基于多Agent的大跨连续梁桥施工控制系统及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国大力发展交通基础建设的今天,桥梁建设工程任务艰巨。预应力混凝土连续梁桥以其受力性能好、抗震能力强、造型多变等优点成为众多桥梁设计者的首选桥型。虽然预应力混凝土连续梁桥的悬臂浇筑施工方法在我国也已逐渐成熟,其造价低、施工速度快、设备少、工序简单、占用较小的桥位空间等诸多优点给预应力混凝土连续梁桥的建设带来不少便利,但是在梁桥建设任务重、工期紧和梁桥结构不断创新的背景下,混凝土连续梁桥的悬臂浇筑施工的弱势不得不引起施工控制者的关注。随着预应力混凝土连续梁桥的跨度增大、墩位增高、平顺性要求越发严格,亟需对梁桥施工中的受力状态、影响因素、施工误差、施工安全和施工质量加强控制。本文建立了基于多Agent的大跨连续梁桥施工控制系统,在充分利用多Agent系统的智能性的基础上,能实现对大跨连续梁桥在整个施工过程中的受力、安全和线形等的全面控制,并建立施工控制工作的分布式协同模式,提高了梁桥施工控制的效率。论文的主要工作及研究成果如下:
     (1)对大跨连续梁桥施工控制系统进行分析,找出梁桥施工系统基于多Agent的优化优势和方法,从而根据多Agent的基本概念,建立大跨连续梁桥多Agent施工控制系统。该系统较传统的施工控制具有明显的智能性,能真正实现梁桥的自适应控制。该系统还包含工程数据库、知识库和施工状态分析模块,大大提高了梁桥施工控制数据处理效率。系统中还提出了梁桥自适应控制与预测控制相结合的施工控制方法,能综合分析影响梁桥施工状态的各种参数因素或非参数因素,增强了施工控制决策的可靠性。
     (2)在大跨连续梁桥多Agent施工控制系统模型的基础上,基于多Agent理论和实时控制理论,对梁桥施工控制系统进一步完善,提出基于多Agent的大跨连续梁桥施工实时控制流程。对梁桥施工控制系统的施工现场监测、施工仿真分析、施工状态分析、参数识别与施工预测这四个子系统进行Agent分工,建立梁桥施工控制的个体Agent内部结构,并明确各项施工控制工作的流程和协作关系,有利于施工控制系统与施工控制实际操作的结合。提出梁桥施工控制的保证措施,以确保施工控制系统的流畅运行。
     (3)研究了基于误差修正的施工状态分析方法。对施工现场监测数据建立施工预警分析,在第一时间对梁桥的施工状态进行初步判断,看是否严重超出施工控制范围。在对梁桥施工状态的进一步分析中,提出了梁桥结构变形监测参数和结构应力监测参数的温度效应修正方法和剪力滞效应修正方法,将经过温度修正和剪力滞修正后的结构变形值和应力值与施工仿真模型计算值进行比较,判断梁桥的线形状态和内力状态。基于误差修正的施工状态分析方法较传统的方法更合理,现场的施工监测工作也可不用刻意选择环境温度来进行,减少了施工监测对梁桥正常施工的影响。
     (4)基于对参数识别与施工预测的常用方法的分析,建立了参数典型相关分析和GRNN的梁桥施工参数识别方法,以及灰色神经网络、遗传神经网络和组合预测模型的施工预测方法。参数典型相关分析能分析出同时对结构应力和结构变形影响显著的设计参数,提高了参数识别的效率。GRNN、灰色神经网络和遗传神经网络都是基本BP神经网络的优化模型,具有更强的非线性映射能力、容错性和鲁棒性。施工组合预测模型在综合几种预测方法的优点的基础上,能进一步提高施工预测精度,且在本文的工程实践中其应用效果得到了证实。
     (5)基于面向对象技术,在习均大桥的施工控制中初步实现了大跨连续梁桥多Agent施工控制系统,其智能性也有所体现。结合参数识别与施工预测的优化方法,习均大桥的施工控制精度得到了保证,并已成功合龙。
Chinese government would like to develop the transportation infrastructure construction today, and the bridge project construction is an arduous task. The mechanical behavior and seismic behavior of beam bridge are good. The beam bridge can also be built with many different modeling. So most of the bridge designers would like to choose prestressed concrete continuous beam bridge design scheme.
     The cantilever casting construction method of prestressed concrete continuous beam bridge is much more mature. There are many advantages of cantilever casting construction method, such as low cost, fast construction speed, less equipment, simple process, take up less bridge space and so on. With the heavy task of beam bridge construction, the disadvantages of beam bridge cantilever casting construction have to be paid much attention by the bridge construction masters. Today the span of beam bridge is increasing, the pier is much higher, and there is much more requirement of bridge ride comfort. So in the course of beam bridge construction, the structure stress state, the construction error and the construction safety should be strengthen control.
     A long-span continuous beam bridge multi-Agent construction control system is built in this paper. The construction control system takes full advantage of the intelligent of multi-Agent system. As a result of that, the construction control system can do positive control to stress、safety and linear in the beam bridge construction. With the distributed collaborative construction control pattern of the construction control system, the beam bridge construction control efficiency is greatly improved. The main work and research result of the paper is as follow:
     (1) First, the long-span continuous beam bridge construction control system is analysed. The content of analysis is the goodness and methods of construction system optimization. Based on the basic conception of multi-Agent, the long-span continuous beam bridge multi-Agent construction control system is built. Compared with the traditional construction control system, the multi-Agent construction control system is obvious intelligent. The self-adaptive construction control can be really achieved in the multi-Agent construction control system. The system also includes engineering data base, knowledge base and construction state analysis module. There is a new construction control method in the system, which is the combination of the self-adaptive control method and the predictive control method. The new construction control method can improve the reliability of construction control decision by analyzing all of the influencing factors of beam bridge construction.
     (2) Based on the long-span continuous beam bridge multi-Agent construction control system and real-time control theory, the long-span continuous beam bridge multi-Agent construction control real-time control flow is proposed. There are four subsystems in the control flow, which are construction field monitoring subsystem, construction simulated analysis subsystem, construction state analysis subsystem and parameter identification construction prediction subsystem. In the multi-Agent control flow, the Agent tasks of four subsystems are presented. The Agent internal structure and the cooperative relationship of construction tasks are also presented in the control flow. With the multi-Agent control flow, the beam bridge construction control is easy to implement. Besides, the beam bridge construction control safeguard measure is proposed to ensure construction control system operation.
     (3) The construction state analysis method based on error correction is studied. Firstly, the construction field monitoring data is analyzed preliminarily, and judges the construction early warning need or not. In the further analysis of beam bridge construction state, the error correction analysis method is temperature effect correction calculation and shear lag effect correction calculation. With the two sides'correction calculation, the construction field monitoring data of structure deformation and structure stress will be more significant. Compared with construction simulation model calculated value and the construction field monitoring data which has been modified, the linear state and stress state of beam bridge can be judged rapidly. The error correction construction state analysis method is more reasonable than the traditional method. The error correction analysis method can also reduce the temperature demand of construction monitoring, which is beneficial to construction of beam bridge.
     (4) The common methods of parameter identification and construction prediction are analyzed at first. Then many new methods of parameter identification and construction prediction are proposed, such as parameters canonical correlation analysis, GRNN, grey neural network, genetic neural network and combination forecasting method. The parameters canonical correlation analysis method can identify the parameters which have a significant influence on structure linear and stress at the same time, this method can improve the efficiency of parameter identification calculation. Compared with BP neural work, GRNN and grey neural network and genetic neural network have better nonlinear mapping ability, fault tolerance and robustness. Construction combination forecasting model can make use of the superiority of the above three neural network methods, and the higher precision of the combination model has been confirmed in the application of engineering.
     (5) On the basis of object-oriented technology, the long-span continuous beam bridge multi-Agent construction control system has been realized preliminarily in the construction control of Xijun Bridge. The intelligence of the control system is embodied in practical application. On the combination of the system realization with parameter identification and construction prediction methods which are proposed in this paper, the construction control precision of Xijun Bridge is guaranteed, and the closures of Xijun Bridge are all finished naturally.
引文
[1]Walter. Podolny, Jr., Jean M. Muller. Construction and Design of Prestressed Concrete Segmental Bridges[M]. New York:Wiley, c1982.
    [2]Walter Podolny & John B. Scalzi. Construction and Design of Cable-stayed Bridge[M]. New York:Wiley,1976.
    [3]T. Y. Lin, Ned H. Burns. Design of Prestressed Concrete Structures[M]. New York: Wiley,c1981.
    [4]徐君兰.大跨度桥梁施工控制(土木工程专业用)[M].人民交通出版社,2005.
    [5]向中富.桥梁施工控制技术[M].人民交通出版社,2001.
    [6]Maeda K, Otsuka A, Takano H. The Design and Construction of the Yokoha-ma Bay Bridge[J]. Tokyo:Elsevier Science Publishers,1991,35(3):377-395.
    [7]Mari Antonio R, Valdes Manuel. Long-term Behavior of Continuous Precast Concrete Girder Bridge Model[J]. Journal of Bridge Engineering,2000,5(1):22-30.
    [8]Juan M Caicedo, Johannio Marulanda, Peter Thomson, etal. Monitoring of Bridge to Detect Changes in Structural Health[A].2001 America Control Conference[C]. Arlington, Virginia, 2001,21(6):453-458.
    [9]Sreeshylam P, Ravisankar K, parivallal S, et al. Condition Monitoring of Prestressed Concrete Structures using Vibrating Wire Sensors[J]. International Journal of COMADEM,2008.46-54
    [10]李国平,刘健.大跨度连续梁桥线形最优施工控制的理论与方法[J].华东公路,1992,(2):66-70.
    [11]李国平.上海吴淞大桥结构状态施工控制技术[J].华东公路,1994,15(2):3-7.
    [12]顾安邦,常英,乐云祥.重庆黄花园嘉陵江大桥施工控制[J].重庆交通学院学报,1999,18(4):54-60.
    [13]顾安邦,常英,乐云祥.大跨径预应力连续刚构桥施工控制的理论与方法[J].重庆交通学院学报,1999,18(4):47-53.
    [14]李传习、刘扬、张建仁.基于人工神经网络的混凝土大跨度梁桥参数实时估计[J].中国公路学报,2001,14(3):62-66.
    [15]陈建阳,向木生,郭峰祥等.大跨度桥梁施工监控中的神经网络方法[J].桥梁建设,2001,14(6):42-45.
    [16]刘胜春,张开银.神经网络方法在大跨度桥梁施工预拱度控制中的应用[J].武汉理工大学学报,2001,25(3):270-272.
    [17]向木生.连续刚构桥梁施工监控[J].武汉理工大学学报,2002,24(6):44-47.
    [18]张永水,顾安邦.灰色系统理论在连续刚构桥施工监控中的应用[J].中国公路学报,2001,3(6):42-44.
    [19]汪剑,方志.大跨度预应力混凝土连续梁桥施工控制研究[J].湖南大学学报,2003,30(3):130-133.
    [20]曹华.跨线连续梁桥的施工全过程模拟[J].施工技术,2004,33(12):40-42
    [21]宋增斌,任国旭,刘春燕,范学明.西江特大桥主桥线形施工控制[J].中外公路,2004,24(4):81-84.
    [22]周江平,王卫锋,任国旭.西江特大桥施工监控[J].中外公路,2004,24(8):85-88.
    [23]何其钦,方华兵.柳州市友谊大桥施工控制[J].桥梁建设,2007,(6):65-67.
    [24]周桂梅.连续梁桥悬臂浇筑法施工线形控制技术[J].铁道建筑,2008,(5):40-42.
    [25]张谢东,谢立安,王锴.混凝土连续梁桥施工工线形控制中的温度影响[J].中外公路,2010,30(5):151-154.
    [26]姚敏红,张俊光.连续梁-刚构组合梁桥施工监测与仿真分析[J].铁道建筑,2010,(6):4-6.
    [27]闫林栋.石武客运专线跨京珠公路特大桥预应力混凝土连续梁桥施工监控技术[J].铁道标准设计,2011(9):55-59.
    [28]许交武.武广客运专线罗水大桥施工控制[J].桥梁建设,2011,(3):76-80.
    [29]王长海,张华兵,黄清.武东特大桥施工监控[J].世界桥梁,2011,(1):31-34.
    [30]杨斌.大跨径连续梁桥施工监控研究与实践[J].铁道标准设计,2012,(3):61-64.
    [31]薛洪卫.昌南大道跨京九线高架桥施工线形控制[J].铁道标准设计,2012,(10):58-61.
    [32]宋胜录,伍小平,李茂兴.金山铁路黄浦江特大桥施工监控[J].桥梁建设,2012,42(1):113-117.
    [33]刘生红.城际轨道大跨度连续梁桥线形监控研究[J].铁道建筑,2012,(1):17-19.
    [34]邓亮,杨美良,谭海亮.长联多跨连续箱梁桥施工监控技术研究[J].公路工程,2012,37(5):165-167.
    [35]俞先林,张媛媛.预应力混凝土连续梁桥悬臂施工模糊控制技术[J].中外公路,2003,23(2):43-45.
    [36]佘小年.衡阳东阳渡湘江大桥施工控制[J].公路,2003,11(11):130-134.
    [37]宋增斌,任国旭,刘春燕,范学明.西江特大桥主桥线形施工控制[J].中外公路,2004, 24(4):81-84.
    [38]沈殿栋,梁锦峰.大跨径连续梁桥施工预拱度预测[J].中南公路工程,2006,31(2):127-130.
    [39]陈明尧.神经网络在桥梁参数识别中的应用[J].中外公路,2005,25(5):85-88.
    [40]于天来,陈武权.灰色系统理论在预应力混凝土连续刚构桥高程监测中的应用[J].中外公路,2008,28(3):118-120.
    [41]何伟.大跨度高墩铁路连续梁桥的施工控制[J].铁道标准设计,2009,(9):44-46.
    [42]程霄翔,韩晓林,缪长青等.基于灰色理论悬臂施工中连续梁桥的应力预测与控制[J].世界桥梁,2009,(4):46-49.
    [43]王艳军,徐鹏,毛建平等.连续梁桥悬臂法施工监控研究[J].公路,2010,11(11):48-51.
    [44]姚敏红,张俊光.连续梁-刚构组合梁桥施工监测与仿真分析[J].铁道建筑,2010,(6):4-6.
    [45]闫林栋.石武客运专线跨京珠公路特大桥预应力混凝土连续梁桥施工监控技术[J].铁道标准设计,2011,(9):55-59.
    [46]杨斌.大跨径连续梁桥施工监控研究与实践[J].铁道标准设计,2012,(3):61-64.
    [47]李凯,范良,彭国荣等.悬浇施工中主梁变形监控原理和程序化操作方法[J].中外公路,2012,32(4):177-181.
    [48]谭宁.酉水大桥连续梁桥悬臂施工线形调整分析[J].中外公路,2012,32(3):182-184.
    [49]高大峰,王方辉,任禹州等.卡尔曼滤波法在大跨连续梁桥施工控制中的应用[J].施工技术,2012,41(364):79-82.
    [50]王文杰,叶世伟.人工智能原理与应用[M].北京:人民邮电出版社,2004.
    [51]袁贞明,庄越挺.基于多Agent系统的仿真系统研究[J].模式识别与人工智能,2001,14(3):266-271.
    [52]胡连兴,钟登华,佟大威.不良地质条件下长距离引水隧洞施工全过程进度仿真与实时控制研究[J].岩土工程学报,2012,34(3):497-503.
    [53]李陶深,赵文静.面向对象的程序设计与方法[M].武汉:武汉理工大学出版社,2003.
    [54]Anglani A, Grieco A, Pacella M, et al. Object-oriented Modeling and Simulation of Flexible Manufacturing Systems:A Rule-based Procedure[J]. Simulation Modeling Practice and Theory,2002,10(3):209-234.
    [55]冯慧军,冯允成,一个面向对象的仿真建模框架[J].系统工程理论与实践,1995,5(5):61-66.
    [56]方美琪,张树人.复杂系统建模与仿真[M].北京:中国人民大学出版社,2011.
    [57]Jiming Liu.多智能体原理与技术[M].北京:清华大学出版社,2003.
    [58]Parker D C, Manson S M, Janssen M A. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change:A Review[J]. Annals of the Associational of American Geographers,2003,93(2):314-337.
    [59]Axelrod R M. The Complexity of Cooperation:Agent-Based Models of Competition and Collaboration Princeton[M]. NJ:Princeton University Press,2001,227-236.
    [60]Holland J H隐秩序:适应性造就复杂性[M].周晓牧,韩晖,译.上海:上海科技教育出版社,2000.
    [61][加]Jiming Liu. Agents and Multi-Agent Systems[M]. Explorations in Learning, Self-Organization and Adaptive Computation. ISBN 7-302-06902-6.2003.北京:清华出版社.
    [62]D M Lane, A G Mcfadzean. Distributes Problem Solving and Real-Time Mechanism in Robot Architecture[J]. Engineering Application of Artificial intelligence,1994,7(2):105-117.
    [63]Y Shoham, M Tenenholtz. Agent-Oriented Programming[J]. Artificial Intelligence, Elsevir Science Publisher B. V.,1993,60:51-92.
    [64]刘大有,杨鲲,陈建中Agent研究现状与发展趋势[J].软件学院,2000,11(3):315-321.
    [65]史忠植.智能主体及其应用[M].北京:科学出版社,2000.
    [66]M E Bratman, D J Israel, M E Pollak. Toward an Architecture for Resource Bounded Agents[R]. Technique report CSLI-87-104, Center of Study of Language and Information, SRI and Stanford University,1987.
    [67]Charles J Petrie. Agent-based engineering, the Web and intelligence[J]. IEEE Expert/Intelligence Systems & Their Applications,1996,11(6):24-29.
    [68]R Brooks. New approaches to robotics[J]. Science,1991,253.
    [69]Wooldridge M, Jennings N R. The cooperative problem solving process[J]. Journal of Logic and Computation,1999,9(4):563-592.
    [70]Gek Woo Tan, Caroline C Hayes, Michael Shaw. An intelligent-Agent framework for concurrent product design and planning[J]. IEEE Transaction on Engineering Management, 1996,43(3):297-306.
    [71]J P Muller, M Pischel. An Architecture for Aynamically Interacting Agents [J]. Information system,1994,3(1):25-45.
    [72]I A Ferguson. Toward an Architecture for Adaptive, Rational, Mobile Agents[A]. In Decentralized AI 3:Proceedings of the Third European Workshop on Modeling Autonomous Agents and Multi-agent Worlds[C].1992,249-262.
    [73]Shoham Y. Agent oriented programming[J]. Artificial Intelligence,1993, (60):51-92.
    [74]Maes, Pattie. Artificial life meets entertainment:life like autonomous Agents[J]. Communications of the ACM,1995,38(11):108-114.
    [75]Riyaz Sikora, Michael J Shaw. Coordination mechanisms for Multi-Agent manufacturing system:applications to integrated manufacturing scheduling[J]. IEEE Transaction on Engineering Management,1997,44(2):175-187.
    [76]Xiaoqin Zhang, V Lesser, T Wagner. Integrative Negotiation In Complex Organizational Agent Systems[A]. Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology,2003,140-146.
    [77]M P Gaupp, R R Hill. Using adaptive Agents in java to simulate U. S. A air force pilot retention[A]. Proceedings of the 1999 Winter Simulation Conference [C].1999,1152-1159.
    [78]Davis R, Smith R J. Negotiation as a metaphor for distributed problem-solving[J]. Artificial Intelligence,1983,20(1):63-109.
    [79]Jennings N R, Sycara K, Wooldridge M. A roadmap of Agent research and development[J]. Autonomous Agents and Multi-Agent Systems,1998,10(2):199-215.
    [80]Mare H Debugging. Multi-agent system[J]. Information and Software Technology,1995, 37(2):102-112.
    [81]A M Uhrmacher, K Gugler. Distributed, Parallel Simulation of Multiple, Deliberative Agents [A]. Proceedings on Parallel and Distributed simulation[C].2000,101-108.
    [82]倪建军,徐立中,王建颖.基于CAS理论的多Agent建模仿真方法研究进展[J].计算机工程与科学,2006,(5):83-86.
    [83]廖守亿,戴金海.复杂适应系统及基于Agent的建模与仿真方法[J].系统仿真学报,2004,16(1):113-117.
    [84]王福敏,张峰等.基于倒拆法对重庆朝天门长江大桥进行力学分析[J].重庆:公路交通技术,2007.
    [85]秦顺全.桥梁施工控制—无应力状态法理论与实践[M].北京人民交通出版社,2007.
    [86]崔刚.预应力混凝土连续刚构桥施工控制技术研究[D].长安:长安大学,2007.
    [87]于忠涛.连续刚构桥施工中标高及应变的监控[D].大连:大连理工大学,2003.
    [88]Kuhlmann T, Lamping R, Massow C. Agent-based production management[J]. Journal of Material Processing,1998,9(2):23-27.
    [89]刘金琨,王树青.复杂实时动态环境下的多智能体系统[J].控制与决策,1998,7(13):385-390.
    [90]Jennings N R et al. Agent-based business process man Agent, Int[J]. Journal of cooperative information system,1996,5(2):105-130.
    [91]Carley K M, Newell A. The nature of the social Agent[J]. Journal of Mathematical Sociology, 1994,19(4):221-262.
    [92]胡舜耕,张莉,钟义信.多Agent系统的理论、技术及其应用[J].计算机科学,1999,26(9):20-24.
    [93]Jennings N R, Campos J R. Towards a social level characterization of socially responsible Agents[J]. In:IEEE Proceedings of Software Engineering,1997,144(1):11-25.
    [94]Jennings N R. Commitments and conventions:the foundation of coordination in Multi-Agent system[J]. The Knowledge Engineering Review,1993,8(3):223-250.
    [95]王怀民Agent技术与分布计算技术[J].计算机世界,1998,4.
    [96]钟绍春,刘大有,陈建中.开放、自适应、分布式多Agent系统[J].吉林大学自然科学学报,1996,(1):35-42.
    [97]Wiendahl H P, Ahrens V. Agent-based control of self-organized production systems[J]. Annals of the CIRP,1997,46(1):365-368.
    [98]Tan G W, Hayes C C, Shaw M. An intelligent-Agent framework for concurrent product design and planning[J]. IEEE Transaction on Engineering Management,1996,43(3):297-306.
    [99]中交第一公路工程局有限公司JTG/TF50-2011公路桥涵施工技术规范[S].北京:人民交通出版社,2011.
    [100]JTG D62-2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [101]李国强,黄宏伟,郑步全.工程结构荷载与可靠度设计原理[M].北京:中国建筑工业出版社,2001.
    [102]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [103]BS 5400:Part 4:1984. Code of Practice for Design of Concrete Bridge[S]. British Standard Institute,1984.
    [104]Bridge Manual (2nd Ed). Section 3:Design Loading[S]. Transit New Zealand,2003.
    [105]王毅.预应力混凝土连续箱梁温度作用的观测与分析研究[D].东南大学博士论文,2006.9.
    [106]AASHTO LRFD. Bridge design Specifications[S]. SI Units Third Edition,2004.
    [107]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991,216.
    [108]铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB 10002.3-1999)[S].北京:中国铁路出版社,2000.
    [109]JTJ 023-85,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,1985.
    [110]谭毅平,韩大建.混凝土箱梁桥温度场的模拟及程序的编制[J].中外公路,2007,27(5):165-169.
    [111]田杨,夏招广.薄壁箱型梁桥日照温度场的数值计算分析[J].四川建筑科学研究,2009,35(2):67-70.
    [112]张谢东,谢立安,王锴.混凝土连续梁桥施工线形控制中的温度影响[J].中外公路,2010,30(5):151-154.
    [113]R. Kalman. A New Approach to Linear Filtering and Prediction Problems[J]. Joural of Basic Engineering, ASME,1960,82.
    [114]Mamdouh M. Elbadry, Amin Ghall, M. ASCE. Temperature Variations in Concrete Bridges [J]. Journal of Structural Engineering, ASCE 1983,109(10):2355-2374.
    [115]杨勃,张鹏.混凝土连续梁温度差效应分析[J].公路工程,2009,34(2):69-72.
    [116]王学辉,刘清,何原野.喀兰古连续箱梁桥温度应力监控与有限元分析[J].四川建筑科学研究,2013,39(1):56-59.
    [117]王林,项贻强,汪劲丰等.各国规范关于混凝土箱梁桥温度应力计算的分析与比较[J].公路,2004,(6):76-78.
    [118]刘东升,李金枝,冯仲仁.连续箱梁桥悬臂施工过程中温度梯度效应的空间分析[J].世界桥梁,2007,(3):45-47.
    [119]侯波,钱宇峰,徐变.温度对大跨径连续梁桥施工控制的影响[J].公路,2005,(4):69-71.
    [120]张谢东,蔡素军,石明强.钢筋混凝土箱形梁桥悬臂施工阶段温度效应研究[J].桥梁建设,2007,(6):20-22.
    [121]曹立波,赵晓龙,刘姗姗.大跨度连续箱梁悬臂施工温度效应研究[J].施工技术,2011,40(350):98-101.
    [122]宋增斌,任国旭,刘春燕等.西江特大桥主桥线形施工控制[J].中外公路,2004,24(4):81-84.
    [123]罗旗帜,俞建立.钢筋混凝土连续箱梁桥翼板横向裂缝问题[J].桥梁建设,1997,(1):41-45.
    [124]G. Abdel-Sayed. Effective Width of Steel Deck Plate in Bridge. Journal of the Structural Division[J]. ASCE,1969,95(7):1459-1474.
    [125]K. Hasebe, S. Usuki, Y. Horie. Shear Lag Analysis and Effective Width of Curved Girder Bridges[J]. Journal of Engineering Mechanics, ASCE,1985,111(1):87-92.
    [126]I. S. Ahn, M. Chievanichakorn, S. S. Chen. Effective Flange Width Provisions for Composite Steel Bridges[J]. Engineering Structures,2004, (26):1843-1851.
    [127]T. V. Kaman. "Festschrift August Fopple",1923,114.
    [128]蔡素军,张谢东,黄克超等.混凝土箱梁施工阶段剪力滞效应分析[J].武汉理工大学学报,2008,32(4):719-722.
    [129]工岚,李长凤,刑永明.曲线箱梁剪力滞效应的弹性分析[J].公路交通科技,2008,25(7):65-69.
    [130]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析[J].土木工程学报,1983,16(1):1-12.
    [131]程翔云,李立峰.变高度箱梁桥剪力滞效应的三结合分析法[J].公路,2008,(1):104-108.
    [132]Tesar A. Shear Lag in the Behavior of Thin-walled Box Bridges[J]. Comput. Struct. J.,1996, 59(4):607-612.
    [133]李小祥,石雪飞,阮欣等.低高度混凝土单箱单室箱梁剪力滞效应研究[J].结构工程师,2008,24(2):43-47.
    [134]吴迅,齐成龙.预应力混凝土箱形弯梁桥剪力滞性能研究[J].结构工程师,2010,26(6):49-53.
    [135]Reissner E. On the Problem of Stress Distribution in Wide Flanged Box Beam[J]. Journal Aero Sci,1983, (5):295-299
    [136]吴亚平,赖远明,朱元林等.考虑剪滞效应的薄壁曲梁有限单元法[J].工程力学,2002,19(4):86-89.
    [137]Fu C C, Hsu Y T. The Development of an Improved Curvilinear Thin-walled Vlasov Element[J]. Computer & Structure,1995,54(1):147-159.
    [138]YOSHIAKI O, MASATSUGU N. Block FEM for Time-Dependent Shear-lag Behavior in Two I-girder Composite Bridges [J]. Journal of Bridge Engineering, ASCE,2007,12 (1): 72-79.
    [139]Evans H R, Ahmad M K, Kristek V. Shear Lag in Composite Box Girders of Complex Cross Section[J]. Journal Constructional Steal Research,1993,24 (3):193-198.
    [140]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994.1
    [141]Model Code for Concrete Structures[S]. CEB-FIP, Paris,1978.
    [142]CEB欧洲国际混凝土委员会.1990年CEB -FIP模式规范(混凝土结构)[S].中国建筑科学研究院结构所规范室译,1991,12:57-70.
    [143]N. J. Gardner and M. J. Lockman. Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete[J]. ACI Materials Journal, V.98, No.2, March-April 2001, pp. 159-167.
    [144]英国标准协会.BS 8110《英国混凝土结构规范》[S].中国建筑科学研究院结构所规范室译.1993.5:191-195.
    [145]Z. P. Bazant and S. Baweja. Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures-Model B3, RILEM Recommendation[J]. Materials and Structures, V. 28,1995, pp.357-365.
    [146]ACI Committee 209. Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures (ACI 209-82)[S]. ACI,1982.
    [147]ACI Committee 209(1992). Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures[S], Manual of Concrete Practice, Part 1. American Concrete Institute, 209R 1-92
    [148]N. J. Gardner, J. W. Zhao. Creep and Shrinkage Revisited[J]. ACI Materials Journal, V.90, No.3, May-June 1993, pp.236-246.
    [149]周牧,牛俊武,张宏武.大跨径城市高架桥的施工控制[J].全国桥梁学术会议论文集,北京:人民交通出版社.2004.04
    [150]Jian-Ping Lam. Evaluation of Concrete Shrinkage and Creep Prediction Models[D]. San Jose State university, May 2002.
    [151]杨小兵.混凝土收缩徐变预测模型研究[D].武汉大学硕士论文,2004.6
    [152]向小斌.大跨径连续刚构桥混凝土徐变试验研究[D].武汉理工大学硕士论文,2007.3
    [153]郭时安,冯沛,邵旭东.预应力混凝土箱梁桥施工阶段收缩徐变效应分析[J].中外公路,2009,29(3):101-104.
    [154]黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990
    [155]惠荣炎,黄国兴,易冰若.混凝土的徐变[M].北京:中国铁道出版社,1988
    [156]金成棣.混凝土徐变对超静定结构的变形及内力的影响[J].土木工程学报,1981,14(8):19-32.
    [157]刘忠.混凝土徐变收缩的递推AEMM法[J].重庆交通学院学报,1994,13(5):31-34.
    [158]彭卫,杨骊先,孙炳楠等.分阶段施工连续梁桥的逐步计算法[J].浙江大学学报(自然科学版),1998,32(1):88-93.
    [159]李建斌,石现峰.预应力混凝土连续梁桥的收缩徐变分析[J].石家庄铁道学院学报,2003,16(2):15-18.
    [160]傅木森,曹玉玲.按龄期调整的有效模量法计算混凝土的徐变收缩效应[J].研究与设计,2004,(4):1-3.
    [161]王军文,李建中,孙俊岭.石板坡长江大桥混凝土收缩与徐变效应分析[J].石家庄铁道学院学报,2006,19(3):6-10.
    [162]丛术平,梁书亭.大跨度钢筋混凝土桥梁施工期间徐变效应分析[J].特种结构,2008,25(3):72-75.
    [163]卢志芳.考虑时变性和不确定性的混凝土桥梁收缩徐变及预应力损失计算方法[D].武汉理工大学博士论文,2011.5
    [164]石现峰,宣言,王澜.预应力混凝土曲线连续梁桥施工及使用过程时效仿真分析[J].中国铁道科学,2007,28(4):61-65.
    [165]凌知民.轨道交通预应力混凝土连续梁桥的徐变控制[J].桥梁建设,2002,(3):25-28.
    [166]Antoine E Naaman. Prestressed Concrete Analysis And Design [M]. New York: McGraw-Hill, Inc.,1982:82-156.
    [167]Amin Ghali, Mamdouh M Elbadry. Serviceability Design of Continuous Prestressed Concrete Structures [J]. PCI Journal,1989,34 (1):54-87.
    [168]Tadros M K, Ghali A, Dilger W H. Effect of Non-prestressed Steel on Prestress Loss and Deflection [J]. PCI Journal,1977,22(2):50-63
    [169]杨银庆,戴公连.客运专线预应力混凝土连续梁桥徐变的探讨[J].中外公路,2008,28(3):100-103.
    [170]王卫锋,颜全胜,徐金勇.京珠北段高速公路观音沙特大桥预应力连续刚构应力监测[J].桥梁建设,2006,(5):62-64.
    [171]韩万水,刘建勋,牛宏等.下白石大桥箱梁悬臂施工控制技术研究[J].中外公路,2008,28(1):76-80.
    [172]张海龙,黄鹏,田伟雄等.基于人工神经网络和遗传算法的大跨连续梁桥参数相关分析[J],公路交通科技,2007,24(7):86-90.
    [173]杨雷,张永水,郑凯锋.基于神经网络的连续刚构桥施工线形控制参数预测研究[J].四川建筑科学研究,2011,37(1):263-266.
    [174]卫文哲,陈彦江,闫维明等.基于ARMA模型的桥梁施工监控时间序列分析[J].工业建筑,2011,(41):880-883.
    [175]程霄翔,韩晓林,缪长青等.基于灰色理论悬臂施工中连续梁桥的应力预测与控制[J].世界桥梁,2009,(4):46-49.
    [176]姚敏红,马保林,崔平如.大跨径预应力连续刚构桥梁竖向变形施工监控[J].公路工程,2010,35(4):132-136.
    [177]吴国胜,卜一之.基于最小二乘法的参数识别方法在斜拉桥施工控制中的应用[J].中外公路,2008,28(6):108-110.
    [178]白玉川,任伟新.参数识别在赣江特大桥施工控制中的应用[A].第15届全国结构工程学术会议论文集(第Ⅲ册)[C],2006.10.01
    [179]杨雷,张永水,高建.灰色系统理论在白果渡嘉陵江大桥施工控制中的应用[J].重庆交通学院学报,2006,25(5):5-8.
    [180]卢哲安,于清亮,汪娟娟.灰色理论在连续梁桥施工控制中的应用[J].武汉理工大学学报,2006,28(3):83-85.
    [181]于天来.灰色系统理论在预应力混凝土连续刚构桥高程监测中的应用[J].中外公路,2008,(3):118-120.
    [182]吴艺,毕磊,瞿鸿飞等.基于灰色系统理论的预应力连续梁桥施工监控研究[J].特种结构,2009,26(3):83-86.
    [183]陈为真,汪秉文,胡晓娅.多因子预测模型在连续梁桥中的应用[J].重庆大学学报,2009,32(3):353-356.
    [184]詹昊.预应力混凝土连续梁桥施工控制仿真分析研究[D].武汉理工大学,2005.5
    [185]段宝福,瞿成波,翁现合.灰色系统理论在连续梁桥施工应力监控中的应用研究[J].特种结构,2012,29(2):67-71.
    [186]邵吉林.大跨高桩承台深水墩梁桥施工控制研究[D].武汉理工大学,2004.3
    [187]Kalman R E. A new approach to linear filtering and problems[J]. Journal of Basic Engineering,1960,82(3):315-321.
    [188]高大峰,王方辉,任禹州等.卡尔曼滤波法在大跨连续梁桥施工控制中的应用[J].施 工技术,2012,41(364):79-82.
    [189]樊素英,李忠献.基于广义卡尔曼滤波的桥梁结构物理参数识别[J].计算力学学报,2007,24(4):472-476.
    [190]HOSHIYA M, MARUYAMA O. Identification of running load and beam system[J]. Journal of Engineering Mechanics, ASCE,1978,113(6):813-824.
    [191]刘胜春,张开银,沈成武等.神经网络方法在大跨度桥梁施工预拱度控制中的应用[J].武汉理工大学学报(交通科技与工程版),2001,25(3):270-272.
    [192]陈明尧.神经网络在桥梁参数识别中的应用[J].中外公路,2005,25(5):85-88.
    [193]沈殿栋,梁锦锋.大跨径连续梁桥施工预拱度预测[J].中南公路工程,2006,31(2):127-130.
    [194]虢曙安.连续刚构桥施工控制中的参数识别方法研究[J].公路工程,2009,34(3):135-137.
    [195]王天鹏.大跨径连续刚构桥施工控制方法研究[D].中南林业科技大学,2006.12
    [196]黎曦.神经网络参数识别法在重庆石板坡大桥中的应用[J].重庆交通大学学报,2007.10
    [197]胡星.改进自适应遗传算法的BP神经网络在桥梁施工控制中的应用[D].武汉理工大学,2009.06.
    [198]马卫华.大跨连续刚构桥参数敏感性分析及高程控制[D].东北林业大学,2011.4
    [199]张通.大跨刚构-连续梁桥的全寿命性能监测与分析[D].哈尔滨工业大学,2008.7
    [200]李柏年,吴礼斌MATLAB数据分析方法[M].北京:机械工业出版社,2012.1.
    [201]张德丰MATLAB程序设计与工程应用[M].北京:清华大学出版社,2011.4.
    [202]张娅莉,喇果彦GRNN神经网络在信息分析预测中的应用[J].数据采集与处理,2009,24(10):100-103.
    [203]吕宏辉,钟珞等.灰色系统与神经网络融合技术探索[J].微机发展,2000,10(3):3-5.
    [204]Samarasinghe. s.. Neural Networks for Appeied Science and Engineering——From Fundamentals to Complex Pattern Recognition[M]. ISBN:978-0-8493-3375-0, published by CRC Press, part of Taylor & Francis Group LCC.
    [205]何翔,李守巨,刘迎曦等.基于遗传神经网络的坝基岩体渗透系数识别[J].岩石力学与工程学报,2004,23(5):752-757.
    [206]Granger C W J, Bates J. The combination of forecasts[J]. Operation Research Quarterly, 1969,20(4):451-468.
    [207]Lam KF, Mui H W, Yuen H K. A note on minimizing absolute percentage error in combined forecasts[J]. Computer & Operation, Research,2001,28(11):1141-1147.
    [208]金海元,徐卫亚.加权函数组合预测边坡变形模型的研究[J].工程地质学报,2008,16(4):518-521.
    [209]董辉,傅鹤林,冷伍明.滑坡变形的支持向量机非线性组合预测[J].铁道学报,2007,29(1):132-136.
    [210]韩冬梅,牛文清,杨荣.线性与非线性最优组合预测方法的比较研究[J].情报科学,2007,25
    [211]何亚伯,汪琴.基于典型相关分析的GRNN大跨度连续梁桥施工参数识别[J].科学技术与工程,2013,02.
    [212]Wang Qin, He Yabo. Linear adaptive control in the cantilever construction of long-span PC continuous beam bridge[C].2nd International Conference on Information Science and Engineering,ICISE2010-Proceedings, p 324-327.
    [213]汪琴,何亚伯.基于自适应的大跨径连续梁桥施工控制[J].中国会议:建设工程安全理论与应用——首届中国中西部地区土木建筑学术年会论文集,2011,08.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700