燃气辐射管热工性能的实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业窑炉应用燃气辐射管加热装置可降低窑炉的基础建设和运行成本,提高生产效率,延长窑炉寿命。燃气辐射管的燃烧气氛及燃烧产物不与被加热工件直接接触,大大提高产品的质量,目前在金属热处理及工业干燥领域中广泛应用。
     本课题研制了适用于中低温场合的燃气辐射管,由专门设计的引射式燃气燃烧器和石英管组成,自然排烟,辐射管内为负压,安全环保节能。石英管表面黑度高,不需考虑管壁温度的均匀性以及燃烧产物的腐蚀性对辐射管寿命的影响。
     本论文对燃气辐射管的热工性能进行实验研究和数值模拟。重点研究了燃气流量、一次空气系数、加入插入物这三个因素对辐射管壁面温度、功率、效率及污染物含量的影响规律,另外二次空气预热温度、辐射管的管长与管径等因素对性能的影响也做了简单的研究。
     论文还对燃气辐射管热工性能进行了正交数字试验研究,通过方差分析得到了燃气流量、一次空气系数和二次空气调节装置高度这三个因素以及各因素之间的交互作用对考核指标的影响程度。
     在原先的燃气辐射管的基础上,为进一步提高其效率,论文的最后部分对燃烧器装置进行了优化,通过对几种方案的数值模拟结果的比较,选择最优方案,从而达到强化燃气空气的混合,提高燃气辐射管效率的目的。
     本论文采用的数值模拟方法可清晰的展现辐射管内燃烧状态下的温度场、流场及组分分布,丰富了对辐射管燃烧技术的认识和理解,该研究成果将对燃气辐射管的工业化应用提供理论依据与经验。
The application of gas radiant tube to industrial furnace is economic and appropriate. It can not only reduce the capital construction and running costs, increase production efficiency and lengthen the life of the furnace, but combustion atmosphere and product doesn’t contact with heated objects directly. So it will not have an effect on the quality of product. On the contrary, the quality of heated product will be greatly improved, thus it’s used widely in the area of metallic heat treatment particularly.
     This subject develops gas radiant tube that’s applicable for medium-temperature industrial drying kiln.Injective gas burner is designed according to the requirements of design parameters. The way of air supply is suction type,natural draft is used and it shows negative pressure in the pipe. Therefore,it is able to save energy during the safe manufacturing. Choosing vycor as the material of radiant tube, no matter whether the uniformity of wall temperature and the corrosivity of combustion products have effects on the life of tube or not.
     Firstly, conduct a basic experimental study on the thermal performance of gas radiant tube. It focuses on the impact of the three factors(gas consumption, the change of primary air coefficient, adding insert) on the wall temperature of radiant tube and the content of pollutants. Secondly, use burning mathematical model on the basis of the study to do a numerical simulation on the combustion process in gas radiant tube under different conditions. It analyses the thermal performance of gas radiant tube through combustion field of gas and air in the tube(temperature field, concentration field, velocity field of combustion and mass fraction field of combustion product.)Numerical simulation goes from two parts: in line with analysis of variance on the result of quadrate digital test about the thermal performance of gas radiant tube ,the first part finds the significant degree of influence, the three factors—gas consumption, primary air coefficient and controlling device’s height of secondary air, have on assessment indicators, as well as the impact of the interaction among all factors on thermal performance. By experimental study of single-factor figures on the thermal performance of gas radiant tube,the second part finds the influence rules of primary air coefficient, gas consumption, air preheating temperature, radiant tube’s length and caliber’s change on the thermal performance of gas radiant tube(mainly refers to power and efficiency).
     In order to improve the operational efficiency of gas radiant tube, the last part of this paper optimizes the burner devices. Mainly starting from improving flow patterns and mixing way of gas and air, optimization methods adjusts length and angle on the basis of the original secondary air controlling device. Optimal solution is selected through the comparison in the numerical simulation results of several programs. The purposes of strengthening the mixture of gas and air flow and improving the full extent of gas burning have been achieved.
     This article conducts a comprehensive study on the thermal performance of radiant tube by numerical simulation and experiment. The most important thing is that it can clearly show temperature field, flow field and component distribution under the burning condition in the radiant tube and enrich our awareness and understanding of the technology about radiant tube combustion. Therefore, using the way of the combination of experimental and numerical simulation can deepen our understanding of the basic phenomenon and process of combustion in gas radiant tube. The research findings will provide theoretical basis and experience on industrialized applications of gas radiant tube.
引文
[1]陈树义.燃气辐射管[J].武钢技术. 1986, (03): 29-35.
    [2] Quinquenneau, A. and Fourniguet, M. J. Nitrogen Oxide Emissions from Industrial Burners. Gaz d’aujourd’Hui. Mar, 1996: 139-143(In French).
    [3] H. J. Faust. Development of a Catalytic Natural Gas Burner for Domestic Application. 1995.
    [4] Nebojsa Nakicenovic, Amulf Grubler. Energy and the Protection of the Atmosphere. Global energy issues. 2000, 13: 4-57.
    [5] Masayaki IMOSE. Recent Development of Heating and Cooling technology in Continuous Annealing transaction ISIJ, 1985, 25: 915.
    [6]姜正侯,郭文博,傅忠诚等.燃气燃烧与应用[M].北京:中国建筑工业出版社, 2000.
    [7]陈树义,章丽玲译.燃料燃烧及燃烧装置[M].北京:冶金工业出版社, 1985.
    [8]樊东黎.热处理行业"十一五"发展规划纲要和2020年设想, 2005.
    [9]李九龄.带钢连续热镀锌[M].北京:冶金工业出版社, 1987.
    [10]张竑.现代热镀锌机组连续退火技术[J].武钢技术, 1999, 5.
    [11]宋加.热镀锌生产技术发展新动向[J].北京钢铁设计研究总院, 1997.
    [12]戎宗义.国内外加热炉和热处理炉的现状和节能技术[J].特殊钢, 1999, (205): 35-39.
    [13]吴建常.在钢铁协会"环保与节能工作委员会第二次全体会议"上的讲话[J].钢铁信息2002, 24 (145): 2-6.
    [14]高仲龙,蒋大强.带钢加热用辐射管[J].工业加热, 1998, (5): 9-11.
    [15] Gupta A. K. Bolz S. Hasegawa T. Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission [J]. Journal of Energy Resources Technology. 1999, (9): 209-216.
    [16] Newby J N. High performance heat recovery with regenerative burners [J]. Iron and Steel Engineer, 1987, 64(4): 20-24.
    [17] Tada T, Akiyama T, Kawamoto M, Kikukawa H. Development of Regenerative Burner System for Radiant Tube[A]. International Conference on Environmental Control of Combustion Processes, Sponsored by AFRC and J FRC[C]. Honolulu, Hawaii, 1991.
    [18] SZEWCZYK D, BLASIAK W, JEWARTOWSKI M. et at Increase of the Effective Energy from the Radiant Tube Equipped with High-cycle Regenerative System (HRS) in Comparison with Conventional Recuperative System[M]. XI Konferencja Naukowo–Techniczna. 003.
    [19] Szewczyk D, Blasiak W, Jewartowski M, Rafidi N. Increase the effective energy from the Radiant Tube equipped with High cycle Regenerative System (HRS) in comparison withconventional recuperative system [A]. Topic Oriented Technical Meetings[C]. Stockholm, Sweden: 23rd-24th October2003.
    [20]须藤淳多田健.蜂窝型蓄热式燃烧系统的开发和应用.工业炉, 1999, 21(2): 50-53.
    [21] J. S. Tsai, K. Yoshikawa, T. Iwahashi, K. Kawai. Thermal Performance of a High Temperature Air Combustion Boiler. Proceeding of International Symposium on Combustion, 1998, l-5.
    [22] Y. Suzakawa. Regenerative Burner Heating System. Hsiao Tsechiang, Yoshikawa Kunio, ends proceeding of High Temperature Air Combustion Symposium. Beijing: 1999, 169-180.
    [23] Tanaka R, Kishimoto K, Hasegawa T. High Efficiency heat transfer method with use of High temperature pre-heated air and gas recirculation. Combust. Sci. Technology, 1999, 1(4): 264-273.
    [24] Hasegawa T, Tanaka R, Nuoka T, High temperate air combustion contributing to energy saving and pollutant reduction in industrial furnace. In: Hsiao T C, Yoshikawa K. eds. Proceedings of Beijing Symposium on High Temperature Air Combustion. Beijing: The Federation of Engineering Scotties of Chinese Association for Science and Technology, 1999, 102-114.
    [25] Mei F, Meunier. H. Numerical and experimental investigation of asingle ended radiant tube. ASME Publications HTD, 1997; , 341: 109–118.
    [26] Lankhorst A, Velthuis FM. Ceramic recuperative radiant tube burners: simulations and experiments. Transport Phenomena in Combustion 2, 1995: 1330–41.
    [27] G. Scribano. Study of a Radiant Burner: Performance Optimization and Reduction of Pollutant Emissions, Ph. D. Thesis, Energetic. Dept. Politecnico di MIlano, 2004.
    [28]谢辰,黄德轩等.辐射管加热炉的优劣化分析[J].四川冶金, 2002, (6): 28-30.
    [29]邹琳江.辐射管内温度场的研究[J].华东冶金学院学报, 1993, 10(1).
    [30]邹琳江,陈光,林观振.辐射管的传热模型及实验研究[J].冶金能源, 1996, 17(6): 32-36.
    [31]徐斌,张松寿等.直通型燃气辐射管的数学模型[J].工业炉, 1995, 75(1).
    [32]刘存芳,张梦珠.套管式燃气辐射管壁温计算数学模型[J].热能动力工程, 1996, 11(1).
    [33]武汉钢铁设计研究院,宝钢工程设计队.镀锡原板连续退火技术[J].上海金属, 1994, 1.
    [34]许永贵,顾锦荣,李一为等. W型辐射管的性能研究[J].华东冶金学院学报, 1994, 34(2): 54-59.
    [35]高仲龙,蒋大强,郭雪涛等.辐射管性能测试[J].工业炉, 1996, 16(1): 3-6.
    [36]张裕泰;夏远萍.镀锌板生产线退火炉辐射管燃烧实验研究[D].中国科学院上海冶金研究所,材料物理与化学(专业)博士论文, 2000.
    [37]许诗双,许永贵等.改型2030APL炉用W辐射管的试验研究[J].工业炉, 2000, 522(2): 1-5.
    [38]高茵,高惠民,龙锋. W型蓄热式辐射管表明温度分布的数值模拟[J].冶金能源, 2005,24(4): 24-29.
    [39]欧俭平,马爱纯,占树华等. U型蓄热式辐射管表面温度分布模拟研究[J].金属热处理, 2005, 30(1): 74-76.
    [40]杨思安,姜泽毅,张欣欣,杨立新. P型蓄热式辐射管设计与数值模拟[J].工业加热, 2005, 34(3): 4-6.
    [41]楼国锋,宋兴飞,温治.自身预热式燃气辐射管的初步数值研究[J]. 2009, 34(8).
    [42]徐斌.燃气辐射管的改进[J].燃气与热力, 1998, 6: 46-51.
    [43]萧琦,吴道洪,王东方等.蓄热式辐射管表面温度的试验研究[J].工业炉, 2004, 26(5): 52-55.
    [44]郭伯伟,张者一.工业炉发展与蓄热式燃烧器的应用[J].工业加热, 2001, (3): 5-9.
    [45]张成毅,李帆,荣庆兴.天然气燃烧的低NOx排放研究现状和趋势[J].上海燃气, 2005(4): 31-34.
    [46]伍成波,马丁,许鹏彦等.蓄热式辐射管中降低NOx的排放量的试验研究[J].工业加热, 2007. 36(2): 37-40.
    [47]杨明宽.天然气燃烧方式及燃烧器的应用问题[J].玻璃与搪瓷, 2001, 29(4): 31-35.
    [48]刘柱,张鹏.浅谈改变燃气成分对灶具性能的影响[J].应用能源技术, 2000, (2): 28.
    [49]雷霆宙.一次空气系数对燃具燃烧性能的影响[J].河南科学, 1993, 12 (4): 287-291.
    [50]傅忠诚,潘树源.过剩空气系数计算公式的比较[J].燃气与热力, 2006, 26(5): 27-28.
    [51]姜正侯.燃气工程技术手册[M].上海:同济大学出版社, 1993.
    [52]赵易成.实用燃烧技术[M].北京:冶金工业出版社, 1992.
    [53]高仲龙,蒋大强,郭雪涛等.辐射管性能测试[J].工业炉, 1996, 16(1): 3-6.
    [54]韩占中等. FLUENT流体工程仿真计算实例与应用[M].北京理工大学出版社, 2004.
    [55]温正,石良辰,任毅如.流体计算应用教程[M].北京:清华大学出版社, 2009, 4-12.
    [56] Abbes, F. C. Lockwood. The Prediction of A Comer-fired Utility Boiler [J]. Twenty-first Symposiums (Int. ) on Combustion, 1986, 875.
    [57] Eaton A M, Smoot L D, Eatough. Evaluation and Application of Comprehensive Combustion Models [J]. Progress in Energy and Combustion Science, 1999, 25: 387-436.
    [58] Mustafa, The Effect of Thermal Radiation and Radiation Models on Hydrogen-hydrocarbon Combustion Modeling [J]. International Journal of Hydrogen Energy, 2005, 30: 1113-1126.
    [59]王福军.计算流体动力学分析—CFD软件原理和应用[M].北京:清华大学出版社, 2004, 114-140.
    [60]范维澄,万跃鹏.流动及燃烧的模型与计算[M].安徽:中国科学技术大学出版社, 1992, 14-18.
    [61]宫野秋彦,小林定教.用热电偶测定表面温度[C].陈启高译.日本建筑学会论文报告集253号, 1977: 118-129.
    [62]田胜元,萧曰嵘.实验设计与数据处理[M].北京:中国建筑工业出版社, 2000.
    [63]于庆波等.蓄热式燃烧技术的应用与发展[J].节能, 1998, (8): 3-7.
    [64]郭伯伟.现代工业炉燃烧技术[M].北京:科学出版社, 1994.
    [65]刘颖杰.燃气燃烧器特性评价的研究[D].辽宁科技大学硕士学位论文, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700