碳纳米管的化学修饰及在材料增强中的应用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管作为一种新型一维纳米材料,拥有优异的力学、电学、光学等性能,在高性能复合材料、先进阴极发射器、大容量超级电容器、高灵敏度传感器、废水处理、清洁能源、生物医药工程等领域具有巨大的应用潜力。但碳纳米管在复合材料或溶液等领域应用时易于团聚而难以均匀稳定分散,针对此问题的大量研究成果表明对碳纳米管进行化学修饰可有效改善其分散性能。本文在化学气相沉积法制备碳纳米管(CNT)的基础上,使用浓硝酸和丙烯酰氯对CNT进行化学修饰,制备了表面官能团化的碳纳米管,并对反应产物的结构和性能进行了表征和分析。利用经过化学修饰的碳纳米管和陶瓷先驱体聚碳硅烷(PCS)为原料制备了CNT掺混型聚碳硅烷,对其进行了表征和分析,并研究了该先驱体的流变性能。
     利用CNT结构中存在缺陷的特点,有望通过化学反应在其表面引入特定官能团,从而达到化学修饰的目的。本文以二茂铁和甲苯为原料,利用CVD法在约700℃制备了CNT,首先利用浓HNO3对其进行酸化氧化,研究了氧化时间对其结构和表面官能团组成的影响,发现浓硝酸对CNT具有较强的氧化、腐蚀作用,在酸化后的CNT中,氧含量急剧上升,生成了大量含氧官能团,为后续修饰反应提供活性点;浓硝酸对CNT具有腐蚀端帽、管壁的作用,造成CNT的结构发生变化。综合考虑产物的结构变化和官能团含量,选择使用经过24小时酸化氧化的CNT进行后续的化学修饰。
     利用丙烯酰氯对酸化氧化后的CNT进行化学修饰,研究了修饰反应对CNT形貌、官能团组成和结构的影响,制备了表面包覆聚丙烯酸的CNT。发现由丙烯酰氯生成了聚丙烯酸并覆盖在酸化氧化后CNT表面上、或填充在酸化氧化后CNT的孔洞中,因此降低了酸化氧化后CNT的比表面积。
     将表面覆盖聚丙烯酸的CNT与陶瓷先驱体溶液回流反应共混,制备了CNT掺混型聚碳硅烷,发现化学修饰有效地提高了CNT在有机先驱体溶液中的稳定分散程度;并对该陶瓷先驱体的流变性能进行了探索,研究了其粘度随温度和剪切速率的变化规律,为CNT掺混型聚碳硅烷在陶瓷纤维和陶瓷基复合材料中的应用奠定了基础。
With the outstanding mechanical, electronic, optical and other properties, carbon nanotube is one of novel quasi one-dimension nanostructure materials and has attracted considerable attentions in the possible application fields of high-performance composites, advanced cathode emitter, large capacity super capacitor, high sensitivity sensor, liquid waste disposal, clean energy and biomedical engineering. However, carbon nanotubes tend to aggregate and are hard to homogeneously dispersed in solvent. A great deal of studies had proved that chemical modifications are significant ways to solve the problem. In this work, CNT was first prepared by the method of chemical vapor deposition route, and was then modified by chemical reactions with HNO3 and acryloyl chloride. Finally, the functionalized CNT was mixed with polycarbosilane to prepare a hybrid polymer precursor which may find applications in ceramic matrix composites.
     The chemical modifications of CNT are practically feasible because of the intrinsically existing defects, where will be the favorable sites for introducing functional groups. The CNT were prepared from pyrolysis of the mixture of ferrocene and toluene under about 700℃. Then the as-prepared CNT were treated in concentrated HNO3 for hours to introduce oxygen functionalization on CNT. The structrue was also changed in reaction. The result indicated that HNO3 has strong oxidation on CNT, and large numbers of oxygen-containing groups were created for subsequent modifications; a prolonged oxidative treatment leads oxidative opening of CNT. The density of functional groups is significant for further modifications, so the product of oxidized CNT which had treated in HNO3 for 24 hours was chosen to reflux with acryloyl chloride in subsequent functionalization procedure.
     The reaction between the oxidized CNT and acryloyl chloride was carried out. The analysis of final products of oxidized CNT reacting with acryloyl chloride implied that acryloyl chloride had polymerized on the surface of CNT and converted to poly(acrylic acid), CNT were consequently wrapped in the poly(acrylic acid). This procedure make the specific surface area of CNT decreased sharply.
     Then the poly(acrylic acid) encapsulated CNT refluxed with polycarbosilane to make hybrid precursor. It’s evident that the chemical modification of CNT effectively promoted its dispersity in the toluene solution of hybrid precursor. The rheology of hybrid precursor was preliminary studied, and the principle of it’s melt viscosity dependent on temperature and shearing rate were investigated for prospective applications in ceramic fibres and ceramic matrix composites.
引文
[1] Iijima S. Helical microtubules of graphitic carbon.[J]. Nature. 1991(354): 56-58.
    [2] O'Connell J M. Carbon Nanotubes Properties and Applications[M]. Boca Raton: CRC Press, 2006.
    [3] Tjong S C. Carbon Nanotube Reinforced Composites[M]. Weinheim: Wiley-VCH, 2008.
    [4]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社, 2003.
    [5] Gogotsi Y. Nanotubes and Nanofibers[M]. Philadelphia: CRC Press, 2006.
    [6] Qin L, Zhao X L, Hirahara K, Miyamoto Y, Ando Y, Iijima S. The smallest carbon nanotube[J]. Nature. 2000(408): 50.
    [7] Wang N, Tang Z K, Li G D, Chen J S. Single-walled 4 angstrom carbon nanotube arrays[J]. Nature. 2000(408): 50-51.
    [8] Qin L, Zhao X, Hirahara K, Miyamoto Y, Ando Y, Iijima S. The smallest carbon nanotube[J]. Nature. 2000, 408: 50.
    [9] Dai H. Carbon nanotubes: opportunities and challenges[J]. Surface Science. 2002, 500: 218-241.
    [10] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature. 1996, 381: 678-680.
    [11] Nardelli M B, Bernholc J. Mechanical deformations and coherent transport in carbon nanotubes[J]. Physical Review B (Condensed Matter). 1999, 60: 16338-16341.
    [12] Walters D A, Ericson L M, Casavant M J, Liu J, Colbert D T, Smith K A, Smalley R E. Elastic strain of freely suspended single-wall carbon nanotube ropes[J]. Applied Physics Letters. 1999, 74: 3803-3805.
    [13] Falvo M R, Clary G J, Taylor R M, Chi V, Brooks F P, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain[J]. Nature. 1997, 389: 582-584.
    [14] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes[J]. Nature. 1992, 358: 220-222.
    [15] Bethune D S, Kiang C H, Devries M, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature. 1993, 363: 605-607.
    [16] Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y, Kim S, Rinzler A, Colbert D, Scuseria G, Tomanek D, Fischer J, Smalley R. Crystalline ropes of metallic carbon nanotubes[J]. Science. 1996, 273: 483-487.
    [17] Tibbetts G G. Why are carbon filaments tubular?[J]. J. Cryst. Growth. 1984, 66: 632-638.
    [18] Yacamán M J, Yoshida M M, Rendón L. Catalytic growth of carbon microtubules with fullerene structure[J]. Appl.Phys.Lett. 1993, 62(6): 657-659.
    [19] Dai H, Rinzler A G, Nikolaev P, Thess A, Colbert D T, Smalley R E. Single wall nanotubes produced by metal catalyzed disproportionation of carbon monoxide[J]. Chemical Physics Letters. 1996, 260: 471-475.
    [20]方庆玲,李效东,车仁超,李公义.低频、轻质铁/碳纳米管吸收剂研究[J].稀有金属材料与工程. 2008, 37(A01): 145-148.
    [21] Lavin J G, Subramoney S, Ruoff R S, Berber S, Tomanek D. Scrolls and nested tubes in mul-tiwall carbon nanotubes[J]. Carbon. 2002, 40: 1123-1130.
    [22]王标,王翔,李克智,弓巧娟,李贺军.催化裂解无水乙醇制备纳米碳管[J].机械科学与技术. 2007, 26(4): 445-448.
    [23] Rakov E G. The chemistry and application of carbon nanotubes[J]. Russian Chemical Reviews. 2001, 70(10): 827-863.
    [24] Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H. hemical treatment of carbon nanotubes[J]. Carbon. 1996, 34: 279-281.
    [25] Hamon M A, Chen J, Hu H, Chen Y, Itkis M E, Rao A M, Eklund P C, R C Haddon. Dissolution of single-walled carbon nanotubes[J]. Adv. Mater. 1999, 11: 834-840.
    [26] Banerjee S, Wong S S. Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis[J]. J. Chem. Phys. B. 2002, 106: 12144-12151.
    [27] Dresselhaus M S, Dresselhaus G, Avouris P. Carbon Nanotubes: synthesis, structure, properties and applications.[M]. Berlin: Springer-Verlag, 2001: 1-425.
    [28] Nakajima T, Kasamatsu S, Matsuo Y. Synthesis and characterization of fluorinated carbon nanotubes[J]. Eur. J. Solid State Inorg. Chem. 1996, 33: 831-840.
    [29] Hamwi A, Alvergnat H, Bonnamy S, Béguin F. Carbon[J]. Carbon. 1997, 35: 723-728.
    [30] Hamwi A, Gendrand P, Gaucher H, Bonnamy S, Beguin F. Electrochemical properties of carbon nanotube fluorides in a lithium cell system[J]. Mol. Cryst. Liq. Cryst. 1998, 310: 185-190.
    [31] Kelly K F, Chiang I W, Mickelson E T, Hauge R H, Margrave J L, Wang X, Scuseria G E, Radloff C, Halas N. Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. [J]. J. Chem.Phys. Lett. 1999, 313: 445-450.
    [32] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of Carbon Nanotubes[J]. Chem. Rev. 2006, 106: 1105-1136.
    [33] Jaffe R L. Quantum chemistry study of chemical functionalization reactions of fullerenes and carbon nanotubes[J]. Proc. Electrochem. Soc. 1999, 12: 153-162.
    [34] Yamaguchi I, Yamamoto T. Soluble self-doped single-walled carbon nanotube[J]. Mater. Lett. 2004, 58: 598-603.
    [35] Pompeo F, Resasco D E. Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine[J]. Nano Lett. 2002, 2: 369-373.
    [36] Liu L, Zhang S, Hu T, Guo Z -, Ye C, Dai L, Zhu D. Solubilized multi-walled carbon nanotubes with broadband optical limiting effect[J]. Chem. Phys. Lett. 2002, 359: 191-195.
    [37] Wu W, Li J, Liu L, Yanga L, Guo Z -, Dai L, Zhu D. The photoconductivity of PVK-carbon nanotube blends[J]. Chem. Phys. Lett. 2002, 364: 196-199.
    [38] Chattopadhyay D, Lastella S, Kim S, Papadimitrakopoulos F. Length separation of zwitterion-functionalized single wall carbon nanotubes by GPC[J]. J. Am. Chem. Soc. 2002, 124: 728-729.
    [39] Peng H, Alemany L B, Margrave J L, Khabashesku V N. Single-walled carbon nanotubes[J]. J. Am. Chem. Soc. 2003, 125: 15174.
    [40] Wei L, Rongming C, Xuecheng X, Yiwei C, Mingli S, Weifan H. FTIR study on effect of fenton’s reagents on the surface of multi-walled carbon nanotubes[J]. Chinese Journal of Chemical Physics. 2005, 18(3): 416-420.
    [41] Liu Y, Zhang C, Du Z, Li C, Li Y, Li H, Yang X. The preparation of multi-walled carbon nanotubes encapsulated by poly(3-acrylaminopropylsiloxane) with silica nanospheres on the polymer surface[J]. Carbon. 2008, 46: 1670-1677.
    [42] Qin S, Qin D, Ford W T, Herrera J T, Resasco D E, Bachilo S M, Weisman R B. Solubilization and Purification of Single-wall Carbon Nanotubes by In Situ Radical Polymerization of Sodium 4-Styrenesulfonate[J]. Macromolecules. 2004, 37: 3965-3967.
    [43] Peigney A, Laurent C H. Carbon nanotubes in novel ceramic matrix nanocomosites[J]. Ceramics International. 2000, 26: 677-683.
    [44] Flahaute A, Peigney A, Lauren C H. Carbon nanotubes-melt-oxide nanocomposites: microstructure,electrical conductivity and mechanical properties[J]. Acta Materialia. 2000, 48: 3803-3812.
    [45] Lupo F, Kamalakaran R, Scheu C. Misrostructural investigations on zirconium oxide-carbon nanotube compostites synthesized by hydrothermal crystallization[J]. Carbon. 2004, 42: 1995-1999.
    [46] Kamalakaran R, Grobertn F L N. Microstructural characterization of C-SiC-Carbon nanotube composite flakes[J]. Carbon. 2004, 42: 1-4.
    [47] Ma R Z, Wu J, Wei B Q. Processing and properties of carbon nanotubes-nano-SiC ceramic[J]. Journal of Materials Science. 1998, 33(21): 5243-5246.
    [48]范锦鹏,赵大庆,徐则宁.多壁碳纳米管-氧化铝复合材料的制备及其力学、电学性能研究[J].中国科学:E. 2005, 35(9): 934-945.
    [49]王应德谭惠平陈建山姜艺.熔融纺丝制备聚碳硅烷有机先驱体纤维[J].化工新型材料. 2005, 33(9): 33-35.
    [50]沈军,张法明,孙剑飞.陶瓷/碳纳米管复合材料的制备、性能及韧化机理[J].材料科学与工艺. 2006, 14(2): 165-170.
    [51] Zhan G D, Kuntz J D, Wan J. Single-wall carbon nanotubes as attractive toughing agents in alumina-based nanocomposites[J]. Nature Materials. 2003, 2: 38-42.
    [52] Ning J, Zhang J, Pan Y. Fabrication and mechanical properties of SiO2-matrix composites reinforced by carbon nanotubes[J]. Materials Science & Engineering A. 2003, 357(1-2): 392-396.
    [53]方庆玲.铁填充碳纳米管的制备研究及应用初探[D].长沙:国防科学技术大学, 2005.
    [54]赵藻藩,周性尧,张悟铭,赵文宽.仪器分析[M].北京:高等教育出版社, 1990.
    [55]赵大方. SA型碳化硅纤维的连续化技术研究[D].长沙:国防科学技术大学, 2008.
    [56] Nielsen L E. Polymer Rheology[M].北京:科学出版社, 1983.
    [57]王玉芳,曹学伟,蓝国祥.碳纳米管晶格振动模及拉曼光谱的研究进展[J].光谱学与光谱分析. 2000, 20(2): 180-184.
    [58] Anglaret E, Bendiab N. Raman characterization of single wall carbon nanotubes prepared by the solar enegy router[J]. Carbon. 1998, 36: 12.
    [59]汪兆平,韩和相,李国华.碳纳米管的拉曼散射研究[J].光散射学报. 1999, 11(1): 28-35.
    [60] Satishkumar B C, Govindaraj A, Mofokeng J, Subbanna G N, Rao C. Novel experiments with carbon nanotubes: opening, filling,closing and functionalizing nanotubes[J]. J. Phys. B. 1996, 29: 4925-4934.
    [61] Wang Y, Iqbal Z, Mitra S. Rapidly Functionalized, Water-Dispersed Carbon Nanotubes at High Concentration[J]. J. AM. CHEM. SOC. 2006, 128: 95-99.
    [62] Wei W, Zhang C, Du Z, Liu Y, Li C, Li H. Assembly of fullerenol particles on carbon nanotubes through poly (acryloyl chloride)[J]. Materials Letters. 2008, 62: 4167-4169.
    [63] Sobkowicz M J, Dorgan J R, Gneshin K W, Herring A M, Mckinnona J T. Controlled dispersion of carbon nanospheres through surface functionalization[J]. CARBON. 2009, 47: 622-628.
    [64] Qin Y, Shi J, Wu W. Concise Route to Functionalized Carbon Nanotubes[J]. J Phys Chem B. 2003, 107(47): 12899-12901.
    [65]吴小利,岳涛,陆荣荣,朱德彰,朱志远.碳纳米管的表面修饰及FTIR,Raman和XPS光谱表征[J].光谱学与光谱分析. 2005, 25(10): 1595-1598.
    [66]邓培红,张军,黎拒难.锆-茜素红络合物在多壁碳纳米管修饰碳糊电极上的阳极吸附伏安法研究[J].分析化学. 2008, 36(5): 691-694.
    [67]唐国强,晋圣松,王红敏,边成香,徐学诚.溴吸附对碳纳米管导电性能的提高[J].化学学报. 2007, 65(23): 2776-2780.
    [68]邓金阳,周灵德,吴挺,余海湖,姜德生,顾而丹.金纳米粒子在硫醇修饰多壁碳纳米管表面的吸附[J].功能材料. 2007, 38(A07): 2783-2785.
    [69]王曙光,李延辉,宫小燕,赵华章,栾兆坤,徐才录,吴德海.改性碳纳米管的表面特性及其对Pb2+的吸附性能[J].科学通报. 2002, 47(24): 1865-1867.
    [70]柳泉润,朴玲钰,李永丹,王琛. L-苯丙氨酸在单壁碳纳米管上的吸附行为[J].科学通报. 2007, 52(21): 2468-2473.
    [71]郑青榕,顾安忠,蔡振雄,廖海峰,郑超瑜.氢在多壁碳纳米管上的等量吸附热[J].化学工程. 2007, 35(4): 42-45.
    [72] Liu Y, Du Z, Li Y, Zhang C, Li C, Yang X, Li H. Surface Covalent Encapsulation of Multiwalled Carbon Nanotubes with Poly(acryloyl chloride) Grafted Poly(ethylene glycol)[J]. Journal of Polymer Science: Part A: Polymer Chemistry. 2006, 44: 6880-6887.
    [73] Liu Y, Du Z, Li Y, Zhang C, Li H. Covalent Functionalization of Multiwalled Carbon Nanotubes with Poly(acrylic acid)[J]. Chinese Journal of Chemistry. 2006, 24: 563-568.
    [74] Yang Y S, Qi G R, Qian J W, Yang S L. Acryloyl Chloride Polymer[J]. Journal of Applied Polymer Science. 1998, 68: 665-670.
    [75]冯春祥,宋永才,谭自烈.元素有机化合物及其聚合物[M].长沙:国防科技大学出版社, 1999.
    [76]邱雪琼,吴惠霞,童睿,钱士雄,林阳辉,蔡瑞芳.可溶性高聚物2多壁碳纳米管复合物的吸收光谱和光限幅性能研究[J].光谱学与光谱分析. 2008, 28(7): 1449-1453.
    [77]刘辉,王应德,冯春祥,吴文华,朱美芳,陈彦模.聚碳硅烷流变性能的研究[J].合成纤维工业. 2001, 24(5): 23-25.
    [78]蓝新艳,王应德,薛金根,王鲁.熔融纺丝态下聚碳硅烷的流变特性[J].宇航材料工艺. 2005(1): 35-38.
    [79]徐佩弦.高聚物流变学及其应用[M].北京:化学工业出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700