LSGM电解质薄膜制备与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种将燃料的化学能直接转化为电能的能源转换装置,在环境友好和高效能源方面显示出很大的优势,越来越受到人们的重视。目前国际上固体氧化物燃料电池的发展趋势是将其操作温度中低温化(工作温度在800℃以下)。为保证电池具有良好的输出性能,La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)电解质的薄膜化制备将传统的电解质支撑型SOFC转变为阳极支撑型是一种非常有前景的技术路线。
     本论文采用甘氨酸-硝酸盐法(Glycine-Nitrate Process, GNP)合成了LSGM电解质粉体和La0.7Sr0.3Cr0.5Mn0.5O3-δ(LSCM)阳极粉体,X射线衍射(XRD)和能谱分析(EDS)测试结果表明样品为纯相的钙钛矿型结构且各金属元素摩尔比满足实验设计的比例。为优化阳极支撑体的微观结构,研究了造孔剂种类和添加量对阳极支撑体表观性能的影响。研究结果表明采用8 wt.%淀粉作为造孔剂得到的阳极支撑体的孔隙率最大、微观结构最佳。
     采用浆料旋涂法制备了LSGM薄膜。旋涂法是通过高速旋转产生的离心力将悬浮液中的电解质颗粒沉积到阳极支撑体上。这种制膜方法简单,快捷,成品率高,而且成本低廉。研究了粘结剂和调和剂的种类和添加量,烘制温度,旋涂次数对LSGM薄膜性能的影响。研究结果表明,制备电解质浆料以5 wt.%乙基纤维素作为粘结剂、5 wt.%松油醇作为调和剂,薄膜重复旋涂9次在1400℃条件下烧结4h时,可以成功制备致密的表面略显粗糙的LSGM电解质薄膜。同时采用射频磁控溅射法制备LSGM电解质薄膜,研究了溅射过程中关键的工艺参数对薄膜性能的影响。实验过程中主要通过对薄膜微观结构、阳极/电解质界面的粘附状态、沉积速率的表征来优化工艺。确定最佳工艺参数:溅射压强为5 Pa,射频功率为210 W,基底温度为300℃。采用优化后的工艺参数获得的LSGM薄膜在空气中1000℃条件下退火处理2 h,所得到的薄膜致密度高,结晶性好,与阳极基底结合紧密。
     另外采用两电极半电池构造法测试分别采用射频磁控溅射法(1#半电池)和浆料旋涂法(2“半电池)在最佳条件下制备LSGM薄膜所组装半电池的电化学性能。由极化性能测试结果可得,线性扫描伏安曲线(Linear Scanning Voltammetry, LSV)和Tafel曲线所得的交换电流密度,1#半电池的交换电流密度均大于2#半电池。同时交流阻抗谱(AC Impedance Spetroscopy)测试结果表明:射频磁控溅射法制备的电解质薄膜的欧姆电阻小于旋涂法所制备的薄膜。电化学性能测试结果表明射频磁控溅射法较浆料旋涂法更适合用于制备中温固体氧化物燃料LSGM电解质薄膜。
Solid oxide fuel cell (SOFC), which is an energy conversion device can convert the chemical energy of the fuel into electrical energy directly, has attracted more and more attention attributing to high efficiency and environmental protection. The key current research is the fabrication of SOFC operating at a lower temperature (the operation temperature below 800℃). In order to achieve predominant output of cell, reducing the thickness of LSGM electrolyte and transforming the traditional electrolyte-supported SOFC into anode-supported type is a promising technology route.
     LSGM and LSCM powders were synthesized via glycine-nitrate process. X-ray diffraction (XRD) and energy spectrum analysis (EDS) results showed that the as-prepared powders possessed a pure phase of perovskite type structure and the molar ratio of the metal elements met the ratio of experimental design. At the same time, for the purpose of optimizing the microstructure of the anode support, the effects of type and additive amount of pore-formers on the anode apparent performance were carefully investigated. The results show that the maximum porosity and best microstructure were obtained when 8 wt.% starch was selected as the pore-former.
     LSGM electrolyte film was fabricated by slurry spin coating process. The particles of LSGM in a suspension were deposited onto anode substrates through a centrifugal force by high-speed rotation. The method has an advantage of simple, fast, and cost-effective. The parameters related to the performance of the LSGM films including the type and additive amount of binder and modifier, heating temperature and spin-coating number were investigated finely. The electrolyte films with the best compactness and somewhat roughness were obtained when the operating parameters fixed as follows:the content of ethyl cellulose which acted as binder is 5 wt.%, the content of terpineol which acted as modifier is 5 wt.%, the optimum coating number is 9 times and the best post-deposition sintering temperature is 1400℃for 4 h. Furthermore, RF magnetron sputtering technique was also used to fabricate LSGM films. The influence of key sputtering parameters on the quality of LSGM film was systematically studied. The technical parameters were optimized by the film morphology observation, the deposition rate and the adhesion state of the anode/electrolyte bilayer in the course of experiments. Sputtering pressure of 5 Pa, RF power of 210 W and substrate temperature of 300℃were identified as the best technical parameters. Under these conditions, LSGM electrolyte film obtained by magnetron sputtering technology has a high density, good crystallinity, and well adhesive with anode substrates after being annealed at 1000℃for 2 h in air.
     In addition, a two-electrode half cell configuration was selected to investigate the electrochemical performance of the thin films which were fabricated under the optimum condtions with RF magnetron sputtering technique and slurry spin coating process labeled 1# half cell and 2# half cell, respectively. The exchange current density of 1# half cell was larger than that of 2# determined by LSV and Tafel curves. Furthermore, the AC impedance spectrum test results show that the resistance of the electrolyte film prepared by RF magnetron sputtering is less than that of slurry spin coating. The electrochemical performance test results showed that RF magnetron sputtering technology is more appropriate to prepare LSGM electrolyte film for SOFC than slurry spin coating method.
引文
[1]Angelo U. Dufour. Fuel cell-a new contribution to stationary power[J]. Journal of Power Sources,1998,71(1-2):19-25.
    [2]Thomas A. Damberger. Fuel cells for hospitals[J]. Journal of Power Sources,1998,71 (1-2):45-50.
    [3]编辑部.政策动态:新能源和可再生能源发展优先项目[J].新技术产业,2000,6(1):6-7.
    [4]K. Joon. Fuel cells- a 21st century power system [J]. Journal of Power Sources,1998, 71(1-2):12-18.
    [5]韩敏芳,彭苏萍.固体氧化物燃料电池材料及准备[M].北京:科学出版社,2004:3-4.
    [6]黄镇海.燃料电池及其应用[M].北京:电子工业出版社,2005:7-8.
    [7]黄镇海.燃料电池及其应用[M].北京:电子工业出版社,2005:9.
    [8]韩敏芳,李伯涛,彭苏萍,刘丽俭.高效清洁的能源技术—固体氧化物燃料电池(SOFC)开发利用[J].21世纪绿色城市论坛论文汇编,2001,11:190-194.
    [9]J.Hall, R.Kerr. Innovation dynamics and environmental technologies:the emergency of fuel cell technology [J]. Journal of Cleaner Production,2003,11(4):459-471.
    [10]A. Boudghene Stambouli, E. Traversa. Fuel cell, an alternative to standard sources of energy[J]. Renewable and Sustainable Energy Reviews,2002,6(3):297-306.
    [11]Minh N Q, In:Science and Technology of Zirconia V. Badwal S P S, Bannister M J, Hannink R H J eds. Technomic Publishing Company, Lancaster, PA,1993:652.
    [12]Fuel Cell Handbook. EG&G Technical Services, Inc.Science Applications International Corporation, U.S.A,2002.
    [13]谢淑红.中温固体氧化物燃料电池的制备工艺[D].华中科技大学,2004.
    [14]Steven Mclntosh, Raymond J. Gorte. Diret hydrocarbon solid oxide fuel cell[J]. Chemical Reviews.2004,104:4845-4865.
    [15]Fuel Cell Handbook. EG&G Technical Services, Inc. Science Applications International Corporation, U.S.A,2002.
    [16]Xie Shuhong, Cui Kun, Xia Feng, Xie Guangyuan. Fabrication of anode supported PEN for solid oxide fuel cell [J]. Journal of Ceramics,2004,25(1):38-42.
    [17]张耀辉,刘江,黄喜强,吕喆,苏文辉.湿粉末法制备阳极支撑型固体氧化物燃料电池及其性能[J].功能材料,2008,5(39):827-830.
    [18]Yan Jingwang, Dong Yonglai, Yu Chunying, Jiang Yi. Fabrication and characterization of anode substrates and supported electrolyte thin films for intermediate temperature solid oxide fuel cells[J]. Journal of Inorganic Materials,2001,16(5):605-611.
    [19]Q.L. Liu, K.A. Khor, S.H. Chan, X.J. Chen. Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process[J]. Journal of Power Sources,2006,162(2):1036-1042.
    [20]J.P. P. Huijsmans, F.P.F.Van Berkel, G. M. Christie. Intermediate temperature SOFC-a Promise for the 21st century[J]. Journal of Power Sources,1998,71(1-2): 107-110.
    [21]John B.Goodenough. Ceramic technology:Oxide-ion conductors by design[J]. Nature,2000,404:821-823.
    [22]B.C.H. Steele, A. Heinzel. Materials for fuel-cell technologies[J]. Nature,2001,414: 345-352.
    [23]Ying Liu, Charles Compson, Meilin Liu. Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2004,138(1-2):194-198.
    [24]J.-H. Lee, J.-W. Heo, D.-S. Lee, J. Kim, G.-H. Kim, H.-W. Lee, H.S. Song, J.-H. Moon. The impact of anode microstructure on the power generating characteristics of SOFC[J]. Solid State Ionics,2003,158 (3-4):225-232.
    [25]T.-L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie,W. Huang. Material research for planar SOFC stack[J]. Solid State Ionics,2003,148 (3-4):513-519.
    [26]J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, L.J. Gauckler. Fabrication of thin electrolytes for second-generation solid oxide fuel cells[J]. Solid State Ionics.2000,131 (1-2):79-96.
    [27]Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk. Electrochemical study of a planar solid oxide fuel cell:Role of support structures[J]. Journal of Power Sources,2008, 117(2):254-261.
    [28]Y. J. Leng, S. H. Chan, K. A. Khor, S. P. Jiang. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte [J]. International Journal of Hydrogen Energy,2004,29(10):1025-1033.
    [29]H. Gu, R. Ran, W. Zhou, Z. Shao. Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA-citrate complexing synthesis process[J]. Journal of Power Sources,2007,172(2):704-712.
    [30]T. Ymaguchi, S. Shimizu, T. Suzuki, Y. Fujishiro, M. Awano. Fabrication and evaluation of cathode-supported small scale SOFCs[J]. Materials Letters,2008,62 (10-11): 1518-1520.
    [31]X. J. Chen, Q. L. Liu, S. H. Chan, N. P. Brandon, K. A. Khor. High-Performance cathode-supported SOFC with perovskite anode operating in[J]. Electrochemistry Communications,2007,9(4):767-772.
    [32]Y. Liu, S. Hashimoto, H. Nishino, K.Takei, M. Mori. Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3-δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs[J]. Journal of Power Sources,2007,164 (1):56-64.
    [33]李彦,闫水保,赵大治,汤根土,魏新利.阳极支撑平板状SOFC过电势模型及分析[J].电源技术,2008,1:52-56.
    [34]A. Mineshige, K. Fukushima, K. Tsukada, M. Kobune, T. Yazawa, K. Kikuchi, M. Inaba, Z. Ogumi. Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique[J]. Solid State Ionics,2004,175(1-4):483-485.
    [35]R. A. George. Status of tubular SOFC field unit demonstrations[J]. Journal of Power Sources,2000,86(1-2):134-139.
    [36]T. Takeyama, N. Takahashi, T. Nakamura, S. Itoh.δ-Bi2O3 thin films deposited on dense YSZ substrates by CVD method under atmospheric pressure for intermediate SOFC applications[J]. Journal of Surface and Coating Technology,2006,20(16-17):4797-4801.
    [37]H. B. Wang, H. Z. Song, C. R. Xia, D. K. Peng, G. Y. Meng. Aerosol-assisted MOCVD deposition of YDC thin films on(NiO+YDC)substrates[J]. Materials Research Bulletin,2000,35(14-15):2363-2370.
    [38]L. S. Wang, S.A. Bamett. Sputter-deposited medium-temperature solid oxide fuel cells with multi-layer electrolytes[J]. Solid State Ionics,1993,61(4):273-276.
    [39]C. Brahim, A. Ringuede, E. Gourba, M.Cassir, A.Billard, P. Briois. Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering[J]. Journal of Power Sources,2006,156(1):45-49.
    [40]R. Henne. Solid oxide Fuel Cells:A Challenge for Plasma Deposition Processes[J]. Journal of Thermal Spray Technology,2007,16:381-403.
    [41]C. Zhang, H. L. Liao, W. Y. Li, G. Zhang, C. Coddet, C. Zhang, et al. Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying[J]. Journal of Thermal Spray Technology,2006,15:598-603.
    [42]Xingyan Xu, Changrong Xia, Shouguo Huang, Dingkun Peng. YSZ thin films deposited by spin-coating for IT-SOFCs[J]. Ceramics International,2005,31(8): 1061-1064.
    [43]Chen Kongfa, Lu Zhe, Ai Na, et al. Fabrication and performance of anode-supported YSZ films by slurry spin coating[J]. Solid State Ionics,2007,177(39-40):3455-3460.
    [44]S. Souza, S. J.Visco, L. C. Jonghe. Thin-film solid oxide fuel cell with high performance at low-temperature[J]. Solid State Ionics,1997,98(1-2):57-61.
    [45]R. Doshi, V. L.Richards, J. D.Carter, X. Wang, M. Krumpelt. Development of Solid-Oxide Fuel Cells That Operate at 500℃[J]. Journal of the Electrochemical Society, 1999,146:1273-1278.
    [46]Lijun Zhao, Xiqiang Huang, Ruibin Zhu,et al. Optimization on technical parameters for fabrication of SDC film by screen-printing used as electrolyte in IT-SOFC[J]. Journal of Physics and Chemistry of Solids,2008,69(8):2019-2024.
    [47]A. O. Isenberg. Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures[J]. Solid State Ionics,1981,3-4:431-437.
    [48]J. F. Jue, J. Jusko, A.V. Virkar. Electrochemical vapor deposition of CeO2:kinetics of deposition of a composite, two-layer electrolyte[J]. Journal of the Electrochemical Society,1992,139:2458-2462.
    [49]A. O. Isenberg. U.S. patent No.4374163,1983.
    [50]孟广耀.无机化合物淀积和无机新材料[M].北京:科学出版社,1984.
    [51]H. Ruiz, H. Vesteghem, A. R. Di Giampaolo, J. Lira. Zirconia coatings by spray pyrolysis[J]. Surface and Coatings Technology,1997,89 (1-2):77-81.
    [52]C. Reiichi, Y. Fumikatsu, Y. Junichi. in:Proc. MRS Fall Meeting,496, Warrendale, PA,1998:181.
    [53]K.Hayashi, O.Yamamoto, H.Minoura. Sputtering La0.5Sr0.5MnO3-yttria stabilized zirconia composite film electrodes for SOFC[J]. Solid State Ionics,1997,98:49-55.
    [54]A.Nagata, H.Okayama. Characterization of solid oxide fuel cell device having a three-layer film structure grown by RF magnetron sputtering[J]. Vacuum,2002,66(3-4): 523-529.
    [55]Yeong Yoo. Fabrication and characterization of thin film electrolytes deposited by RF magnetron sputtering for low temperature solid oxide fuel cells[J]. Journal of Power Sources,2006,16(1):202-206.
    [56]R. Henne, E. Fendler, M. Lang, in:U. Bossel(Ed.), Proc.1st European Solid Oxide Fuel Cell Forum, European SOFCs Ulrich(Eds.), Forum, Oberrohrdorf, Switzerland,1994: 617.
    [57]P. Charpentier, P. Fragnaud, D. M. Schleich, E. Gehain. Preparation of thin film SOFCs working at reduced temperature[J]. Solid State Ionics,2000,135(1-4):373-380.
    [58]王怀兵.气溶胶质源气相沉积制备固体氧化物燃料电池薄膜[D].中国科技大学博士论文,2001.
    [59]R. Ihringer, J. Van Herle, A. J. McEvoy, W. Lehnert (Eds.). Proc.5th Int. Conf Solid Oxide Fuel Cells, Electrochemical Society, Pennington, NJ,1997:340.
    [60]Selmar de Souza, Steven. J.Visco, L. C. Jonghe. Thin-film solid oxide fuel cell with high performance at low-temperature[J]. Solid State Ionics,1997,98(1-2):57-61.
    [61]R. Doshi,V. L. Richards, J. D. Carter. Development of solid oxide fuel cells that operate at 500℃[J]. Journal of Electrochemical Society,1999,146:1273-1280.
    [62]阎景旺,董永来,江义,张华民,衣宝廉.制备阳极负载薄膜型中温固体氧化物燃料电池的方法.中国01123651,2003.
    [63]郑德明,郑军明,沈青.丝网印刷工艺[M],北京:印刷工业出版社出版,1994.
    [64]Lijun Zhao, Xiqiang Huang, Ruibin Zhu, et al. Optimization on technical parameters for fabrication of SDC film by screen-printing used as electrolyte in IT-SOFC[J]. Journal of Physics and Chemistry of Solids,2008,69 (8):2019-2024.
    [65]Z. Cai, T.N. Lan, S. Wang, M. Dokiya. Supported Zr(Sc)O2 SOFCs for reduced temperature prepared by slurry coating and co-firing[J]. Solid State Ionics,2002,152-153: 583-590.
    [66]Wang Jiaming, Lu Zhe, Chen Kongfa, et al. Study of slurry spin coating technique parameters for the fabrication of anode-supported YSZ Films for SOFCs[J]. Journal of Power Sources,2007,164(1):17-23.
    [67]Seung-Goo Kim, Sung Pil Yoon, Suk Woo Nam, Sang-Hoon Hyun, Seong-Ahn Hong. Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method[J]. Journal of Power Sources,2002,100(1):222-228.
    [68]Yen-Yu Chen, Wen-Cheng J. Wei. Processing and characterization of ultra-thin yttria-stabilized zirconia(YSZ)electrolytic films for SOFC[J]. Solid State Ionics,2006, 177(3-4):351-357.
    [69]Xingyan Xu, Changrong Xia, Shouguo Huang, Dingkun Peng. YSZ thin films deposited by spin-coating for IT-SOFCs[J]. Ceramics International,2005,31(8): 1061-1064.
    [70]Jiaming Wang, Zhe Lu, Kongfa Chen, et al. Study of slurry spin coating technique parameters for the fabrication of anode-supported YSZ Films for SOFCs[J]. Journal of Power Sources,2007,164(1):17-23.
    [71]李彦,闫水保,赵大治,唐根土,魏新利.阳极支撑平板SOFC过电势模型及分析[J].电源技术,2008,1:52-55.
    [72]郭为民,刘江.阳极支撑型固体氧化物燃料电池的制备和性能[J].电源技术(研究与设计),2008,32(3):180-183.
    [73]K.N. Kim, B.K. Kim, J.W. Son, J. Kim, H.-W. Lee, J.-H. Lee, J. Moon. Characterization of the electrode and electrolyte interfaces of LSGM-based SOFCs[J]. Solid State Ionics,2006,177 (19-25):2155-2158.
    [74]D. Lee, J.-H. Han, Y. Chun, R.H. Song, D. R. Shin. Preparation and characterization of strontium and magnesium doped lanthanum gallates as the electrolyte for IT-SOFC[J]. Journal of Power Sources,2007.66 (1):35-40.
    [75]孙薇薇,卢颖.固体氧化物燃料电池阳极基底造孔剂含量的研究[J].佳木斯大学学报(自然科学版),2009,27(5):718-720.
    [76]L.A.Chick, L.R.Pederson, G.D.Maupin. et al. Glycine-nitrate combustion synthesis of oxide ceramic powders[J]. Materials Letters,1990,10(1-2):6-12.
    [77]刘荣辉,马文会,王华,杨斌,戴永年.La0.9Sr0.1Ga0.8Mgo.2O3-δ电解质材料的合成及性能研究[J].有色金属(冶炼部分),2006,4:36-39.
    [78]Weitao Bao, Qibing Chang, Guangyao Meng. Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell[J]. Journal of Membrane Science, 2005,259(1-2):103-109.
    [79]A. Sanson, P. Pinasco, E. Roncari. Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs[J]. Journal of the European Ceramic Society,2008,28(6):1221-1226.
    [80]J.-H. Lee, J.-W. Heo, D.-S. Lee, J. Kim, G.-H. Kim, H.-W. Lee, H. S. Song, J.-H. Moon.The impact of anode microstructure on the power generating characteristics of SOFC[J]. Solid State Ionics,2003,158(3-4):225-232.
    [81]Liu Mingyi, Yu Bo, Xu Jingming, Chen Jing. Influence of pore formers on physical properties and microstructures of supporting cathodes of solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy,2010,35(7):2670-2674.
    [82]V. Cregan, S.B.G.O'Brien. A note on spin-coating with small evaporation [J]. Journal of Colloid and Interface Science,2007,314(1):324-328.
    [83]Na Ai, Zhe Lu, Kongfa Chen, Xiqiang Huang, Yanwei Liu, Ruifang Wang, Wenhui Su. Preparation of Sm0.2Ce0.8O1.9 membranes on porous substrates bya slurry spin coating method and its application in IT-SOFC[J]. Journal of Membrane Science,2006(1-2),286: 255-259.
    [84]Jiaming Wang, Zhe Lii, Xiqiang Huang, Kongfa Chen,Na Ai, Jinyan Hu, Wenhui Su.YSZ films fabricated by a spin smoothing technique and its application in solid oxide fuel cell[J]. Journal of Power Sources,2007,163(2):957-959.
    [85]叶飞.固体氧化物燃料电池梯度阴极材料的制备与表征[D],浙江大学,2008.
    [86]S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle, J. W. Stevenson. Development of lanthanum ferrite SOFC cathodes[J]. Journal of Power Sources,2003,113(1):1-10.
    [87]Xiaodong Zhu, Kening Sun, Shiru Le, Naiqing Zhang, Qiang Fu, Xinbing Chen, Yixing Yuan. Improved electrochemical performance of NiO-La0.45Ce0.55O2-δ composite anodes for IT-SOFC through the introduction of a La0.45Ce0.55O2-δ interlayer[J]. Electrochimica Acta,2008,54(2):862-867.
    [88]Na Ai, Zhe Lu, Kongfa Chen, Xiqiang Huang, Yanwei Liu, Ruifang Wang, Wenhui Su. Preparation of Sm0.2Ce0.8O1.9 membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC[J]. Journal of Membrane Science,2006, 286(1-2):255-259.
    [89]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006:481-484.
    [90]白翠琴,吴平,潘礼庆,等.真空热处理对CoFe薄膜结构及电磁特性的影响[J].真空科学与技术学报,2006,26(3):219-222.
    [91]R.M. Todi, K.B. Sundaram, A.P. Warren, K. Scammon. Investigation of oxygen annealing effects on RF sputter deposited SiC thin films[J]. Solid State Electronics,2006, 50(7-8):1189-1193.
    [92]李强,杨瑞霞,潘国峰,等.工作压强和退火温度对SiC薄膜结构的影响[J].纳米材料与结构,2009,46(5):292-295.
    [93]洪剑寒,王鸿博,魏取福.氩气压强对PET基磁控溅射银膜结构及导电性能的影响[J].材料导报,2006,20(专辑Ⅶ):83-86.
    [94]Yeong Y. Fabrication and characterization of thin film electrolytes deposited by RF magnetron sputtering for low temperature solid oxide fuel cells [J].Journal of power sources,2006,160(1):202-206.
    [95]许宁,刘正堂,刘文婷,沈雅明.射频磁控溅射法制备氧化钇薄膜[J].稀有金属材料与工程,2007,36(Suppl.3):82-85.
    [96]黄佳木,董建华,张兴元.工艺参数对RF磁控溅射沉积铝掺杂氧化锌薄膜特性的影响[J].材料科学与工程学报,2003,21(2):174-177.
    [97]S. Dangtip, N. Sripongphan, N, Boonyopakorn, et al. Effects of rf-power and working pressure on formation of rutile phase in rf-sputtered TiO2 thin film[J]. Ceramics International,2009,35(3):1281-1284.
    [98]柳志民.磁控溅射法制备YSZ电解质薄膜及其在SOFC中的应用[D],哈尔滨工业大学硕士学位论文,2008.
    [99]张万红,岳敏.锂离子电池碳负极材料交换电流密度的研究[J].电源技术,2010, 34(3):223-225.
    [100]Jingbo Liu, Anne C. Co, Scott Paulson, Viola I. Birss. Oxygen reduction at sol-gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes[J]. Solid State Ionics,2006,177(3-4):377-387.
    [101]Yen-Pei Fu, Feng-Yi Tsai. Composite cathodes of La0.9Ca0.1Ni0.5Co0.5O3-Ce0.8Sm0.2O1.9 for solid oxide fuel cells[J]. Ceramics International,2011,37(1):231-239.
    [102]Xifeng Ding, Xin Kong, Jinguo Jiang, Chong Cui, Lucun Guo. Electrochemical performance of La0.7Sr0.3CuO3-δ-Sm0.2Ce0.8O2-δ functional graded composite cathode for intermediate temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy,2010,35(4):1742-1748.
    [103]杨绮琴,方北龙,童叶翔.应用电化学(第一版)[M].广州:中山大学出版社,2005:142-145.
    [104]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001:22-34.
    [105]Haitao Gu, Han Chen, Ling Gao, Lucun Guo. Electrochemical properties of LaBaCo2O5+δ-Sm0.2Ce0.8O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells[J]. Electrochimica Acta,2009,54(27):7094-7098.
    [106]S.P. Jiang, J.G. Love, Y. Ramprakash. Electrode behaviour at (La, Sr)MnO3 Y2O3-ZrO2 interface by electrochemical impedance spectroscopy[J]. Journal of Power Sources,2002,110(1):201-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700