Ⅲ is a case report. A Sanda player who experienced a rapid weight loss which led to a significant decline of sport performance before a competition. Section1and2described respectively the metabolism pattern changes in the steady-state and in the dynamic state respectively during the rapid weight loss procedure. Results showed that energy metabolism of steady-state up-regulated in the early stage, and then down-regulated in the late stage. The enhanced oxidation of ketone bodies for energy consumption was important primarily in the late stage. During the period of very low energy intake, sports training resulted in a metabolic disorder and disruption of the stability of internal environment, which might do harm to health.
引文
[1]中国体育科学学会.香港体育学院编.体育科学词典[M].北京:高等教育出版社,2000:374.
    [2]全国体育院校教材委员会.运动生物化学[M].北京:人民体育出版社,1999:252-253.
    [3]NUMMELA A, RUSKO H. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes[J]. Int J Sports Med, 1995,16(8):522-7.
    [4]HINTZY F, GROSLAMBERT A, DUGUE B, et al. Does endurance or sprint training influence the perception of the optimal pedalling rate during submaximal cycling exercise?[J]. Int J Sports Med,2001,22(7):513-6.
    [5]BUTTERFIELD T A. Eccentric exercise in vivo:strain-induced muscle damage and adaptation in a stable system[J]. Exerc Sport Sci Rev,2010,38(2):51-60.
    [6]ZIERATH J R, HAWLEY J A. Skeletal muscle fiber type:influence on contractile and metabolic properties[J]. PLoS Biol,2004,2(10):e348.
    [7]COFFEY V G, HAWLEY J A. The molecular bases of training adaptation[J]. Sports Med,2007,37(9):737-63.
    [8]IRRCHER I, ADHIHETTY P J, JOSEPH A M, et al. Regulation of mitochondrial biogenesis in muscle by endurance exercise[J]. Sports Med,2003,33(11):783-93.
    [9]DIETRICH M O, ANDREWS Z B, HORVATH T L. Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation[J]. J Neurosci,2008,28(42):10766-71.
    [10]WANG L, MASCHER H, PSILANDER N, et al. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle[J]. J Appl Physiol,2011,111(5):1335-44.
    [11]IZQUIERDO M, IBANEZ J, HAKKINEN K, et al. Maximal strength and power, muscle mass, endurance and serum hormones inweightlifters and road cyclists[J]. J Sports Sci,2004,22(5):465-78.
    [12]PETERSON M D, PISTILLI E, HAFF G G, et al. Progression of volume load and muscular adaptation during resistance exercise[J]. Eur J Appl Physiol,2010.
    [13]KIZAKI T, TAKEMASA T, SAKURAI T, et al. Adaptation of macrophages to exercise training improves innate immunity[J]. Biochem Biophys Res Commun, 2008,372(1):152-6.
    [14]黄彩华,归予恒,张漓,等.格斗对抗性项目运动员自主神经系统的运动性适应研究[J].福建医科大学学报,2011,(05):339-343.
    [15]NATURE.2020 visions[J]. Nature,2010,463(7277):26-32.
    [16]NICHOLSON J K, LINDON J C, HOLMES E.'Metabonomics1:understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica,1999,29(11):1181-9.
    [17]GIBALA M J, MACLEAN D A, GRAHAM T E, et al. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise[J]. Am J Physiol,1998,275(2 Pt 1):E235-42.
    [18]Van HALL G, JENSEN-URSTAD M, ROSDAHL H, et al. Leg and arm lactate and substrate kinetics during exercise[J]. Am J Physiol Endocrinol Metab, 2003,284(1):E193-205.
    [19]王磊,武露凌,盛蕾,等.优秀游泳运动员冬训周期中的代谢组学研究[J].体育与科学,2008,29(6):43-46.
    [20]YAN B, A J, WANG G, et al. Metabolomic investigation into variation of endogenous metabolites in professional athletes subject to strength-endurance training[J]. J Appl Physiol,2009,106(2):531-8.
    [21]李江华,刘承宜,徐晓阳,等.2006年多哈亚运会短距离游泳男运动员代谢组学研究[J].体育科学,2008,28(2):42-46,53.
    [22]李江华,刘承宜,沙海燕,等.高水平男子中短距离游泳成绩预测的代谢组学模型[J].体育学刊,2010,17(4):103-106.
    [23]PECHLIVANIS A, KOSTIDIS S, SARASLANIDIS P, et al. (1)H NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine[J]. J Proteome Res,2010,9(12):6405-16.
    [24]KIRWAN G M, COFFEY V G, NIERE J O, et al. Spectroscopic correlation analysis of NMR-based metabonomics in exercise science[J]. Anal Chim Acta, 2009,652(1-2):173-9.
    [25]CHORELL E, MORITZ T, BRANTH S, et al. Predictive metabolomics evaluation of nutrition-modulated metabolic stress responses in human blood serum during the early recovery phase of strenuous physical exercise[J]. J Proteome Res, 2009,8(6):2966-77.
    [26]MICCHELI A, MARINI F, CAPUANI G, et al. The influence of a sports drink on the postexercise metabolism of elite athletes as investigated by NMR-based metabolomics[J]. J Am Coll Nutr,2009,28(5):553-64.
    [27]COOLEN S A, DAYKIN C A, VAN D J P, et al. Measurement of ischaemia-reperfusion in patients with intermittent claudication using NMR-based metabonomics[J]. NMR Biomed,2008,21(7):686-95.
    [28]SESTILI P, MARTINELLI C, COLOMBO E, et al. Creatine as an antioxidant[J]. Amino Acids,2011,40(5):1385-96.
    [29]LEE R, WEST D, PHILLIPS S M, et al. Differential metabolomics for quantitative assessment of oxidative stress with strenuous exercise and nutritional intervention:thiol-specific regulation of cellular metabolism with N-acetyl-L-cysteine pretreatment[J]. Anal Chem,2010,82(7):2959-68.
    [30]POHJANEN E, THYSELL E, JONSSON P, et al. A multivariate screening strategy for investigating metabolic effects of strenuous physical exercise in human serum[J]. J Proteome Res,2007,6(6):2113-20.
    [31]ENEA C, SEGUIN F, PETITPAS-MULLIEZ J, et al. (1)H NMR-based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise[J]. Anal Bioanal Chem,2010,396(3):1167-76.
    [32]LEHMANN R, ZHAO X, WEIGERT C, et al. Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation[J]. PLOS ONE,2010,5(7):e11519.
    [33]LEWIS G D, FARRELL L, WOOD M J, et al. Metabolic signatures of exercise in human plasma[J]. Sci Transl Med,2010,2(33):1-13.
    [34]RASMUSSEN P, NYBERG N, JAROSZEWSKI J W, et al. Brain nonoxidative carbohydrate consumption is not explained by export of an unknown carbon source:evaluation of the arterial and jugular venous metabolome[J]. J Cereb Blood Flow Metab,2010,30(6):1240-6.
    [35]JEANETTE KUHL T M, HENRIK WAGNER H S, KRISTER LUNDGREN P B, et al. Metabolomics as a tool to evaluate exercise-induced improvements in insulin sensitivity[J]. Metabolomics,2008,4(3):273-282.
    [36]HUANG C C, LIN W T, HSU F L, et al. Metabolomics investigation of exercise-modulated changes in metabolism in rat liver after exhaustive and endurance exercises[J]. Eur J Appl Physiol,2010,108(3):557-66.
    [37]BARBA I D L G, MARTiN E C A, AGUADE S C J, et al. Nuclear magnetic resonance-based metabolomics predicts exercise-induces ischemia in patients with suspected coronary artery disease[J]. Magn Reson Med,2008,60(1):27-32.
    [38]DUGGAN G, HITEL D S, SENSEN C W, et al. Metabolomic Response to Exercise Training in Lean and Diet-Induced Obese Mice[J]. J Appl Physiol, 2011,110(5):1311-8.
    [39]REDMAN L M, HUFFMAN K M, LANDERMAN L R, et al. Effect of caloric restriction with and without exercise on metabolic intermediates in nonobese men and women[J]. J Clin Endocrinol Metab,2011,96(2):E312-21.
    [40]MITREVSKI B S, KOUREMENOS K A, MARRIOTT P J. Accelerating analysis for metabolomics, drugs and their metabolites in biological samples using multidimensional gas chromatography[J]. Bioanalysis,2009,1(2):367-91.
    [41]SAUGY M, ROBINSON N, SAUDAN C. The fight against doping:back on track with blood[J]. Drug Test Anal,2009,1 (11-12):474-8.
    [42]RIJK J C, LOMMEN A, ESSERS M L, et al. Metabolomics approach to anabolic steroid urine profiling of bovines treated with prohormones[J]. Anal Chem, 2009,81(16):6879-88.
    [43]KISS A, JACQUET A L, PAISSE O, et al. Urinary signature of anabolic steroids and glucocorticoids in humans by LC-MS[J]. Talanta,2011,83(5):1769-73.
    [44]DANG W, STEFFEN K K, PERRY R, et al. Histone H4 lysine 16 acetylation regulates cellular lifespan[J]. Nature,2009,459(7248):802-7.
    [45]FINKEL T, DENG C X, MOSTOSLAVSKY R. Recent progress in the biology and physiology of sirtuins[J]. Nature,2009,460(7255):587-91.
    [46]BURKE M F, DUNBAR R L, RADER D J. Could exercise metabolomics pave the way for gymnomimetics?[J]. Sci Transl Med,2010,2(41):41ps35.
    [47]MAXWELL M A, CLEASBY M E, HARDING A, et al. Nur77 regulates lipolysis in skeletal muscle cells. Evidence for cross-talk between the beta-adrenergic and an orphan nuclear hormone receptor pathway[J]. J Biol Chem, 2005,280(13):12573-84.
    [48]CHAO L C, ZHANG Z, PEI L, et al. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle[J], Mol Endocrinol, 2007,21(9):2152-63.
    [49]SMITH A G, MUSCAT G E. Orphan nuclear receptors:therapeutic opportunities in skeletal muscle[J]. Am J Physiol Cell Physiol,2006,291(2):C203-17.
    [50]LESSARD S J, RIVAS D A, CHEN Z P, et al. Impaired skeletal muscle beta-adrenergic activation and lipolysis are associated with whole-body insulin resistance in rats bred for low intrinsic exercise capacity[J]. Endocrinology, 2009,150(11):4883-91.
    [51]GO E P. Database resources in metabolomics:an overview[J]. J Neuroimmune Pharmacol,2010,5(l):18-30.
    [52]HRISTOVSKI R, VENSKAITYTE E, VAINORAS A, et al. Constraints-controlled metastable dynamics of exercise-induced psychobiological adaptation[J]. Medicina (Kaunas),2010,46(7):447-53.
    [53]GHOSH S, GOLBIDI S, WERNER I, et al. Selecting exercise regimens and strains to modify obesity and diabetes in rodents:an overview[J]. Clin Sci (Lond), 2010,119(2):57-74.
    [54]SARIC J, LI J V, SWANN J R, et al. Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents[J]. J Proteome Res, 2010,9(5):2255-64.
    [55]SARIC J, LI J V, UTZINGER J, et al. Systems parasitology:effects of Fasciola hepatica on the neurochemical profile in the rat brain[J]. Mol Syst Biol, 2010,6:396.
    [56]TEALE P, BARTON C, DRIVER P M, et al. Biomarkers:unrealized potential in sports doping analysis[J]. Bioanalysis,2009,1(6):1103-18.
    [57]高炳宏.搏击类项目的能量代谢特点[J].西安体育学院学报,2004,(01):58-61.
    [58]高兴.击剑运动的供能特点[J].成都体育学院学报,1992,(04):76-80+84.
    [59]郭黎,王健.对击剑运动员比赛心率、赛后血乳酸和血清CK的研究[J].北京体育大学学报,2009,(05):62-64.
    [60]WILLIAMS L R, WALMSLEY A. Response timing and muscular coordination in fencing:a comparison of elite and novice fencers[J]. J Sci Med Sport, 2000,3(4):460-75.
    [61]BERKOFF D J, CAIRNS C B, SANCHEZ L D, et al. Heart rate variability in elite American track-and-field athletes[J]. J Strength Cond Res, 2007,21(1):227-31.
    [62]PARRADO E, GARCIA M A, RAMOS J, et al. Comparison of Omega Wave System and Polar S810i to detect R-R intervals at rest[J]. Int J Sports Med, 2010,31(5):336-41.
    [63]NICHOLSON J K, FOXALL P J, SPRAUL M, et al.750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma[J]. Anal Chem,1995,67(5):793-811.
    [64]FAN T W M. Metabolite profiling by one- and two- dimensional NMR analysis of complex mixtures[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 1996,28:161-219.
    [65]VAN V E J, WESTERHUIS J A, VAN D J P, et al. Multilevel data analysis of a crossover designed human nutritional intervention study[J]. J Proteome Res, 2008,7(10):4483-91.
    [66]BIJLSMA S, BOBELDIJK I, VERHEIJ E R, et al. Large-scale human metabolomics studies:a strategy for data (pre-) processing and validation[J]. Anal Chem,2006,78(2):567-74.
    [67]XIA J, WISHART D S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst[J]. Nat Protoc, 2011,6(6):743-60.
    [68]SUBRAMANIAN A, TAMAYO P, MOOTHA V K, et al. Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci U S A,2005,102(43):15545-50.
    [69]PAVLIDIS P. Using ANOVA for gene selection from microarray studies of the nervous system[J]. Methods,2003,31(4):282-9.
    [70]冯连世,张漓.优秀运动员训练中的生理生化监控实用指南[M].北京:人民体育出版社,2007:44-54.
    [71]SMITH-PALMER T. Separation methods applicable to urinary creatine and creatinine[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2002,781(1-2):93-106.
    [72]TULLSON P C, BANGSBO J, HELLSTEN Y, et al. IMP metabolism in human skeletal muscle after exhaustive exercise[J]. J Appl Physiol,1995,78(1):146-52.
    [73]STATHIS C G, FEBBRAIO M A, CAREY M F, et al. Influence of sprint training on human skeletal muscle purine nucleotide metabolism[J]. J Appl Physiol, 1994,76(4):1802-9.
    [74]ZHAO S, SNOW R J, STATHIS C Q et al. Muscle adenine nucleotide metabolism during and in recovery from maximal exercisein humans[J]. J Appl Physiol,2000,88(5):1513-9.
    [75]RADAK Z, ASANO K, INOUE M, et al. Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise[J]. J Appl Physiol,1995,79(1):129-35.
    [76]HELLSTEN Y, FRANDSEN U, ORTHENBLAD N, et al. Xanthine oxidase in human skeletal muscle following eccentric exercise:a role in inflammation[J]. J Physiol,1997,498 (Pt 1):239-48.
    [77]VINA J, GOMEZ-CABRERA M C, LLORET A, et al. Free radicals in exhaustive physical exercise:mechanism of production, and protection by antioxidants[J]. IUBMB Life,2000,50(4-5):271-7.
    [78]IHARA H, SHINO Y, MORITA Y, et al. Is skeletal muscle damaged by the oxidative stress following anaerobic exercise? [J]. J Clin Lab Anal, 2001,15(5):239-43.
    [79]FEET B A, YU X Q, ROOTWELT T, et al. Effects of hypoxemia and reoxygenation with 21% or 100% oxygen in newbornpiglets:extracellular hypoxanthine in cerebral cortex and femoral muscle[J]. Crit Care Med, 1997,25(8):1384-91.
    [80]COOLEN S A, DAYKIN C A, VAN D J P, et al. Measurement of ischaemia-reperfusion in patients with intermittent claudication using NMR-based metabonomics[J]. NMR Biomed,2008,21(7):686-95.
    [81]ROI G S, BIANCHEDI D. The science of fencing:implications for performance and injury prevention[J]. Sports Med,2008,38(6):465-81.
    [82]DOHM G L, TAPSCOTT E B, KASPEREK G J. Protein degradation during endurance exercise and recovery[J]. Med Sci Sports Exerc,1987,19(5 Suppl):S166-71.
    [83]FELIG P, WAHREN J. Amino acid metabolism in exercising man[J]. J Clin Invest, 1971,50(12):2703-14.
    [84]WILKINSON D J, SMEETON N J, WATT P W. Ammonia metabolism, the brain and fatigue; revisiting the link[J]. Prog Neurobiol,2010,91(3):200-19.
    [85]SHIMOMURA Y, MURAKAMI T, NAKAI N, et al. Exercise promotes BCAA catabolism:effects of BCAA supplementation on skeletalmuscle during exercise[J]. J Nutr,2004,134(6 Suppl):1583S-1587S.
    [86]SHIMOMURA Y, HONDA T, SHIRAKI M, et al. Branched-chain amino acid catabolism in exercise and liver disease[J]. J Nutr,2006,136(1 Suppl):250S-3S.
    [87]CLEMMESEN J O, KONDRUP J, OTT P. Splanchnic and leg exchange of amino acids and ammonia in acute liver failure[J]. Gastroenterology, 2000,118(6):1131-9.
    [88]SHE P, ZHOU Y, ZHANG Z, et al. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance[J]. J Appl Physiol, 2010,108(4):941-9.
    [89]BABIJ P, MATTHEWS S M, RENNIE M J. Changes in blood ammonia, lactate and amino acids in relation to workload during bicycle ergometer exercise in man[J]. Eur J Appl Physiol Occup Physiol,1983,50(3):405-11.
    [90]KATO T, TSUKANAKA A, HARADA T, et al. Effect of hypercapnia on changes in blood pH, plasma lactate and ammonia due toexercise[J]. Eur J Appl Physiol, 2005,95(5-6):400-8.
    [91]VAN H G, der VUSSE GJ V, SODERLUND K, et al. Deamination of amino acids as a source for ammonia production in human skeletalmuscle during prolonged exercise[J]. J Physiol,1995,489 (Pt 1):251-61.
    [92]OLDE D S W, DEUTZ N E, DEJONG C H, et al. Interorgan ammonia metabolism in liver failure[J]. Neurochem Int,2002,41(2-3):177-88.
    [93]OLDE D S W, JALAN R, DEJONG C H. Interorgan ammonia trafficking in liver disease[J]. Metab Brain Dis,2009,24(1):169-81.
    [94]WRIGHT G, NOIRET L, OLDE D S W, et al. Interorgan ammonia metabolism in liver failure:the basis of current and future therapies[J]. Liver Int, 2011,31(2):163-75.
    [95]LOCKWOOD A H, MCDONALD J M, REIMAN R E, et al. The dynamics of ammonia metabolism in man. Effects of liver disease andhyperammonemia[J]. J Clin Invest,1979,63(3):449-60.
    [96]LUND P. A radiochemical assay for glutamine synthetase, and activity of the enzyme in rattissues[J]. Biochem J,1970,118(1):35-9.
    [97]BANGSBO J, KIENS B, RICHTER E A. Ammonia uptake in inactive muscles during exercise in humans[J]. Am J Physiol,1996,270(1 Pt 1):E101-6.
    [98]WEISSENBORN K, GIEWEKEMEYER K, HEIDENREICH S, et al. Attention, memory, and cognitive function in hepatic encephalopathy[J]. Metab Brain Dis, 2005,20(4):359-67.
    [99]FELIPO V, BUTTERWORTH R F. Neurobiology of ammonia[J]. Prog Neurobiol, 2002,67(4):259-79.
    [100]李夏青,韩德五,赵元昌,等.NH+4对星状胶质细胞谷氨酰胺代谢的影响[J].中国病理生理杂志,1999,15(9):808-810.
    [101]TAKAHASHI H, KOEHLER R C, BRUSILOW S W, et al. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats[J]. Am J Physiol,1991,261(3 Pt 2):H825-9.
    [102]YANG D S, LIU X L, QIAO D C. [Dynamic changes of 5-HT, DA and their metabolin in rat striatum duringexhaustive exercise and recovery][J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi,2011,27(4):432-6.
    [103]MUTCH B J, BANISTER E W. Ammonia metabolism in exercise and fatigue:a review[J]. Med Sci Sports Exerc,1983,15(1):41-50.
    [104]SPODARYK K, SZMATLAN U, BERGER L. The relationship of plasma ammonia and lactate concentrations to perceivedexertion in trained and untrained women[J]. Eur J Appl Physiol Occup Physiol,1990,61(3-4):309-12.
    [105]PHILP A, MACDONALD A L, WATT P W. Lactate--a signal coordinating cell and systemic function[J]. J Exp Biol,2005,208(Pt 24):4561-75.
    [106]乔德才,李许贞,杨东升,等.力竭运动前后活体大鼠纹状体谷氨酸和γ-氨基丁酸水平的动态变化[J].中国运动医学杂志,2011,(10):921-925+971.
    [107]胡江平.GABA与GABA受体及其在运动中变化的研究现状[J].南京体育学院学报(自然科学版),2004,(03):4-8.
    [108]LIEBERMAN H R, GEORGELIS J H, MAHER T J, et al. Tyrosine prevents effects of hyperthermia on behavior and increasesnorepinephrine[J]. Physiol Behav,2005,84(1):33-8.
    [109]贾伟.医学代谢组学[M].上海:上海科学技术出版社,2011:4-5.
    [110]赵敬国,冯玉娟,朱玉珍,等.优秀散打运动员的心率变异性[J].中国临床康复,2005,9(44):121-123.
    [111]MANZI V, CASTAGNA C, PADUA E, et al. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners[J]. Am J Physiol Heart Circ Physiol,2009,296(6):H1733-40.
    [112]BOETTGER S, PUTA C, YERAGANI V K, et al. Heart rate variability, QT variability, and electrodermal activity during exercise[J]. Med Sci Sports Exerc, 2010,42(3):443-8.
    [113]WILLIAMS L R, WALMSLEY A. Response amendment in fencing:differences between elite and novice subjects[J]. Percept Mot Skills,2000,91(1):131-42.
    [114]HOCH F, WERLE E, WEICKER H. Sympathoadrenergic regulation in elite fencers in training and competition[J]. Int J Sports Med,1988,9 Suppl 2:S141-5.
    [115]NIIZEKI N, DAIKOKU T, HIRATA T, et al. Mechanism of biosynthesis of trimethylamine oxide from choline in the teleost tilapia, Oreochromis niloticus, under freshwater conditions[J]. Comp Biochem Physiol B Biochem Mol Biol, 2002,131(3):371-86.
    [116]WANG Z, KLIPFELL E, BENNETT B J, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011,472(7341):57-63.
    [117]CHO S S, REDDY G, STRAUB J E, et al. Entropic stabilization of proteins by TMAO[J]. J Phys Chem B,2011,115(45):13401-7.
    [118]MUNROE K L, MAGERS D H, HAMMER N I. Raman spectroscopic signatures of noncovalent interactions between trimethylamineN-oxide (TMAO) and water[J]. J Phys Chem B,2011,115(23):7699-707.
    [119]HUO T, CAI S, LU X, et al. Metabonomic study of biochemical changes in the serum of type 2 diabetes mellitus patients after the treatment of metformin hydrochloride[J]. J Pharm Biomed Anal,2009,49(4):976-82.
    [120]DUMAS M E, CANLET C, VERCAUTEREN J, et al. Homeostatic signature of anabolic steroids in cattle using 1H-13C HMBC NMR metabonomics[J]. J Proteome Res,2005,4(5):1493-502.
    [121]ZHANG A Q S C R L.. Dietary precursors of trimethylamine in man:A pilot study[J]. Food and Chemical Toxicology,1999,37(5):515-520.
    [122]HAVEMEISTER W, REHBEIN H, STEINHART H, et al. Visualization of the enzyme trimethylamine oxide demethylase in isoelectricfocusing gels by an enzyme-specific staining method[J]. Electrophoresis,1999,20(10):1934-8.
    [123]宋丹阳,周德庆,杜永芳,等.氧化三甲胺酶研究进展[J].食品科学,2007,(01):350-353.
    [124]YANCEY P H, CLARK M E, HAND S C, et al. Living with water stress: evolution of osmolyte systems[J]. Science (80-),1982,217(4566):1214-22.
    [125]YANCEY P H. Water Stress,Osmolytes and Proteins[J]. Amer Zool, 2001,41:699-709.
    [126]YANCEY P H, SIEBENALLER J F. Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenasesagainst inactivation by hydrostatic pressure and trypsinolysis[J]. J Exp Biol,1999,202(Pt 24):3597-603.
    [127]MEERSMAN F, BOWRON D, SOPER A K, et al. Counteraction of urea by trimethylamine N-oxide is due to direct interaction[J]. Biophys J, 2009,97(9):2559-66.
    [128]QI W, ZHANG A, GOOD T A, et al. Two disaccharides and trimethylamine N-oxide affect Abeta aggregation differently, but all attenuate oligomer-induced membrane permeability[J]. Biochemistry,2009,48(37):8908-19.
    [129]BASKAKOV I, WANG A, BOLEN D W. Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactatedehydrogenase function:a test of the counteraction hypothesis [J]. Biophys J,1998,74(5):2666-73.
    [130]VOLLAARD N B, SHEARMAN J P, COOPER C E. Exercise-induced oxidative stress:myths, realities and physiological relevance[J]. Sports Med, 2005,35(12):1045-62.
    [131]BLOOMER R J. Effect of exercise on oxidative stress biomarkers[J]. Adv Clin Chem,2008,46:1-50.
    [132]POWERS S K, JACKSON M J. Exercise-induced oxidative stress:cellular mechanisms and impact on muscle force production[J]. Physiol Rev, 2008,88(4):1243-76.
    [133]FREIKMAN I, AMER J, COHEN J S, et al. Oxidative stress causes membrane phospholipid rearrangement and shedding from RBCmembranes--an NMR study[J]. Biochim Biophys Acta,2008,1778(10):2388-94.
    [134]DAVIES K J, QUINTANILHA A T, BROOKS G A, et al. Free radicals and tissue damage produced by exercise[J]. Biochem Biophys Res Commun, 1982,107(4):1198-205.
    [135]GROUSSARD C, RANNOU-BEKONO F, MACHEFER Q et al. Changes in blood lipid peroxidation markers and antioxidants after a singlesprint anaerobic exercise[J]. Eur J Appl Physiol,2003,89(1):14-20.
    [136]NAVARRO-AREVALO A, CANAVATE C, SANCHEZ-DEL-PINO M J. Myocardial and skeletal muscle aging and changes in oxidative stress in relationship to rigorous exercise training[J]. Mech Ageing Dev, 1999,108(3):207-17.
    [137]FINAUD J, LAC G, FILAIRE E. Oxidative stress:relationship with exercise and training[J]. Sports Med,2006,36(4):327-58.
    [138]PITTALUGA M, PARISI P, SABATINI S, et al. Cellular and biochemical parameters of exercise-induced oxidative stress relationship with training levels[J]. Free Radic Res,2006,40(6):607-14.
    [139]BLOOMER R J, FISHER-WELLMAN K H. Blood oxidative stress biomarkers: influence of sex, exercise training status,and dietary intake[J]. Gend Med, 2008,5(3):218-28.
    [140]HAUET T, EUGENE M. A new approach in organ preservation:potential role of new polymers[J]. Kidney Int,2008,74(8):998-1003.
    [141]BASSENGE E, SOMMER O, SCHWEMMER M, et al. Antioxidant pyruvate inhibits cardiac formation of reactive oxygen speciesthrough changes in redox state[J]. Am J Physiol Heart Circ Physiol,2000,279(5):H2431-8.
    [142]LEEUWENBURGH C, JI L L. Glutathione depletion in rested and exercised mice: biochemical consequence and adaptation[J]. Arch Biochem Biophys, 1995,316(2):941-9.
    [143]黄彩华,归予恒,林东海.代谢组学:运动人体科学研究的新工具[J].体育科学,2011,(09):77-84.
    [144]侯丽.血乳酸和尿乳酸在不同运动时相的变化及关系探讨[J].哈尔滨医科大学学报,1999,(03):239-240.
    [145]杨为进,王亚华,周群芳,等.人体尿液代谢组NMR分析[J].中国科学(B辑:化学),2008,(01):85-92.
    [146]OVERGAARD M, RASMUSSEN P, BOHM A M, et al. Hypoxia and exercise provoke both lactate release and lactate oxidation by the human brain[J]. FASEB J, 2012.
    [147]HARPER A E, MILLER R H, BLOCK K P. Branched-chain amino acid metabolism[J]. Annu Rev Nutr,1984,4:409-54.
    [148]BLOCK K P, RICHMOND W B, MEHARD W B, et al. Glucocorticoid-mediated activation of muscle branched-chain alpha-keto acid dehydrogenase in vivo[J]. Am J Physiol,1987,252(3 Pt 1):E396-407.
    [149]PAUL H S, ADIBI S A. Mechanism of increased conversion of branched chain keto acid dehydrogenase from inactive to active form by a medium chain fatty acid (octanoate) in skeletal muscle[J]. J Biol Chem,1992,267(16):11208-14.
    [150]SHIMOMURA Y, MURAKAMI T, NAKAI N, et al. Exercise promotes BCAA catabolism:effects of BCAA supplementation on skeletal muscle during exercise[J]. J Nutr,2004,134(6 Suppl):1583S-1587S.
    [151]BABIJ P, MATTHEWS S M, RENNIE M J. Changes in blood ammonia, lactate and amino acids in relation to workload during bicycle ergometer exercise in man[J]. Eur J Appl Physiol Occup Physiol,1983,50(3):405-11.
    [152]HAGG S A, MORSE E L, ADIBI S A. Effect of exercise on rates of oxidation, turnover, and plasma clearance of leucine in human subjects[J]. Am J Physiol, 1982,242(6):E407-10.
    [153]MAHONEY D J, PARISE G, MELOV S, et al. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise[J]. FASEB J,2005,19(11):1498-500.
    [154]LEICK L, PLOMGAARD P, GRONLOKKE L, et al. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletalmuscle late in recovery[J]. Scand J Med Sci Sports,2010,20(4):593-9.
    [155]BURGE C M. Hemoglobin in exercise adaptation[J]. Exerc Sport Sci Rev, 2010,38(2):41.
    [156]HAWLEY J A, BURKE L M. Carbohydrate availability and training adaptation: effects on cell metabolism[J]. Exerc Sport Sci Rev,2010,38(4):152-60.
    [157]顾景范.能量平衡与代谢适应[J].解放军预防医学杂志,1994,(05):415-418.
    [158]MILHORAT A T. Creatine and creatinine metabolism and diseases of the neuromuscular system[J]. Res Publ Assoc Res Nerv Ment Dis,1953,32:400-21.
    [159]SCHULZE A. Creatine deficiency syndromes[J]. Mol Cell Biochem, 2003,244(1-2):143-50.
    [160]KUTLU S, COLAKOGLU N, HALIFEOGLU I, et al. Comparative evaluation of hepatotoxic and nephrotoxic effects of aroclors 1221 and 1254 in female rats[J]. Cell Biochem Funct,2007,25(2):167-72.
    [161]MAYERSOHN M, CONRAD K A, ACHARI R. The influence of a cooked meat meal on creatinine plasma concentration and creatinine clearance[J]. Br J Clin Pharmacol,1983,15(2):227-30.
    [162]LUKASKI H. Estimation of muscle mass[M]. Champaign:Human Kinetics,1996:109-128.
    [163]李军生,杨军,阎柳娟,等.氧化三甲胺的代谢特征及其在鱼饲料生产中的应用[J].湖北农业科学,2011,(13):2720-2723.
    [164]BAIN M A, FORNASINI G, EVANS A M. Trimethylamine:metabolic, pharmacokinetic and safety aspects[J]. Curr Drug Metab,2005,6(3):227-40.
    [165]THOMAS C, PERREY S, LAMBERT K, et al. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans[J]. J Appl Physiol,2005,98(3):804-9.
    [166]BURNISTON J G, Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise[J]. Proteomics,2009,9(1):106-15.
    [167]SHKURNIKOV M U, DONNIKOV A E, AKIMOV E B, et al. Free testosterone as marker of adaptation to medium-intensive exercise[J]. Bull Exp Biol Med, 2008,146(3):354-7.
    [168]HARMAN D. Free radical theory of aging:an update:increasing the functional life span[J]. Ann N Y Acad Sci,2006,1067:10-21.
    [169]PANI G, COLAVITTI R, BEDOGNI B, et al. A redox signaling mechanism for density-dependent inhibition of cell growth[J]. J Biol Chem, 2000,275(49):38891-9.
    [170]RADAK Z, CHUNG H Y, GOTO S. Systemic adaptation to oxidative challenge induced by regular exercise[J]. Free Radic Biol Med,2008,44(2):153-9.
    [171]JI L L, GOMEZ-CABRERA M C, VINA J. Role of nuclear factor kappaB and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation[J]. Appl Physiol Nutr Metab,2007,32(5):930-5.
    [172]NIESS A M, SIMON P. Response and adaptation of skeletal muscle to exercise--the role of reactive oxygen species[J]. Front Biosci,2007,12:4826-38.
    [173]BROWNELL K D, STEEN S N, WILMORE J H. Weight regulation practices in athletes:analysis of metabolic and health effects[J]. Med Sci Sports Exerc, 1987,19(6):546-56.
    [174]冯连世,赵鹏.运动员减体重研究现状[J].体育科学,2005,(09):59-68.
    [175]FOGELHOLM G M, KOSKINEN R, LAAKSO J, et al. Gradual and rapid weight loss:effects on nutrition and performance in maleathletes[J]. Med Sci Sports Exerc,1993,25(3):371-7.
    [176]FILAIRE E, MASO F, DEGOUTTE F, et al. Food restriction, performance, psychological state and lipid values in judo athletes[J]. Int J Sports Med, 2001,22(6):454-9.
    [177]HALL C J, LANE A M. Effects of rapid weight loss on mood and performance among amateur boxers[J]. Br J Sports Med,2001,35(6):390-5.
    [178]KORAL J, DOSSEVILLE F. Combination of gradual and rapid weight loss: effects on physical performance and psychological state of elite judo athletes[J]. J Sports Sci,2009,27(2):115-20.
    [179]UMEDA T, NAKAJI S, SHIMOYAMA T, et al. Adverse effects of energy restriction on myogenic enzymes in judoists[J]. J Sports Sci,2004,22(4):329-38.
    [180]MCMARTIN K E, AMBRE J J, TEPHLY T R. Methanol poisoning in human subjects. Role for formic acid accumulation in the metabolic acidosis[J]. Am J Med,1980,68(3):414-8.
    [181]BRUNET P, DOU L, CERINI C, et al. Protein-bound uremic retention solutes[J]. Adv Ren Replace Ther,2003,10(4):310-20.
    [182]CALVANI R, MICCHELI A, CAPUANI G, et al. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype[J]. Int J Obes (Lond),2010,34(6):1095-8.
    [183]SINGLETON K D, BECKEY V E, WISCHMEYER P E. Glutamine prevents activation of NF-kappaB and stress kinase pathway, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome(ARDS) following sepsis[J]. Shock,2005,24(6):583-9.
    [184]TSACOPOULOS M, MAGISTRETTI P J. Metabolic coupling between glia and neurons[J]. J Neurosci,1996,16(3):877-85.
    [185]KING P, PARKIN H, MACDONALD I A, et al. The effect of intravenous lactate on cerebral function during hypoglycaemia[J]. Diabet Med,1997,14(1):19-28.
    [186]AOYAMA I, MIYAZAKI T, NIWA T. Preventive effects of an oral sorbent on nephropathy in rats[J]. Miner Electrolyte Metab,1999,25(4-6):365-72.
    [187]DOU L, JOURDE-CHICHE N, FAURE V, et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells[J]. J Thromb Haemost, 2007,5(6):1302-8.
    [188]IWASAKI Y. Uremic toxins and bone metabolism[J]. Clin Calcium, 2007,17(5):734-9.
    [189]KARILA T A, SARKKINEN P, MARTTINEN M, et al. Rapid weight loss decreases serum testosterone[J]. Int J Sports Med,2008,29(11):872-7.
    [190]BRITO C J, ROAS A F C, BRITO I S S, et al. Methods of Body Mass Reduction by Combat Sports' Athletes[J]. Int J Sport Nutr Exerc Metab,2012.
    [191]CADWALLADER A B, de LA TORRE X, TIERI A, et al. The abuse of diuretics as performance-enhancing drugs and masking agents in sport doping: pharmacology, toxicology and analysis[J]. Br J Pharmacol,2010,161(1):1-16.
    [192]CALDWELL J E, AHONEN E, NOUSIAINEN U. Differential effects of sauna-, diuretic-, and exercise-induced hypohydration[J]. J Appl Physiol, 1984,57(4):1018-23.
    [193]ARTIOLI G G, FRANCHINI E, NICASTRO H, et al. The need of a weight management control program in judo:a proposal based on the successful case of wrestling[J]. J Int Soc Sports Nutr,2010,7(1):15.
    [194]MORTON J P, ROBERTSON C, SUTTON L, et al. Making the weight:a case study from professional boxing[J]. Int J Sport Nutr Exerc Metab,2010,20(1):80-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700